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Abstract. We exhibit a reduction of variables criterion for the Willmore variational

problem. It can be considered as an application of the Palais principle of symmetric

criticality. Thus, via the Hopf map, we reduce the problem of finding Willmore tori

(with a certain degree of symmetry) in the five sphere equipped with its standard conformal

structure, to that for closed elasticae in the complex projective plane. Then, we succeed

in obtaining the complete classification of elasticae with constant slant in this space. It

essentially consists in three kinds of elasticae. Two of them correspond with torsion free

elasticae. They lie into certain totally geodesic surfaces of the complex projective plane

and their slants reach the extremal values. The third type gives a two-parameter family

of helices, lying fully in this space. A nice closure condition, involving the rationality

of one parameter, is obtained for these helices. Hence, we get three associated families

of Willmore tori in the standard five sphere. They are Hopf map liftings of the above

mentioned families of elasticae. The method also works for a one-parameter family of

conformal structures on the five sphere, which defines a canonical deformation of the

standard one.

1. Introduction. Let M be an immersed compact surface (throughout this paper
surfaces are assumed to be compact) into a Riemannian manifold M. We denote by α
and S the mean curvature function of M and the sectional curvature function of M
with respect to the tangent space of M, and define

This functional is an invariant under conformal changes of the metric of M and the
critical points of W are called Willmore surfaces ([6]).

Minimal surfaces of a sphere are obvious examples of Willmore surfaces in such
a sphere. However, N. Ejiri [8], answering to a problem of J. L. Weiner [16], gave an
example of a non-minimal Willmore flat torus in S5. Later, U. Pinkall [15], using a
nice description for the Hopf fibration of S3 onto S2 (both unit spheres), gave an
infinite family of unstable non-minimal Willmore surfaces in S3 which can be obtained
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as Hopf tori associated to certain closed elastic curves in S 2 ([12]).

In [3], B. Y. Chen and the first author obtained a complete classification of the

Willmore surfaces in any sphere which can be constructed in the corresponding Euclidean

space using eigenfunctions associated with two different eigenvalues of the Laplacian

(2-type surfaces, [7]), in contrast with minimal surfaces for which only one eigenvalue

is needed. In particular, they gave an infinite family of Willmore tori with nonzero

constant mean curvature, living fully in £ 5 . This series includes the Ejiri torus.

In this paper we will exploit the usual Hopf fibration of the 5-dimensional unit

sphere S5 onto the complex projective space, CP2(4), of constant holomorphic sectional

curvature 4, to obtain more examples of Willmore surfaces in S5.

First, we use the principle of symmetric criticality ([14]) to connect the Willmore

variational problem for tori in S5 with the variational problem relative to elastic curves

into CP2(4). More precisely, we notice that the complete lift of any curve y in CP2(4)

gives a flat cylinder, the Hopf cylinder associated with y, Ny in S5. Then, we prove that

the Hopf torus Nγ of a closed curve γ in CP2(4) is a Willmore torus in S5 if and only

if γ is an elastica, with Lagrange multiplier λ = 4, in CP2(4) (see Theorem 1).

The Ejiri torus in S5 is the only 2-type Willmore torus in S5 which can be obtained

as the Hopf torus of a curve γ in CP2(4). Moreover, this curve is an elastic circle (λ = 4)

with Lagrangian osculating plane in CP2(4) and so it lies as an elastica in some totally

geodesic, Lagrangian real projective plane in CP2(4).

We say that a curve γ in CP2(4) has constant slant if the angle between the complex

tangent plane and the osculating plane of y is constant along y. In particular, curves

with osculating plane either holomorphic or Lagrangian have constant slant.

In this paper we obtain the complete classification of elasticae with constant slant

in CP2(4). It can be described as follows. There are three types of members in this family:

(1) Elasticae living in a totally geodesic, holomorphic surface S2(4) in CP2(4).

This case corresponds with slant zero.

(2) Elasticae living in a totally geodesic, Lagrangian surface RP2(\) in CP2(4).

This case corresponds with slant π/2.

(3) A two-parameter family of elastic helices living fully in CP2(4). One parameter

in this family is the Lagrange multiplier of the elastica.

We notice that the first two cases correspond with elasticae of zero torsion in CP2(4).

We also consider closure conditions for curves of the third type, to obtain a rational

one-parameter family of closed elastic helices in CP2(4) (with Lagrange multiplier λ = 4).

The existence of a closed elastica, even for an elastic energy functional with poten-

tial, has been proved in [9] (see also [10]). The solution given there is stable, namely

it is a minimum, however it could be a geodesic. The helices obtained in our classifica-

tion, in particular those which are closed, provide the first known examples of elasticae,

in particular closed elasticae, in a space with no constant sectional curvature and of

dimension greater than two (for elastic parallel in a surface of revolution see [4]).

Our main result can be summarized as follows:
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There are infinitely many Willmore tori in S5 which can be obtained by means of
the Hopf fibration Π: S5->CP2(4). This family includes the following three subfamilies:

(a) Given a closed elastic curve γ in 52(4) (a complex and totally geodesic surface
in CP2(4)), then Π~ί(γ) is a Willmore torus living fully in some S3 which is totally
geodesic in S5. This subfamily essentially coincides with that studied by Pinkall.
Moreover, the Clifford torus in the above mentioned S3 is the only constant mean
curvature (actually minimal) surface obtained in this way.

(b) Given a closed non-geodesic elastica γ in RP2(\) (a Lagragian and totally
geodesic surface in CP2(4)), U " 1 ^ ) is a Willmore torus living fully in S5. Moreover,
the Ejiri torus in S5 is the only constant mean curvature surface obtained in this way.

(c) Given a closed elastic helix y in CP2(4), the Hopf torus Π~ 1(y) is a Willmore
torus of nonzero constant mean curvature living fully in S5. This is a countably infinite
family of tori.

In all the cases the Lagrange multiplier of the elasticae must be chosen to be λ = 4.
The last section of this paper is dedicated to extending the above mentioned results

to other conformal structures on S5, different to the standard one. We can carry out
it, because the classification of elasticae with constant slant in CP2(4) does not essentially
depend on the Lagrange multiplier. Therefore, we consider a one-parameter family of
conformal structures {%/t>0} on S5. This is defined by deforming the standard metric
of S5 in such a way that, through the variation, the metrics are nicely projected via the
Hopf mapping. In other words, we consider the conformal structures associated with
the so-called canonical variation of the usual Hopf Riemannian submersion (see [1]
for details).

The reduction of variables algorithm also works for the Willmore variational
problems in (£ 5, %) (see Theorem 4). This allows us to obtain families of Willmore tori
into (iS5, %), which are Hopf tori shaped on elasticae in CP2(4) with Lagrange multiplier
λ = 4t2, (ί>0). In particular, we can obtain Willmore tori Ny into certain (S5, %), such
that Ψ~(Ny)<2π2. This fact contrasts with the Willmore conjecture, namely iΓ(T).>2π2

for any torus in (S5, c€x).
The authors would like to express their thanks to the referee for his valuable

comments and suggestions.

2. Hopf tori in the 5-sphere. We consider the space C3 of three complex variables
endowed with its usual complex structure /which can be defined as follows: We identity
z = (zι,z2,z3)eC3 with (xί9 x2, x3, yί9 y2, J ^ ) ^ 6 , where zk = xk + ̂ J — lyk, fe=l, 2, 3.
Then Jz = {—yu - J ^ - J ^ *i> *2> *3) We give on S5aC3 (the unit sphere), its usual
contact structure (ξ, η, φ) (see [5] for details). In particular ξ= —Jz, where z denotes
the position vector on points of S5, and so ξ is the unit tangent vector field to the fibers
of the standard Hopf fibration Π: £5->CP2(4). Here CP2(4) denotes the 2-dimensional
complex projective space with the complex structure / obtained by restricting φ to the
horizontal distribution Hz = {Jz}1

i zeS5 and with the Fubini-Study metric of constant
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holomorphic sectional curvature 4. The following lemma collects some useful properties

of this mapping.

LEMMA. The following assertions hold:

(1) Π: S5-+CP2(4) is a Riemannian submersion with fibers being geodesies in S5.

(2) The natural action of S1 on S5 to obtain CP2(4), via Π, as a space of orbits,

is made up by isometries ofS5.

(3) An immersed surface N in S5 is S1-invariant if and only ifN=Π~ 1(y),for some

immersed curve y in CP2(4). In particular, ify is closed, then Π~ι(y) is a torus, which is

embedded if y is free of self-inter sections into CP2(4).

Let Γ: M^B be a harmonic submersion of semi-Riemannian manifolds M and B;

that means Γ is a semi-Riemannian submersion and the fibers Γ~1(b), beB, are minimal

submanifolds of M (for details on this subject see [1] or [13]). Given an immersed non

null curve y:I<^R-+B (we will always assume that γ is arclength parametrized), we

consider the submanifold N=Γ~1(y) in M. Denote by X=y' the unit tangent vector

field of y and by .fits horizontal lift to M. If Vp is the tangent space to the fiber through

peM, then TpN =Span{X(p), Vp} and the normal space of TV at p, TpN, is a horizontal

subspace.

Let V and V be the Levi-Civita connections of M and B associated respectively with

their semi-Riemannian metrics <,> and <C,y Also σ and h will denote the second

fundamental forms of N and the fibers in M respectively. Notice that trace(/z) = 0

because of the harmonicity of Γ. Now we use basic properties of semi-Riemannian

submersions to have

and

where ξeTpN, dΓp(ξ) = ξ, and ηe Vp. Therefore if α and K denote the mean curvature

function of N in M and the curvature function of y in B respectively, we obtain

n2

where n denotes the dimension of N.

3. Willmore tori in the standard 5-sphere. In this section we obtain a nice con-

nection between the Willmore variational problem in S5 and the elastica variational

problem for curves into CP2(4). Our next result can be regarded as an example of

reduction of variables for the Willmore variational problem. The chief point to get it

is the principle of symmetric criticality ([14]).
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THEOREM 1. Let y be a closed immersed curve in CP2(4) with curvature function

K. Then Ny = Π~1(y) is a Willmore torus in S5 if and only if y is a critical point of the

elastic functional 3F{y) = Jy (K 2 + 4)ds.

PROOF. Let Jί be the smooth manifold of immersions, φ, of a genus one compact

surface N into S5. The Willmore functional 1V: Jf-*R is given by

where ocφ and dυφ denote the mean curvature function of φ and the volume element of

the induced metric by φ on N, respectively. It is obvious that Hi is invariant under the

usual £ ^action on S\ that is, iT(φ) = iT(eiθ φ) for any θeR.

We denote by Jίsι the submanifold of Jί made up of immersions which are

Sι-invariants. Then JVSI can be identified with the set of Hopf tori in S 5, that is,

Jίs\ = {Nγ | y is an immersed closed curve in CP2(4)} .

We also write Σ and Σsι to name the spaces of critical points of W (Willmore

tori), and iV restricted to JVSI, respectively. Now, the principle of symmetric criticality

([14]) may be applied to obtain

Therefore, we get all Willmore-Hopf tori, by computing the critical points of

restricted to / s i . Then, we have

(2) α2(i7-1(p)) = -^-ιc2(p),
4

where K is the curvature function of y in CP2(4) and pey.

Hence

where F denotes a fundamental region for the covering / : R2^>N. Thus, we get

7 1 ' - . 2 ,(3) ψ-(Ny)=^\ (κ
2 Jγ

and this concludes the proof of the statement. •

Consequently, a way to construct nontrivial (non-minimal) examples of Willmore

tori in 5 5 is to take Hopf tori shaped on non-geodesic extremal curves, γ, for the

functional J^ that is, on elastic curves in CP2(4) with Lagrange multiplier λ = 4. This is

similar to the method used by U. Pinkall [15] to get non-minimal Willmore tori in S3.

However, one might propose the converse way: Start from non-minimal Willmore tori
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in S5 (because we know a big family, [3]), and then look for those which are Hopf

tori to get non-geodesic elastic curves in CP2(4). This is the aim of the next section.

4. 2-type Willmore surfaces in the standard 5-sphere. If we pay attention to the

well-known spectral behaviour of the position vector in R6 of the minimal surfaces in

S 5 , it seems natural to ask for Willmore surfaces in S5 which can be constructed in

R6 using eigenfunctions of the Laplacian associated with exactly two different eigenvalues

(that means 2-type surfaces, [7]). We start this section with a brief description of the

method used in [3], to get examples of non-minimal Willmore surfaces in the sphere.

In particular, in this paper, we are interested in the case of the 5-sphere.

We consider a lattice A = {(2nπu, 2mπυ + 2nπw)/n, m e Z} in the Euclidean plane R 2,

where u, v and w are real numbers with u, v>0. By computing its dual lattice, we obtain

the spectrum of the flat torus TUVW = R2/A,

(4) \( —\+h,keZ
[\u uv J v

For any nonzero real number ε and two natural numbers h and k, satisfying

ε^2hk2/(k2 — 2h2), we choose A as follows:

_JΊ>εk __k _ ( h - k ) ε
" - — , v-—, w- - >

where A = (2ε2 + k2)1/2.

Now we define an isometric immersion y:R2->S5 ^ C 3 by

(5) y(s, t) = (υcos(—Ves/M;t;sin(— )eiBSlu;(l-υ2)ί/2eikslu ),

V \vj \υj J
which induces an isometric immersion x from Tuvw into S 5 .

It was proved in [3] that x defines a Willmore surface in S5. Notice also that the

center of mass of x coincides with the center of S 5 (in this sense we say that x is of

mass-symmetric) and it is constructed in C 3 using eigenfunctions of the Laplacian of

Tuυw associated with two eigenvalues, namely (ε/u)2 + i/v2 and k2/u2. Also x has nonzero

constant mean curvature, which is given by

2 Λ 2

where μx and μ2 are respectively the minimum and the maximum of both eigenvalues

involved in the 2-type nature.

In particular it is not difficult to see that x: TUVW->S5 is the Hopf torus on a certain

closed curve in CP2(4) if and only if ε = k. In this case A is the rectangular lattice

generated by (2πε, 0) and (0, 2π/j 3). The covering y of the (5, ί)-plane onto this
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Willmore-Hopf torus in S5 is given by

y(s, t) = — — e IS(cos y/ 31 sin,

and its 77-projection gives the curve

γ(t)--= πh^L (cos/Iί sin/Tί Jl )Y

which is a closed elastica {λ = 4) in CP2(4). γ lies fully in a real projective plane RP2(\)

with Gaussian curvature 1, and is totally geodesic and Lagrangian in CP2(4). Notice

also that the osculating plane of γ is a Lagrangian plane in CP2(4) everywhere.

5. Elastic curves in the complex projective plane. As usual, by torsion we mean

the second curvature of a curve in a Riemannian manifold. It will be denoted by τ.

It is well-known that if we have a curve γ in a real space form, say β, and τ vanishes

identically, then we can integrate the distribution defined by the osculating plane along

y in Q to show that γ actually lies in a totally geodesic surface of Q. This is not true

in general. For instance, in CP2(4) we can find torsion-free curves which do not lie in

any totally geodesic submanifold of CP2(4). In order to establish this fact, it will be

enough to have torsion-free curves with osculating plane neither holomorphic nor

Lagrangian. Examples of this kind of curves in CP2(4) can be given, for example, by

considerating appropriate solutions of the later (32).

Let y:IaR-+CP2(4) be an arclength-parametrized curve and denote by

{T, ξ2, ξ3, ξ4} a Frenet reference along y. We recall the standard Frenet equations of

y, where V will denote the Levi-Civita connection of CP2(4):

(6) VτT=κξ2,

(7) Vτξ2=-κT-τξ3,

(8) VTξ3 = τξ2 + ^ 4 ,

(9) VTξ*=-δξ3.

It should be noticed that τ is determined up to sign by (7) and (8). Throughout this

paper, we take a choice for sign of τ and then determine ξ3. The same can be done for £4.

If γ is an elastica in CP2(4), then it satisfies the corresponding Euler equation ([11])

(10) 2V£Γ+VT[(3κ2-/ί)Γ]+27?(VΓ7; T)T=0,

where R denotes the curvature tensor field of CP2(4) and λ is some real number which

works as a Lagrange multiplier associated with this variational problem.

REMARK 1. It is obvious that JT= cos φ2ξ2 + cos φ3ξ3 + cos (/>4£4 with cos2 φ2 +
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cos2(/)3 + cos2 φ4 = 1. In particular, φ2 is the angle between the complex tangent plane

Sρan{Γ, JT] and the osculating plane Span{Γ, ξ2}. A curve y is said to be of constant

slant if φ2 is constant along y.

A straightforward computation involving (6)-(9), (10) and the well-known ex-

pression for R show that y is an elastica of CP2(4) if and only if {K, τ, δ} are solutions

of

(11) 0 = 2κ

(12) 0 = —

(13) 0 = —

PROPOSITION 1. Let y be a non-geodesic elastica of CP2(4). Then its torsion τ

vanishes identically if and only if the osculating plane of y is either holomorphic or

Lagrangian.

PROOF. If τ vanishes identically, then we use (6) and (7) in (10) to obtain

which obviously proves that the osculating plane of y must be either holomorphic or

totally real. Conversely, suppose the osculating plane is Lagragian, then φ2 = π/2 and

so it is constant. Then τ c o s φ 3 = 0. If τ does not vanish, then cos(/>3=0. This allows us

to take JT=ξA. Now (13) gives (5 = 0 and therefore the Frenet equations show that

κ = 0, which is impossible because y is not a geodesic of CP2(4). If φ2 = 0, then JT=ξ2

and so, we use once more the Frenet equations to obtain τ = 0. It should be noticed

that in this second case, we do not need the elasticity of y to prove the converse. •

PROPOSITION 2. Let y be an elastica in CP2{4). Then the following holds.

(1) The osculating plane ofy is holomorphic everywhere in CP2(4) if and only if y

lies, as an elastica, in some S2(4) which is complex and totally geodesic in CP2(4).

(2) The osculating plane ofy is Lagrangian everywhere in CP2(4) if and only if y

lies, as an elastica, in some RP2(\) which is Lagrangian and totally geodesic in CP2(4).

PROOF. The "only if" part in both cases is obvious. Conversely, if the osculating

plane is holomorphic (resp. Lagrangian) everywhere, then from Proposition 1, we know

that τ = 0 and so the normal subbundle v = Span{^3, ξA) is a holomorphic (resp.

Lagrangian) subbundle which is parallel in the normal bundle of y in CP2(4). Also it

is a totally geodesic subbundle (that is, it is made up of totally geodesic directions) and

so we can reduce complex (resp. real) codimension to prove that y lies in a complex

(resp. Lagrangian) totally geodesic surface of CP2(4). •

REMARK 2. It is known that a helix in a Riemannian manifold is a curve which
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has all the curvatures constant. The next result shows that an elastica with constant

slant in CP2(4) is either a torsion-free elastica or a helix in CP2(4). By this result and

according to (3), we will restrict ourselves to the case λ = 4. However, an analogous

statement can be stated for any value of the Lagrange multiplier λ.

PROPOSITION 3. Let y be an elastic with constant slant, say φ2, into CP2(4). Then

either.

(1) τ vanishes identically or,

(2) cos2 φ2e(0, 2/3) and y is a helix in CP2(4) with curvatures,

(14) κ=—=

(15) τ = - 3 s i n 2 0 2

2^/2 - 3 cos2 φ2

(16) δ=-^2-3cos2φ2.

PROOF. Suppose y is an elastica with constant slant φ2 e (0, π/2). Since τ does not

vanish, then φ3 = π/2 and so φ 4 is also constant. After standard manipulations and the

appropriate choice of ξ3, we can obtain

(17)

which combined with (12) and (13) gives

(18) A cos φAκ
3 + cos φ2A

2 + 3 cos φ2 cos2 φ^K4 = 0 ,

where A = τκ2, which is a non-zero constant because of (12). Consequently, all the

coefficients appearing in (18) are constant, and so y is a helix. To compute K, τ and δ

in terms of the slant φ2, we combine (11), (13) and (17). •

The standard Frenet equations (6)-(9) of a curve y into CP2(4) are useful, for

example, in defining the concept of helices. To our purposes, however, we have need

of a different reference frame along the curve y, which involves the complex structure

/ of CP2(4). One way to describe this frame is to begin by lifting the curve y in CP2(4)

to a horizontal curve Y(s) in S5. It should be noticed that this lifting is not unique, but

different lifts are all of the form eir Y(s), r being a constant. We also observe that Y(s)

is parametrized by arclength too, because Π is a Riemannian submersion. The tangent

vector T(s) = y'(s) lifts to T(s)= Y'(s). Now we may uniquely choose a vector field U(s)

along y(s), orthogonal to T(s), so that its horizontal lift U(s) gives the third component

in a special unitary frame σ(s)={Y{s), T(s), D{s)} in C 3 . In other words, σ(s) is a lifting

of the curve y(s) to a curve in SU(3). It is not difficult to see that σ satisfies the following

differential equation:
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(19)
ds

where Λ(s) is a matrix in su(3). Since the curve Y(s) is horizontal, then A(s) must have

the form:

This equation can be projected down to CP2(4). Hence the new frame along γ(s)

is {T, JT, U, JU}(s) and its associated equations are:

(20) WTT= κxJT+ κ2 U+ κ3JU,

(22) VΓC/= -κ2T+κ3JT-κγJU,

(23) WτJU= -κ3T-κ2JT+κγU.

Notice that κf-\-κ2+κ3=κ2. In this setting, it turns out that 7(5) is an elastica of

CP2(4) if and only if {κu κ2, κ3}(s) are solutions of

nΛΛ n »± L ^ 1 M 1 2^ 2,~L '
I ^*^Γ I V/ IV 1 |̂  fv 1 I ^Γ "T" I fv 1 |̂  IV O | IV "3 I I 1^ IV 'i IV O Γv OIV 'I %

L 2 2 3 ; J
(25) 0 = K2+κ

L
A 1

Π * J

 K 2 ^ 2 K 2 ) 1 K K ' _ K K >

(26) 0 κ3 + κ3 i +

From now on we will assume that elasticae are not geodesies.

6. Elastic helices in the complex projective plane. In this section, we are going

to study elasticae with constant slant, φ2e(0, π/2), into CP2(4). From Proposition 3,

we already know that they are helices in CP2(4). The following proposition gives a

partial converse of this fact and so a characterization of elastic helices in CP2(4).

PROPOSITION 4. Let y(s) be an elastica ofCP2(4). Then y(s) is a helix in CP2(4) if

and only if its curvature and slant are both constant.

PROOF. The "if" part is contained in Proposition 3. To prove the converse, we

first multiply equation (24) by κ[, equation (25) by κ'2 and equation (26) by κf

3. Then

we take the sum to obtain
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(27) 0 = its' τr'' _j_ τr' l/ '' _J_ τr' ic"\ -I (}C ^Y I 1 V-

2 ' ' L 2 2
Next, we study the relationship between complex and regular Frenet equations of y(s)

in CP2(4). In particular, we compute V^Γin both settings to obtain:

(28) (κf ) 2 + (κf ) 2 + (K' )2 = (κ')2 + κ2τ2

If K and τ are constant, then we combine (27) and (28) to obtain the constancy of κ1

too. Finally, we observe that cos φ2 = κί/κ, which completes the proof. •

REMARK 3. It should be noticed that, in the course of the proof of the last

proposition, we have shown the following claim: Elasticae in CP2(4) whose curvature

and torsion are both constant have constant slant.

Next, we proceed to measure how big the family of elastic helices into CP2(4) is.

Therefore, we suppose that y(s) is an elastic helix in CP2(4), with slant φ2 = φ. From

κ2 + κi + κ2 = κ2, it is clear that we can find a function φ(s), along y(s), such that

(29) κx = κcosφ , κ2 = K sin φ cos φ(s), κ3 = K sin φ sin φ(s).

We put ω = φ' and then combine (28) with (29) to get

τ 2 = ω 2 s i n 2 φ ,

which proves that ω is also constant.

Since y satisfies the equations of an elastica, we may substitute these into equations

(24)-(26). The resulting equations are dependent and can be simplified as

(30) 3C = ωS2 + ωC2-ω2C,

λ - 1
(31) — - l = C ω - ω 2 + — (C 2 + S 2 ) ,

where C and S are constant given by

Kγ — C^ κ2 = Scos cos , τc3 = *S sin cos .

The differential equation (19), giving the lift σ(s) of y to SU(3), may now be written as

0 - 1 0

Ci -Se~iωs

,0 Seiωs -Ci

We define a new curve in SU(3\ say σ(s) = (Ϋ, Z, U)(s\ by

/e-w 0 0

σ(s) = σ(s) \ 0 e~iωs/3 0

V 0 0 e2iωs/3
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We observe that Ϋ{s) = e-iωs/3 Y(s) and so Π(Ϋ(s)) = Π(Y(s)) = γ(s). This means that Ϋ(s)

is a lift of y(s), although it is not a horizontal curve. The advantage of using σ(s) is that

it satisfies the following system of differential equations with constant coefficients:

(32) σ'{s)

where Mesu(3) is given by

/-iωβ - 1 0

M={ 1 (C-ω/3)/ -S

V 0 S (2ω/3 -C)i.

In particular, we have shown the following claim: Every elastic helix in CP2(4) is the

image, under the natural projection, of a one-parameter subgroup of SU(3).

Since we are primarily interested in the case λ = 4 (see §3), we substitute this value

into the equations (30) and (31), and rewrite the resulting equations as:

= 2 + 2ω2-2Cω.

These equations are simplified to a single relation

(33) C = f .

The other constants can also be expressed nicely in terms of ω:

(34) κ 2 = 2 + ^ ,

(35) τ
τ

3(ω

(36) δ=*f

(37) * 2 = 2 + ^

Therefore, we have proved the following.

THEOREM 2. There exists a two-parameter family of elastic helices, living fully into

CP2(4). If we choose one parameter to be λ = 4, then for any choice of ωφO, we have

an elastic helix in CP2(4) with curvatures and slant given by the formulas (34)-(37).

In particular, we must have κ2>2 for the curvature of such a curve and cos2 φ = 2ω2/

(9 + 3ω 2) < 2/3 for its slant.
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7. Proof of the main statement. Certainly, there are infinitely many elastic closed

curves in CP2(4) with osculating plane being Lagrangian (or holomorphic). In fact,

there are infinitely many non-geodesic closed curves in RP2(\) that are critical points

for the functional §(κ2 + 4)ds; they can be obtained using results of [12]. Then we

regard RP2(l) as a Lagrangian, totally geodesic surface in CP2(4). The above mentioned

curves generate Hopf tori which lie fully in S5 to give infinitely many immersed Willmore

surfaces (tori) on S5. It is also clear that the only Hopf torus obtained in this way

having constant nonzero mean curvature is the Ejiri torus. Also, notice that we can use

the infinitely many elastic closed curves of S2(4) (the 2-sphere of Gaussian curvature

4, [12]) and regard them as complex and totally geodesic surfaces in CP2(4), to produce,

by pulling back these curves via 77, the associated Hof tori in S5 which are also Willmore

surfaces in S5. Actually, they lie fully in some S 3 which is totally geodesic in S5. This

second family of Willmore tori was essentially obtained in [15] and it includes the

Clifford torus as the unique minimal member.

It should be noticed that the Clifford torus in some S 3 , being totally geodesic in

S 5 , can be also obtained in the Lagrangian case, if we allow the closed elastica in RP2(\)

to be a geodesic/because RP2(l) nS2(4) is just a geodesic of both RP2(\) and 52(4).

It remains then to examine the elastic helices of CP2(4), obtained in the last section,

and determine which one among them is closed. It suffices, of course, that if the lifted

curve σ(s) is a closed curve in SU(3). Therefore we must find a positive number, say L,

so that σ(s + L) = σ(s). Since σ(s) = esM is a one-parameter subgroup of SU(3), this reduces

to the problem of finding L > 0 such that the eigenvalues of L M are all integer multiples

of 2πi. Let tu t2 and t3 be the eigenvalues of M. Since Mis in su(3), we have tχ + t2 +13 = 0.

It follows that the required condition for the roots is that t2/tί be rational.

The characteristic polynomial of M is

, , 3 9 + ω 2 2(9 + ω 2)ω Λ

XM(*) = * 3 + — 3 ~ * + * 2 7 = 0 .

Replacing t by ir reduces this equation to

3 9 + ω 2 2(9 + ω 2 )ω Λ

3 27

The roots of this equation turn out to be

(θ + 2π\
cos ,

V 3 /'
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where

— ω

We put all this information together to obtain a rational one-parameter family of
closed elastic helices into CP2(4). More precisely, we have:

THEOREM 3. Let q be a rational number with 1 < q < 3. Define an angle θ, π/2 <θ<π,
by q = ̂ J 3 tan 0/3. Then for ω = — 3 cot θ, the corresponding elastic helix y, with λ = 4, in
CP2(4) is closed. Moreover, the Hopf torus shaped on y is a Willmore torus of constant
mean curvature and full in S5.

8. Willmore tori in non-standard conformal structures on the 5-sphere. In Section

3, we have obtained a method to get Willmore tori into S5 as Hopf tori over 4-elasticae
into CP2(4) (see Theorem 1). Of course, in that statement S 5 means the 5-sphere
endowed with its standard conformal structure. Hence, the three subfamilies of Willmore
tori exhibited in the main statement (see the introduction) correspond with this conformal
structure on S5.

In this section, we extend the above mentioned results to a one-parameter family
of conformal structures on S5. This family is defined to be a deformation of the standard
conformal structure. We start by introducing the canonical variation of the Riemannian
submersion Π :S5->CP2(4), (see [1]). Let g and g be the standard metric of constant
curvature one on S5 and the Fubini-Study metric of constant holomorphic sectional
curvature 4 on CP2(4), respectively. The horizontal distribution H on S5 (see Section
2) defines a connection on the principal fibre bundle 55(CP2(4), S1), where S1 works
as the structure group (it is a circle bundle), whose connection 1-form is denoted by Ω.
We also put dr2 to name the usual metric on S1. With these ingredients, we can define
the following one-parameter family of Riemannian metrics on S5, which will be called
the canonical variation of Π:(S5, #)->(CP2(4), g) (or simply the canonical variation
oϊg)

G = {gt = Π*(g) + t2Ω*(dr2)\t>0} .

It is clear that cjι=g.
These metrics are examples of a kind of metrics which are known as bundle like

metrics (also as Kaluza-Klein metrics). They have fine properties, some of which are
listed as follows:

1. For any />0, 77:(55, #ί)->(CP2(4), g) is a Riemannian submersion with
geodesic fibers, isometric to S\t) (the circle of radius t).
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2. The natural action of S1 on S5, to obtain CP2(4) as the orbit space, is made

up through isometries of (S 5 , gt) for all t>0.

3. The mean curvature function α of Ny = Πί(γ) into (S5, gt) does not depend on

t and so it is given by the formula (1).

4. Every (S 5 , gt) has constant scalar curvature.

5. These metrics define a family of conformal structures {% = [gt~]/t > 0} on 5 5 ,

which are pairwise distinct.

THEOREM 4. Let y be a closed immersed curve in CP2(4) with curvature function

K. Then Nγ = Π~1(y) is a Wίllmore torus in (£ 5 , %) if and only ifγ is a critical point of

the elastic functional &\y) = j y (K 2 + 4ί 2)ds.

PROOF. We can reproduce the proof of Theorem 1 step by step, with only one

difference. Now the term S appearing in the integrand of Ψ* depends on ί, and we

name it by S\ To compute it, we use an argument similar to that used in [2]. First,

we denote by V and Ax the O'Neill invariants of the corresponding submersion. We

notice that V vanishes identically (because these Riemannian submersion have geodesic

fibers). Since S* is the sectional curvature in (S 5 , gt) of a mixed (also called vertizontal,

[17]) section, we have

where Xdenotes the horizontal lift of X=y' and U — ξ/t (see §2), that is, £/is a

vertical vector field. Then one can prove that AtχU=t iX, and so Sl = t2.

Consequently, the Willmore functional of ( 5 5 , %) on Nγ is

(2 + 4t2)ds.

We can use this theorem and the complete classification of elasticae with constant

slant in CP2(4) to obtain three families of Willmore tori in (S 5 , %) for any t>0. In

particular, we have

COROLLARY. For any real number t > 0, there exists a rational one-parameter family

of Willmore tori into (S 5 , %). They are obtained as Hopftori shaped on At2-elastic closed

helices in CP2(4) and so have constant mean curvature in (S5, gt).

REFERENCES

[ 1 ] A. L. BESSE, Einstein manifolds, Springer-Verlag, 1987.

[ 2 ] M. BARROS, Willmore tori in non-standard 3-spheres, Math. Proc. Camb. Phil. Soc. 121 (1997), 321—

324.

[ 3 ] M. BARROS AND B. Y. CHEN, Stationary 2-type surfaces in a hypersphere, J. Math. Soc. Japan 39

(1987), 627-648.

[ 4 ] M. BARROS AND O. J. GARAY, Free elastic parallels in a surface of revolution, Amer. Math. Month.



192 M. BARROS, O. J. GARAY AND D. A. SINGER

103 (1996), 149-156.
[ 5 ] D. E. BLAIR, Contact manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer-Verlag,

Berlin-New York, 1976.
[ 6 ] B. Y. CHEN, Some conformal invariants of submanifolds and their applications, Boll. Un. Mat. Ital.

10 (1974), 380-385.
[ 7 ] B. Y. CHEN, Total mean curvature and submanifolds of finite type, World Scientific, 1984.
[ 8 ] N. EJIRI, A counter-example for a Weiner open question, Indiana Univ. Math. J. 31 (1982), 209-211.
[ 9 ] N. Koiso, Elasticae in a Riemannian submanifold, Osaka J. Math. 29 (1992), 539-543.
[10] N. Koiso, Convergence towards an elastica, Geometry and Global Analysis, Report of the first MSJ.

International Research Institute, 1993, Tόhoku University.
[11] J. LANGER AND D. A. SINGER, The total squared curvature of closed curves, J. Diff. Geom. 20 (1984),

1-22.
[12] J. LANGER AND D. A. SINGER, Curve-straightening in Riemannian manifolds, Ann. Global Anal. Geom.

5 (1987), 133-150.
[13] B. O'NEILL, Semi-Riemannian Geometry, Academic Press, 1983.
[14] R. S. PALAIS, Critical point theory and the minimax principle, Global Analysis, Proc. Sympos. Pure

Math. 15(1970), 185-212.

[15] U. PINKALL, Hopf tori in S\ Invent. Math. 81 (1985), 379-386.
[16] J. L. WEINER, On a problem of Chen, Willmore et al., Indiana Univ. Math. J. 27 (1978), 19-35.
[17] A. WEINSTEIN, Flat bundles and symplectic manifolds, Adv. Math. 37 (1980), 239-250.

M. BARROS O. J. GARAY

DEPARTAMENTO DE GEOMETRIA Y TOPOLOGIA DEPARTAMENTO DE MATEMATICAS

FACULTAD DE CIENCIAS UNIVERSIDAD DEL PAIS VASCO/

UNIVERSIDAD DE GRANADA EUSKAL HERRIKO UNIBERTSITATEA

18071 GRANADA APTDO 644. 48080 BILBAO

SPAIN SPAIN

E-mail address: mbarros@goliat.ugr.es E-mail address: mtpgabeo@lg.ehu.es

D. A. SINGER

DEPARTMENT OF MATHEMATICS

CASE WESTERN RESERVE UNIVERSITY

CLEVELAND, OHIO 44106-7058

USA

E-mail address: das5@po.cwru.edu




