A CONSTRUCTION OF K-CONTACT MANIFOLDS BY A FIBER JOIN

TSUTOMU YAMAZAKI

(Received March 21, 1997, revised June 21, 1999)

Abstract. In this paper we introduce a process of making a fiber join of regular K-contact manifolds and then construct some explicit examples of K-contact flows which generate contact transformations of a torus. We also discuss the equivalence of these examples.

1. Introduction. A contact flow φ_t is a flow which is generated by the Reeb vector field of a contact manifold (M, α) . It preserves the contact form α and the contact plane field $\ker \alpha$. A contact flow φ_t is called a *K-contact flow* if there exists a metric g on M such that φ_t is an isometry. In this case the triple (M, α, q) is called a *K-contact manifold* ([2, 3]).

Suppose we are given a K-contact manifold (M, α, g) . If M is compact, the closure of a K-contact flow $\{\varphi_t \mid t \in R\}$ in the isometry group of (M, g) makes a compact connected abelian Lie group, hence isomorphic to T^k for some integer k. Clearly this action of the torus T^k also preserves α and g. Thus a compact K-contact manifold (M, α, g) has a T^k -action which preserves both α and g. We will see that this property of T^k -action on a contact manifold characterizes the "K-contactness" and k satisfies $1 \le k \le n+1$ when dim M=2n+1 (see Proposition 2.1). We call (M, α, g) with this T^k -action a K-contact manifold of rank k. A typical class of examples of K-contact manifolds of rank 1 is a family of regular K-contact manifolds (M, α, g) . A regular contact manifold (M, α) consists of a pair of a principal S^1 -bundle M over a symplectic manifold (M, ω) and a connection one-form α . A metric g is given by $g = \pi^* g_W \oplus (\alpha \otimes \alpha)$, where g_W is a Riemannian metric compatible with ω and π is the bundle projection $M \to W$ (see Example 2.4).

In this paper we will present a method of constructing a K-contact manifold of rank $k \ge 2$ out of K-contact manifolds of rank 1 by making use of join construction in topology.

Let $(M_0, \alpha_0, g_0), \ldots, (M_n, \alpha_n, g_n)$ be regular K-contact manifolds and L_j an associated complex line bundle of $M_j \to W$ for each j $(j = 0, 1, \ldots, n)$. From these we construct a K-contact manifold $(M_0 *_f \cdots *_f M_n, \beta_\lambda, g_\lambda)$ of rank n + 1. Here $M_0 *_f \cdots *_f M_n$ is the unit sphere bundle $S(L_0 \oplus \cdots \oplus L_n)$ and β_λ is a contact form with a parameter $\lambda = (\lambda_0, \ldots, \lambda_n) \in \mathbb{R}^{n+1}$. We call the resulted K-contact manifold a *fiber join* of $(M_0, \alpha_0, g_0), \ldots, (M_n, \alpha_n, g_n)$.

Applying a fiber join construction to three dimensional regular K-contact manifolds, we obtain infinitely many distinct K-contact structures on $\Sigma_g \times S^{2n+1}$ and $\Sigma_g \tilde{\times} S^{2n+1}$ (Σ_g is a closed Riemannian surface of genus g) which are not T^{n+1} -equivariant. Namely, we obtain the following:

¹⁹⁹¹ Mathematics Subject Classification. Primary 53C12; Secondary 5315, 58F25.

434 T. YAMAZAKI

THEOREM 4.5. For $n \ge 1$ there exist infinitely many different K-contact equivalence classes of K-contact flows on $\Sigma_q \times S^{2n+1}$ and $\Sigma_q \tilde{\times} S^{2n+1}$.

The author would like to express his gratitude to Professor Tadayoshi Mizutani and Professor Yoshihiko Mitsumatsu for their continuous encouragement and helpful discussions.

2. The torus action on K-contact manifold. A contact form on a (2n+1)-dimensional smooth manifold M is a one-form α such that $\alpha \wedge (d\alpha)^n$ is everywhere nonzero. The pair (M,α) is called a contact manifold. A contact form α determines a unique vector field Z on M such that $\alpha(Z)=1$, $d\alpha(Z,X)=0$ for any vector field X on M. We call Z and the flow φ_t generated by it the *Reeb vector field* and the *contact flow*, respectively. A 2n-dimensional distribution D on M defined by $D:=\ker\alpha$ is called a *contact plane field*. From the definition of α and D, it is obvious the two-form $d\alpha$ is non-degenerate on D. Namely, $d\alpha$ induces a symplectic structure on D. In this situation, it is well-known that there exists a positive definite metric g_T and an almost complex structure J on D such that $g_T(X,Y)=d\alpha(X,JY)$, $g_T(JX,JY)=g_T(X,Y)$ for all $X,Y\in\Gamma(D)$ (the set of smooth sections of a vector bundle D) (see [1]). The pair (g_T,J) is said to be *compatible* with $d\alpha$. We can extend g_T on D to whole TM by requiring $g_T(Z,X)=0$ for any vector field X on M. Thus we get a Riemannian metric $g:=g_T\oplus(\alpha\otimes\alpha)$ on M, which is called an *adapted metric* to the contact form α . Note that an adapted metric g is not unique, depending on the choice g_T .

Now we define a K-contact manifold.

DEFINITION. Let (M, α) be a contact manifold with the Reeb vector field Z. If there exists an adapted metric g to α on M such that Z is a Killing vector field with respect to g, that is,

$$(2.1) L_Z q = 0,$$

then we call (M, α, g) a *K-contact manifold*. Here L_Z is the Lie differentiation in direction of Z.

We call α and g of a K-contact manifold (M, α, g) the K-contact form and the K-contact metric, respectively. We also call the flow φ_t generated by the Reeb vector field Z of the K-contact form α the K-contact flow of (M, α, g) .

In general, a contact flow φ_t preserves the contact form α . This is because we have $L_Z\alpha = 0$ from the definition of the Reeb vector field Z. It follows that a K-contact manifold (M, α, g) has an **R**-action induced by $\{\varphi_t \mid t \in \mathbf{R}\}$ which preserves both α and g.

The following proposition characterizes a K-contact manifold.

PROPOSITION 2.1. Let (M, α) be a (2n+1)-dimensional contact manifold and φ_t the contact flow. If we assume that M is compact, then the following statements are equivalent.

- (1) There exists an adapted metric g to α such that (M, α, g) is a K-contact manifold.
- (2) There exist a torus T^k such that $1 \le \dim(T^k) \le n+1$, a smooth effective T^k -action $\{h_u \mid u \in T^k\}$ on M, and a homomorphism $\Psi : \mathbf{R} \to T^k$ with dense image such that $\varphi_t = h_{\Psi(t)}$.

PROOF. We will prove $(1) \Rightarrow (2)$. Since M is compact, by Meyer-Steenrod theorem (see [7]), the isometry group Isom(M, g) of (M, g) is a compact Lie group. It follows that the closure of $\{\varphi_t \mid t \in \mathbf{R}\}$ in Isom(M, g) is a compact connected abelian Lie group, and hence is isomorphic to a torus T^k for some integer k.

We now prove $k \le n+1$. Let $\Gamma(TM)$ be the Lie algebra of the vector field on M and V the Lie algebra determined by the image of the Lie algebra homomorphism $\operatorname{Lie}(T^k) \ni \xi \to d/dt \big|_{t=0} \exp(t\xi) \in \Gamma(TM)$. Here $\exp: \operatorname{Lie}(T^k) \to T^k$ is the exponential map. Let Z be the Reeb vector field of (M,α) . We denote by RZ a trivial line bundle spanned by Z. By the isomorphism $TM \cong D \oplus RZ$ we have a unique decomposition $X = \bar{X} + \alpha(X)Z$ for $X \in V$ and $\bar{X} \in \Gamma(D)$. From the fact that $\alpha(X)$ is a T^k -invariant function and [X,Y] = 0 for any $X,Y \in V$, we see that $[\bar{X},\bar{Y}] = 0$ for any $X,Y \in V$. It follows that if we denote by X_1,\ldots,X_k the fundamental vector fields of T^k -action determined by a basis of the Lie algebra $\operatorname{Lie}(T^k)$, there is an open set U such that $\bar{X}_1,\ldots,\bar{X}_k$ determine a (k-1)-dimensional integrable distribution on U tangent to D. It is well-known that the maximal dimension of integrable submanifolds of the contact distribution is n, so $k-1 \le n$ and hence $k \le n+1$.

We will prove $(2) \Rightarrow (1)$. From the fact that $\varphi_t^*\alpha = \alpha$ and the closure of $\{\varphi_t \mid t \in R\}$ is isomorphic to T^k , we have $h_u^*\alpha = \alpha$ for all $u \in T^k$. Namely, α is invariant under the T^k -action, and so is $d\alpha$. In this case we can also take a positive definite metric g_T and an almost complex structure J, which is compatible with the symplectic form $d\alpha$ on D, to be invariant under this T^k -action (see [1, 15]). Thus we have a metric $g = g_T \oplus (\alpha \otimes \alpha)$ and it is invariant under the action of T^k . In particular, we have $L_Z g = 0$, and hence (M, α, g) is a K-contact manifold.

The property of T^k -action of Proposition 2.1 characterizes the "K-contactness". Namely, we may consider a K-contact manifold as a manifold which has an action of the torus T^k containing the contact flow as a dense image, and hence the action of T^k preserves both α and g.

DEFINITION. (M, α, g) is called a *K-contact manifold of rank k* if the closure of the *K*-contact flow $\{\varphi_t \mid t \in R\}$ in Isom(M, g) is isomorphic to a *k*-dimensional torus T^k .

As a result of Proposition 2.1, we see that in the case of the contact flow on the compact contact manifold (M, α) there is no difference between an isometric flow and a Riemannian flow. Namely, we get the following:

COROLLARY 2.2 ([15]). If a contact flow on a compact manifold is a Riemannian flow, then, (changing the transverse metric, if necessary), it is a K-contact flow.

PROOF. Let (M, α) be a compact contact manifold with the Reeb vector field Z. Assume that a contact flow φ_t of Z is a Riemannian flow, that is, there exists a transverse metric \tilde{g}_T to the contact flow φ_t (a positive definite metric on the contact plane field $\ker \alpha$) such that $L_Z \tilde{g}_T = 0$. Note that \tilde{g}_T needs not to be compatible with the symplectic form $d\alpha$. Then Z is a Killing vector field with respect to a Riemannian metric $\tilde{g} = \tilde{g}_T \oplus (\alpha \otimes \alpha)$. So φ_t is an isometric flow. Since the closure of $\{\varphi_t \mid t \in R\}$ in $\mathrm{Isom}(M, \tilde{g})$ is isomorphic to a torus, φ_t

436 T. YAMAZAKI

satisfies the condition (2) in Proposition 2.1. Therefore there exists a K-contact metric g on M, and hence φ_t is a K-contact flow.

We will give two typical classes of examples of K-contact manifolds. They are needed for the construction in Section 3.

EXAMPLE 2.3 ((2n+1)-dimensional K-contact manifold of rank n+1). Let $S^{2n+1}=\{z=(z_0,\ldots,z_n)\in C^{n+1}\big|\sum_{j=0}^n z_j\bar{z}_j=1\}$ be a (2n+1)-dimensional unit sphere in complex (n+1)-space C^{n+1} . We denote the polar coordinate of C^{n+1} by $(r_0,\theta_0,\ldots,r_n,\theta_n)$. For rationally independent positive constants $\lambda_0,\ldots,\lambda_n$, we take

(2.2)
$$\alpha_{\lambda} = \sqrt{-1/2} \sum_{j=0}^{n} \lambda_{j} (z_{j} d\bar{z}_{j} - \bar{z}_{j} dz_{j}) = \sum_{j=0}^{n} \lambda_{j} r_{j}^{2} d\theta_{j}.$$

Then it is easily seen that α_{λ} is the contact form on S^{2n+1} with the Reeb vector field

(2.3)
$$X_{\lambda} = \sqrt{-1} \sum_{j=0}^{n} 1/\lambda_{j} (z_{j} \partial/\partial z_{j} - \bar{z}_{j} \partial/\partial \bar{z}_{j}).$$

Let φ_t^{λ} be the contact flow of X_{λ} and

$$(2.4) (e^{\sqrt{-1}t_0}, \dots, e^{\sqrt{-1}t_n}) \cdot (z_0, \dots, z_n) = (e^{\sqrt{-1}t_0}z_0, \dots, e^{\sqrt{-1}t_n}z_n),$$

where $\left(e^{\sqrt{-1}t_0},\ldots,e^{\sqrt{-1}t_n}\right)\in T^{n+1}\subset (C^*)^{n+1}$, be the standard T^{n+1} -action on S^{2n+1} . Then we have

(2.5)
$$\varphi_t^{\lambda}(z_0, \dots, z_n) = \left(e^{\sqrt{-1}(1/\lambda_0)t} z_0, \dots, e^{\sqrt{-1}(1/\lambda_n)t} z_n \right).$$

Since $\lambda_0,\ldots,\lambda_n$ are rationally independent, the closure $\overline{\varphi_t^\lambda\cdot z}$ of the orbit $\varphi_t^\lambda\cdot z$ coincides with the orbit $T^{n+1}\cdot z$ for any $z\in S^{2n+1}$. Thus, by Proposition 2.1, there exists an adapted metric g_λ to α_λ such that $(S^{2n+1},\alpha_\lambda,g_\lambda)$ is a K-contact manifold of rank n+1. Here g_λ is given by choosing a transverse metric g_T on $\ker \alpha_\lambda$ and setting $g_\lambda=g_T\oplus (\alpha_\lambda\otimes\alpha_\lambda)$.

We define a S^1 -action on S^{2n+1} by

$$e^{\sqrt{-1}\theta} \cdot (z_0, z_1, \dots, z_n) = \left(e^{\sqrt{-1}\theta} z_0, e^{\sqrt{-1}\theta q_1} z_1, \dots, e^{\sqrt{-1}\theta q_n} \cdot z_n\right)$$

for $e^{\sqrt{-1}\theta} \in S^1 \subset C^*$ and positive integers q_1, \ldots, q_n . Choose an integer p such that p and each q_j are relatively prime, and consider the action restricted to $\{e^{2\pi k\sqrt{-1}\theta/p} \mid k=0,1,\ldots,p-1\}\cong \mathbb{Z}/p\mathbb{Z}$ of the above S^1 -action. Then $S^{2n+1}/(\mathbb{Z}/p\mathbb{Z})$ is also a K-contact manifold of rank n+1 with the K-contact form and the K-contact metric induced from S^{2n+1} .

REMARK. (1) The choice of g_T on ker α_{λ} is not unique. However, for example, we can choose it to be the restriction of a Riemannian metric

(2.6)
$$2\sum_{j=0}^{n} \lambda_{j} (dr_{j} \otimes dr_{j} + r_{j}^{2} d\theta_{j} \otimes d\theta_{j}) \left(= \sqrt{-1} \sum_{j=0}^{n} \lambda_{j} dz_{j} \otimes d\bar{z}_{j} \right)$$

on C^{n+1} to ker α_{λ} .

(2) Take $\{\lambda_0, \ldots, \lambda_n\}$ so that $\lambda_0, \ldots, \lambda_n$ form a k-dimensional vector space over Q. Then there exists a subgroup T^k of T^{n+1} and a T^k -action induced by (2.4) such that for $z \in S^{2n+1}$, the closure of the orbit $\varphi_t \cdot z$ coincides with the orbit $T^k \cdot z$. Thus we obtain a K-contact manifold $(S^{2n+1}, \alpha_\lambda, g_\lambda)$ of rank k. In particular, if we take $\lambda_0 = \cdots = \lambda_n = 1$, then we get the K-contact manifold of rank 1 such that a K-contact flow determines the Hopf S^1 -fibration $S^{2n+1} \to CP^n$.

EXAMPLE 2.4 (K-contact manifold of rank 1). Let (W, ω) be a symplectic manifold whose symplectic two-form determines a de Rham cohomology class contained in the image of $H^2(W; \mathbb{Z}) \to H^2(W; \mathbb{R})$. Then there exists a principal S^1 -bundle $\pi: M \to W$ whose first Chern class is equal to $[\omega] \in H^2(M; \mathbb{Z})$ and a connection one-form η on M with the curvature form $d\eta = \pi^*\omega$ ([6]). Hence η is a contact form on M whose contact flow of arbitrary point is a principal S^1 -orbit. It follows that by Proposition 2.1, there exists an adapted metric g to η such that (M, η, g) is a K-contact manifold of rank 1. Here g is given by $g = \pi^* g_W \oplus (\eta \otimes \eta)$, where g_W is a Riemannian metric compatible with ω on W. We call this K-contact manifold a regular K-contact manifold and its contact flow a regular K-contact flow. We also call the principal S^1 -fibration $(M, \eta, g) \to (W, \omega)$ the Boothby-Wang fibration ([4]).

3. A fiber join of regular K-contact manifolds. In this section we will present a method of construction of a K-contact manifold of rank n+1 out of (n+1)-pieces of regular K-contact manifolds.

For $j=0,1,\ldots,n$, let (M_j,η_j,g_j) be a (2m+1)-dimensional regular K-contact manifold, whose Boothby-Wang fibration $p_j:(M_j,\eta_j,g_j)\to (W,\omega_j)$ has the same base space W. Let L_j be the total space of the associated complex line bundle of $p_j:M_j\to W$. Then L_j carries a Hermitian metric h induced by a canonical Hermitian metric on C. We denote the norm on L_j determined by h and its natural lift to the Whitney sum $L_0\oplus\cdots\oplus L_n$ by the same letter $r_j:L_j\to R$. In this situation we define a fiber join $M_0*_f\cdots*_fM_n$ of M_0,\ldots,M_n to be the unit sphere bundle

$$(3.1) S(L_0 \oplus \cdots \oplus L_n) = \left\{ v \in L_0 \oplus \cdots \oplus L_n \, \middle| \, \sum_{j=0}^n r_j(v)^2 = 1 \right\}$$

of $L_0 \oplus \cdots \oplus L_n$.

REMARK. In the above construction, we are actually taking the join of the fibers of M_0, \ldots, M_n over each point of W. Recall than n+1 times join $S^1 * \cdots * S^1 = S^{2n+1}$.

We will show that on $M_0 *_f \cdots *_f M_n$ there exist a K-contact form and its Reeb vector field, which are naturally induced from those of M_i 's.

For this, we denote a polar coordinate and a real coordinate of C by (\bar{r}_j, θ_j) and (x_j, y_j) , respectively. We also denote the Reeb vector field of η_j and its natural lift to $M_j \times C$ by the same letter X_j . Similarly, we denote the natural lifts of the differential forms or vector fields on M_j and C (such as η_j) to $M_j \times C$ by the same letter. Let L_j^0 be the complement of the zero section of L_j . Then we have the following:

438 T. YAMAZAKI

LEMMA 3.1. (1) For each j, the one-form $\eta_j - d\theta_j$ on $M_j \times (C - \{0\})$ and the vector field $\tilde{Z}_j := 1/2\{X_j - (x_j\partial/\partial y_j - y_j\partial/\partial x_j)\}$ on $M_j \times C$ are projectable. Namely, there exist a smooth one-form β_j on L_j^0 and a smooth vector field Z_j on L_j such that $pr_j^*(\beta_j) = \eta_j - d\theta_j$ and $(pr_j)_*(\tilde{Z}_j) = Z_j$ hold, where $pr_j : M_j \times C \to L_j$ is the natural projection. Also β_j and Z_j satisfy the following:

(3.2)
$$\beta_j(Z_j) = 1$$
, $\beta_j(\partial/\partial r_j) = 0$, $dr_j(Z_j) = 0$, $d\beta_j = \pi_j^*(\omega_j)$, where $\pi_j: L_j \to W$ is the projection.

- (2) For each j, $r_j^2 \beta_j$ and $d\beta_j$ extend to the S^1 -invariant smooth one-form and two-form on L_j , respectively. The restriction of $2r_j dr_j \wedge \beta_j$ to the fibers of L_j is a nowhere zero two-form.
 - (3) Put

(3.3)
$$H_j = \{X \in TL_j \mid \iota_X(2r_jdr_j \wedge \beta_j) = 0\}, \quad V_j = \{X \in TL_j \mid \iota_Xd\beta_j = 0\}.$$

Then we have a direct sum decomposition $TL_i \cong H_i \oplus V_i$ and $H_i = \pi^*TW$.

PROOF. First we will prove (1) and (2). Let S^1 act in the standard fashion on C. We consider the diagonal S^1 -action on $M_j \times C$. Then the one-form $\eta_j - d\theta_j$ is invariant by this S^1 -action on $M_j \times C$. We also have $(\eta_j - d\theta_j)(X_j + \partial/\partial\theta_j) = 0$, where $\partial/\partial\theta_j := x_j\partial/\partial y_j - y_j\partial/\partial x_j$. Namely, $\eta_j - d\theta_j$ is a basic form. Hence there exists a one-form β_j on L^0_j such that $pr_j^*(\beta_j) = \eta_j - d\theta_j$. Moreover $r_j^2\beta_j$ is extended to whole L_j as a smooth one-form, since $\bar{r}_j^2d\theta_j$ is extended to whole $M_j \times C$.

Since we have $L_{(X_j+\partial/\partial\theta_j)}(\tilde{Z}_j)=0$ on $M\times C$, we see that there exists a smooth vector field Z_j on L_j such that $d(pr_j)(\tilde{Z}_j(x))=Z_j(pr_j(x))$ for all $x\in M_j\times C$.

Next we verify the equations (3.2). The first three equations are obtained by direct calculations. Namely, $\beta_j(Z_j) = pr_j^*(\beta_j)(\tilde{Z}_j) = (\eta_j - d\theta_j)(\tilde{Z}_j) = 1$, $\beta_j(\partial/\partial r_j) = (\eta_j - d\theta_j)(\partial/\partial \bar{r}_j) = 0$, $dr_j(Z_j) = d\bar{r}_j(\tilde{Z}_j) = 0$. The equations $d\beta_j = \pi_j^*(\omega_j)$ follows from $d\eta_j = \tilde{p}_j^*\omega_j$, where $\tilde{p}_j: M_j \times C \to W$.

By using the equations (3.2) and the Cartan formula $L_X = \iota_X d + d\iota_X$, we get $L_{Z_j}(r_j^2\beta_j)$ = 0. Namely, $r_j^2\beta_j$ is a one-form on L_j which is invariant by the S^1 -action determined by Z_j .

The two-form $pr_j^*(2r_jdr_j \wedge \beta_j) = 2\bar{r}_jd\bar{r}_j \wedge \eta_j - 2\bar{r}_jd\bar{r}_j \wedge d\theta_j$ is nowhere zero on the fibers of $M_j \times C \to W$. Hence $2r_jdr_j \wedge \beta_j$ is also nowhere zero on the fibers of $L_j \to W$.

We will prove (3). Let \tilde{H}_j , \tilde{V}_j be subbundles of $T(M_j \times C)$ defined by

$$\begin{cases}
\tilde{H}_j := \{X \in T(M_j \times \mathbf{C}) \mid \eta_j(X) = 0, \iota_X(2\bar{r}_j d\bar{r}_j \wedge d\theta_j) = 0\}, \\
\tilde{V}_j := \{X \in T(M_j \times \mathbf{C}) \mid \iota_X d\eta_j = 0\}.
\end{cases}$$

Then we have the direct sum decomposition $T(M_j \times C) \cong \tilde{H}_j \oplus \tilde{V}_j$. By using equations $pr_j^*(2r_jdr_j \wedge \beta_j) = 2\bar{r}_jd\bar{r}_j \wedge \eta_j - 2\bar{r}_jd\bar{r}_j \wedge d\theta_j$ and $d\eta_j = pr_j^*d\beta_j$, this direct sum decomposition gives rise to the direct sum decomposition $TL_j \cong H_j \oplus V_j$. Here $H_j = \{X \in TL_j \mid \iota_X(2r_jdr_j \wedge \beta_j) = 0\}$, $V_j = \{X \in TL_j \mid \iota_Xd\beta_j = 0\}$.

We extend each vector field Z_j on L_j to the one on $M_0 *_f \cdots *_f M_n$ as follows, and denote it by the same letter. By using the canonical projection $P_j: L_0 \times \cdots \times L_n \to L_j$ and the inclusion map $I: TL_j \to TL_0 \times \cdots \times TL_n$ defined by $I(w_j) = (0, \ldots, w_j, \ldots, 0)$ for $w_j \in TL_j$, we have $I \circ Z_j \circ P_j: L_0 \times \cdots \times L_n \to TL_0 \times \cdots \times TL_n$. Namely, the vector field Z_j is extended to the one on $L_0 \times \cdots \times L_n$. It is a vector field along the fiber of $L_0 \times \cdots \times L_n$ and preserves the norm $\sum_{j=0}^n r_j^2$. It follows that its restriction to $M_0 *_f \cdots *_f M_n$ is tangent to $M_0 *_f \cdots *_f M_n$, and hence Z_j is extended to the vector field on $M_0 *_f \cdots *_f M_n$.

We consider the pull back of the one-form $r_j^2 \beta_j$ on L_j by the composition map $M_0 *_f \cdots *_f M_n \to L_0 \oplus \cdots \oplus L_n \to L_j$, and denote it by the same letter.

THEOREM 3.2. For $j=0,1,\ldots,n$, let (M_j,η_j,g_j) be a (2m+1)-dimensional regular K-contact manifold with the Boothby-Wang fibration $(M_j,\eta_j,g_j) \to (W,\omega_j)$. Let $\pi: M_0*_f\cdots*_f M_n \to W$ be the projection. If $\sum_{j=0}^n \lambda_j r_j^2 \pi^* \omega_j$ is non-degenerate on π^*TW for some non-zero constants $\lambda_0,\ldots,\lambda_n$, then we have

(1) the fiber join $M_0 *_f \cdots *_f M_n$ of M_0, \ldots, M_n is a (2m + 2n + 1)-dimensional K-contact manifold with the K-contact form

(3.4)
$$\beta_{\lambda} := \sum_{j=0}^{n} \lambda_{j} r_{j}^{2} \beta_{j}.$$

Its Reeb vector field and a K-contact metric are given by

(3.5)
$$Z_{\lambda} := \sum_{j=0}^{n} 1/\lambda_{j} Z_{j}, \quad g_{\lambda} = g_{T} \oplus (\beta_{\lambda} \otimes \beta_{\lambda}),$$

where g_T is a positive definite metric on ker β_{λ} .

(2) If we choose $\{\lambda_0, \ldots, \lambda_n\}$ so that $\lambda_0, \ldots, \lambda_n$ form a k-dimensional vector space over Q, $(M_0 *_f \cdots *_f M_n, \beta_\lambda, g_\lambda)$ is a K-contact manifold of rank k. In particular, if $\lambda_0, \ldots, \lambda_n$ are rationally independent, then $(M_0 *_f \cdots *_f M_n, \beta_\lambda, g_\lambda)$ is a K-contact manifold of rank n+1.

PROOF. First we prove that β_{λ} is a contact form on $M_0 *_f \cdots *_f M_n$. We put $R^2 = \sum_{i=0}^n r_i^2$. Since $d\beta_j = \pi^* \omega_j$, by a direct calculation, we have

$$2RdR \wedge \beta_{\lambda} \wedge (d\beta_{\lambda})^{m+n} = \lambda_0 \cdots \lambda_n R^2 \cdot 2r_0 dr_0 \wedge \beta_0 \wedge \cdots \wedge 2r_n dr_n \wedge \beta_n \wedge \left(\sum_{j=0}^n \lambda_j r_j^2 \pi^* \omega_j\right)^m$$

on $L_0 \oplus \cdots \oplus L_n$.

By the assumption, $\lambda_0 \cdots \lambda_n \sum_{j=0}^n \lambda_j r_j^2 \pi^* \omega_j$ is non-degenerate on $\pi^* T W$ and clearly $R^2 \neq 0$ on $L^0 := L_0 \oplus \cdots \oplus L_n - \{\text{zero-section}\}$. From this together with Lemma 3.1, we see that $2RdR \wedge \beta_{\lambda} \wedge (d\beta_{\lambda})^{m+n} \neq 0$ on L^0 . It follows that we have $\beta_{\lambda} \wedge (d\beta_{\lambda})^{m+n} \neq 0$ on $M_0 *_f \cdots *_f M_n$, that is, β_{λ} is a contact form on $M_0 *_f \cdots *_f M_n$. Its Reeb vector field is given by $Z_{\lambda} = \sum_{j=0}^n 1/\lambda_j Z_j$. This is because it holds that $\beta_{\lambda}(Z_{\lambda}) = R^2 = 1$ and $\iota_{Z_{\lambda}} d\beta_{\lambda} = \sum_{j=0}^n 2r_j dr_j = 0$ on $M_0 *_f \cdots *_f M_n$.

We will show the K-contactness of $(M *_f \cdots *_f M_n, \beta_{\lambda})$. Using the one-parameter group ϕ_t^j of Z_j , we define a T^{n+1} -action on $M_0 *_f \cdots *_f M_n$ by

$$(3.6) (e^{\sqrt{-1}t_0}, \ldots, e^{\sqrt{-1}t_n}) \cdot (v_0, \ldots, v_n) = (\phi_{t_0}^0 v_0, \ldots, \phi_{t_n}^n v_n),$$

where $(e^{\sqrt{-1}t_0}, \dots, e^{\sqrt{-1}t_n}) \in T^{n+1}$ and $v = (v_0, \dots, v_n) \in M_0 *_f \dots *_f M_n \subset L_0 \oplus \dots \oplus L_n$. Let ψ_t^{λ} be the contact flow of Z_{λ} . Then we have

(3.7)
$$\psi_t \cdot v = (\phi_{(1/\lambda_0)t}^0 v_0, \dots, \phi_{(1/\lambda_n)t}^n v_n).$$

Constants $\lambda_0, \ldots, \lambda_n$ form a k-dimensional vector space over \mathbf{Q} . Thus there exists a subgroup T^k of T^{n+1} and a T^k -action induce by (3.6) such that, for any $v = (v_0, \ldots, v_n) \in M_0 *_f \cdots *_f M_n$, the closure of the orbit $\psi_t^{\lambda} \cdot v$ coincides with the orbit $T^k \cdot v$. Hence, by Proposition 2.1, there exists an adapted metric g_{λ} to α_{λ} such that $(M_0 *_f \cdots *_f M_n, \beta_{\lambda}, g_{\lambda})$ is a K-contact manifold of rank k. Here g_{λ} is given by choosing g_T on ker g_{λ} and setting $g_{\lambda} = g_T \oplus (\beta_{\lambda} \otimes \beta_{\lambda})$. q.e.d.

Indeed, there exist sympletic forms ω_j , $j=0,1,\ldots,n$, satisfying the condition of Theorem 3.2 that $\sum_{j=0}^n \lambda_j r_j^2 \pi^* \omega_j$ is non-degenerate on $\pi^* T W$. For example, let (W,ω) be a symplectic manifold and λ_j , c_j , $j=0,1,\ldots,n$, be constants such that $\lambda_j c_j$ is positive for all j. Then taking ω_j , $j=0,1,\ldots,n$, defined by $\omega_j=c_j\omega$, these satisfy the condition above.

REMARK. (1) As an example of g_T on ker β_{λ} , we have the restiction of

(3.8)
$$2\sum_{j=0}^{n} \lambda_j (dr_j \otimes dr_j + r_j^2 \beta_j \otimes \beta_j) + \sum_{j=0}^{n} \lambda_j r_j^2 \pi^* g_{W,\omega_j}$$

to ker β_{λ} . Here g_{W,ω_i} is a Riemannian metric compatible with ω_j on W.

(2) For positive integers q_1, \ldots, q_n and $e^{\sqrt{-1}\theta} \in S^1 \subset \mathbb{C}^*$, we define the S^1 -action on $M_0 *_f \cdots *_f M_n$ by

(3.9)
$$e^{\sqrt{-1}\theta} \cdot (v_0, v_1, \dots, v_n) = (\phi_{\theta}^0 v_0, \phi_{a_1 \theta}^1 v_1, \dots, \phi_{a_n \theta}^n v_n),$$

where $(v_0, \ldots, v_n) \in M_0 *_f \cdots *_f M_n$.

Let p be a positive integer such that p and q_j are relatively prime for all j. We consider the action restricted to $\{e^{2\pi k\sqrt{-1}/p}\mid k=0,1,\ldots,p-1\}\cong \mathbb{Z}/p\mathbb{Z}$ of the S^1 -action defined by (3.9). Then its quotient space $M_0*_f\cdots*_fM_n/(\mathbb{Z}/p\mathbb{Z})$ is also a K-contact manifold of rank n+1 with K-contact form and K-contact metric induced from those on $M_0*_f\cdots*_fM_n$.

(3) The unit sphere bundle $S(L_j)$ of L_j is a submanifold of $M_0 *_f \cdots *_f M_n$, which is diffeomorphic to M_j . As a metric g_T on ker β_{λ} , take the one given by (3.8). Then $S(L_j)$ has a K-contact form $\lambda_j \beta_j$ and a K-contact metric $\lambda_j g_j$ which are given by the restriction of those on $M_0 *_f \cdots *_f M_n$ to $S(L_j)$. In this case $(S(L_j), \lambda_j \beta_j, \lambda_j g_j)$ is called a K-contact submanifold of $(M_0 *_f \cdots *_f M_n, \beta_{\lambda}, g_{\lambda})$.

DEFINITION. A K-contact manifold $(M_0 *_f \cdots *_f M_n, \beta_{\lambda}, g_{\lambda})$ is called the *fiber join* of regular K-contact manifolds $(M_0, \eta_0, g_0), \ldots, (M_n, \eta_n, g_n)$.

Using the construction in Theorem 3.2, we obtain K-contact manifolds (M, α, g) of rank n+1 with no effective T^{n+2} -action which extends the R-action induced by the K-contact flow and preserves α and g.

PROPOSITION 3.3. Let (W, ω) be a symplectic manifold with no effective Hamiltonian S^1 -action. Take symplectic forms $\omega_j = c_j \omega$ $(c_j > 0)$ in the construction of Theorem 3.2. Then $(M_0 *_f \cdots *_f M_n, \beta_\lambda, g_\lambda)$ has no effective T^{n+2} action which extends the T^{n+1} -action defined by (3.6) and preserves β_λ and g_λ .

REMARK. An example of symplectic manifold which satisfies the condition above is negatively curved closed Kähler manifold. It has no torus action at all ([11]). It follows that starting from this manifold, we can actually construct K-contact manifolds as in Proposition 3.3.

PROOF. Suppose that β_{λ} is invariant under some effective T^{n+2} -action on $M_0 *_f \cdots *_f M_n$ which extends the T^{n+1} -action defined by (3.6). Let $(M_0 *_f \cdots *_f M_n \times \mathbf{R}_+, d(t\beta_{\lambda}))$ be the symplectization of $(M_0 *_f \cdots *_f M_n, \beta_{\lambda})$, where \mathbf{R}_+ is the positive real line with coordinate t. We extend the T^{n+2} -action on $M_0 *_f \cdots *_f M_n$ to the one on $M_0 *_f \cdots *_f M_n \times \mathbf{R}_+$ such that it acts trivially on \mathbf{R}_+ . Then this T^{n+2} -action is Hamiltonian. Its moment map μ is given by

$$\mu: M_0 *_f \cdots *_f M_n \times \mathbf{R}_+ \in \mathbf{x} \longmapsto -t(\beta_{\lambda x}(Z_{0x}), \ldots, \beta_{\lambda x}(Z_{nx}), \beta_{\lambda x}(Y_x)) \in \mathbf{R}^{n+2},$$

where Y is the fundamental vector field determined by the action of the last factor S^1 of $T^{n+2}=T^{n+1}\times S^1$. Since μ is constant on any T^{n+2} -orbit ([1, Proposition 3.5.6]), the composition map $\bar{\mu}:=pr\circ\mu:M_0*_f\cdots*_fM_n\times R_+\to R^{n+1}$ is also constant on it. Here pr is the projection to the first n+1 factor. Thus vector fields Z_0,\ldots,Z_n,Y are tangent to any regular level $\bar{\mu}^{-1}(\xi)$ of $\bar{\mu}$, and hence $\bar{\mu}^{-1}(\xi)$ has an effective T^{n+2} -action. Choosing $\xi=-(\lambda_0,\ldots,\lambda_n)$ as a regular value of $\bar{\mu},\bar{\mu}^{-1}(\xi)$ is a principal T^{n+1} -bundle over W with an effective T^{n+2} -action. It follows that the orbit space $\bar{\mu}^{-1}(\xi)/T^{n+1}$ is diffeomorphic to W and that it is a symplectic manifold $W,\sum_{j=0}^n\lambda_j\omega_j$ with an effective Hamiltonian S^1 -action. From $\sum_{j=0}^n\lambda_j\omega_j=(\sum_{j=0}^n\lambda_jc_j)\omega$, we see that the symplectic manifold W,ω also has an effective Hamiltonian S^1 -action. This contradicts the assumption.

4. The equivalence of K-contact manifolds. In this section we will study the following two equivalence classes among the K-contact flows of the compact connected K-contact manifolds of rank k. Let (M_1, α_1, g_1) , (M_2, α_2, g_2) be two such manifolds with Reeb vector fields Z_1 , Z_2 . Let $\varphi_t^{(1)}$, $\varphi_t^{(2)}$ denote their K-contact flows, respectively.

DEFINITION. (a) Two K-contact flows $\varphi_t^{(1)}$, $\varphi_t^{(2)}$ are said to be *strictly equivalent* if there exists a diffeomorphism $\Phi: M_1 \to M_2$ such that $\Phi^*\alpha_2 = c\alpha_1$ for some positive constant c. (b) Two K-contact flows $\varphi_t^{(1)}$, $\varphi_t^{(2)}$ are said to be K-contact equivalent if there exists a T^k -equivalent contact diffeomorphism Φ between (M_1, α_1, g_1) and (M_2, α_2, g_2) . Here a contact diffeomorphism implies that $\Phi^*\alpha_2 = f\alpha_1$ for some everywhere nonzero function f on M_1 .

If $\varphi_t^{(1)}$, $\varphi_t^{(2)}$ are strictly equivalent, we have $d\Phi \circ Z_1(x) = cZ_2 \circ \Phi(x)$, and hence $\Phi \circ \varphi_t^{(1)}(x) = \varphi_{ct}^{(2)} \circ \Phi(x)$ for all x in M. Namely, after changing the parameter t of $\varphi_t^{(2)}$ into ct, there exists an R-equivariant diffeomorphism Φ on M with respect to R-actions induced by $\varphi_t^{(1)}$, $\varphi_{ct}^{(2)}$. From the definition, it is obvious if two K-contact flows are strictly equivalent, they are K-contact equivalent. The following two propositions show that the coverse is not always true.

PROPOSITION 4.1. For any rationally independent read constants $\lambda = (\lambda_0, \dots, \lambda_n)$ and $\tilde{\lambda} = (\tilde{\lambda}_0, \dots, \tilde{\lambda}_n)$, the K-contact flows φ_t^{λ} , $\varphi_t^{\tilde{\lambda}}$ defined by (2.5) on S^{2n+1} are K-contact equivalent. Moreover, they are strictly equivalent if and only if λ coincides with $c\tilde{\lambda}$ as a set for some positive constant c.

PROOF. First we will prove that φ_t^{λ} , $\varphi_t^{\tilde{\lambda}}$ are K-contact equivalent for any λ , $\tilde{\lambda}$. Consider a diffeomorphism $\Phi_{\lambda/\tilde{\lambda}}: S^{2n+1} \to S^{2n+1}$ defined by

$$\Phi_{\lambda/\tilde{\lambda}}(z_0, \dots, z_n) = \left(\left((\lambda_0/\tilde{\lambda}_0)^{1/2} \middle/ \left(\sum_{j=0}^n (\lambda_j/\tilde{\lambda}_j) z_j \bar{z}_j \right)^{1/2} \right) z_0, \dots, \right.$$

$$\left. \left((\lambda_n/\tilde{\lambda}_n)^{1/2} \middle/ \left(\sum_{j=0}^n (\lambda_j/\tilde{\lambda}_j) z_j \bar{z}_j \right)^{1/2} \right) z_n \right).$$

Then $\Phi_{\lambda/\tilde{\lambda}}$ is a T^{n+1} -equivariant diffeomorphism and $\Phi_{\lambda/\tilde{\lambda}}^* \alpha_{\tilde{\lambda}} = \left(\sum_{j=0}^n (\lambda_j/\tilde{\lambda}_j) z_j \bar{z}_j\right)^{-1} \alpha_{\lambda}$. Hence φ_t^{λ} , $\varphi_t^{\tilde{\lambda}}$ are K-contact equivariant.

We will prove the second statement. Assume that φ_t^{λ} and $\varphi_t^{\tilde{\lambda}}$ are strictly equivalent. Namely, there exists a diffeomorphism Φ such that $\Phi^*\alpha_{\lambda} = c\alpha_{\tilde{\lambda}}$ for some positive constant c. Then Φ is a R-equivariant diffeomorphism with respect to R-actions induced by φ_{ct}^{λ} and $\varphi_t^{\tilde{\lambda}}$. It follows that the set of isotropy groups $(\lambda_0/c)\mathbf{Z},\ldots,(\lambda_n/c)\mathbf{Z}$ of φ_{ct}^{λ} coincides with that of $\tilde{\lambda}_0\mathbf{Z},\ldots,\tilde{\lambda}_n\mathbf{Z}$ of $\varphi_t^{\tilde{\lambda}}$, where $\mu\mathbf{Z}=\{2\pi\mu k\,|\,k\in\mathbf{Z}\}$. Hence λ coincides with $c\tilde{\lambda}$ as a set. Conversely, assume that λ coincides with $c\tilde{\lambda}$ as a set for some positive constant c; $(\lambda_0,\ldots,\lambda_n)=c(\tilde{\lambda}_{\sigma(0)},\ldots,\tilde{\lambda}_{\sigma(n)})$, where σ denote a permutation of $\{0,1,\ldots,n\}$. Consider a diffeomorphism $\Phi:S^{2n+1}\to S^{2n+1}$ defined by $\Phi(z_0,\ldots,z_n)=(z_{\sigma(0)},\ldots,z_{\sigma(n)})$. Then we have $\Phi^*\alpha_{\lambda}=c\alpha_{\tilde{\lambda}}$. Hence $\varphi_t^{\lambda},\varphi_t^{\tilde{\lambda}}$ are strictly equivalent.

A similar result holds for the contact flows of (3.7) in Section 3.

PROPOSITION 4.2. For any rationally independent read constants $\lambda = (\lambda_0, \dots, \lambda_n)$ and $\tilde{\lambda} = (\tilde{\lambda}_0, \dots, \tilde{\lambda}_n)$, the K-contact flows ψ_t^{λ} , $\psi_t^{\tilde{\lambda}}$ defined by (3.7) on $M_0 *_f \dots *_f M_n$ are K-contact equivalent. Moreover, they are strictly equivalent if and only if λ coincides with $c\tilde{\lambda}$ as a set for some positive constant c.

PROOF. We only show that ψ_t^{λ} , $\psi_t^{\tilde{\lambda}}$ are *K*-contact equivalent for any λ , $\tilde{\lambda}$. (The second statement is proved by an argument similar to that in Proposition 4.1.)

We define the bundle automorphism $\Psi_{\lambda/\tilde{\lambda}}$ of $L_0 \oplus \cdots \oplus L_n$ by

$$(4.2) \quad \Psi_{\lambda/\tilde{\lambda}}(v_0, \dots, v_n) = \left(\left((\lambda_0/\tilde{\lambda}_0)^{1/2} \middle/ \left(\sum_{j=0}^n (\lambda_j/\tilde{\lambda}_j) r_j(v_j)^2 \right)^{1/2} \right) v_0, \dots, \right)$$

$$\left((\lambda_n/\tilde{\lambda}_j)^{1/2} \middle/ \left(\sum_{j=0}^n (\lambda_j/\tilde{\lambda}_j) r_j(v_j)^2 \right)^{1/2} \right) v_n \right)$$

for $(v_0, \ldots, v_n) \in L_0 \oplus \cdots \oplus L_n$. Then this preserves the norm $\sum_{j=0}^n r_j^2$. Thus we have its restriction to $M_0 *_f \cdots *_f M_n$. It is a T^{n+1} -equivariant diffeomorphism and $\Psi_{\lambda/\tilde{\lambda}}^* \beta_{\tilde{\lambda}} = \left(\sum_{j=0}^n (\lambda_j/\tilde{\lambda}_j) r_j^2\right)^{-1} \beta_{\lambda}$. Therefore ψ_t^{λ} and $\psi_t^{\tilde{\lambda}}$ are K-contact equivalent. q.e.d.

In [13], Takahashi showed that there exists a deformation of the K-contact flow on a manifold as follows. Let (M, α, g) be a K-contact manifold with Reeb vector field K. Let K be a vector field on K which satisfies the following three conditions:

(4.3)
$$L_V g = 0$$
, $[V, Z] = 0$, $1 + \alpha(V) > 0$.

Consider a one-form $\tilde{\alpha}$ and a Riemannian metric \tilde{g} defined by

(4.4)
$$\tilde{\alpha} = (1 + \alpha(V))^{-1}\alpha, \quad \tilde{g} = (1 + \alpha(V))^{-1}g_T \oplus (\tilde{\alpha} \otimes \tilde{\alpha}),$$

where g_T is the restriction of g to ker α . Then we have following:

THEOREM 4.3 ([13]). $(M, \tilde{\alpha}, \tilde{g})$ is a K-contact manifold with Reeb vector field Z+V.

K-contact flows φ_t^{λ} , ψ_t^{λ} in Propositions 4.1 and 4.2 are both strictly equivalent to the ones obtained by the above deformation out of the K-contact flow of the K-contact manifold of rank 1, which we shall see as follows.

The K-contact flow φ_t^{λ} of $(S^{2n+1},\alpha_{\lambda},g_{\lambda})$ is strictly equivalent to the one obtained by deforming the Reeb vector field $Z_{\varepsilon} = \sqrt{-1} \sum_{j=0}^{n} (z_j \partial/\partial z_j - \bar{z}_j \partial/\partial \bar{z}_j)$ of $(S^{2n+1},\alpha_{\varepsilon},g_{\varepsilon})$, where $\varepsilon=(1,\ldots,1)$. Indeed, for μ_j satisfying $1+\mu_j=\lambda_j$, take $V=\sqrt{-1}\sum_{j=0}^{n}\mu_j(z_j\partial/\partial z_j - \bar{z}_j\partial/\partial \bar{z}_j)$ and consider $\tilde{\alpha}_{\varepsilon}$ and \tilde{g}_{ε} defined by (4.3). Then we have $\tilde{\alpha}_{\varepsilon}=\left(1+\sum_{j=0}^{n}\mu_jz_j\bar{z}_j\right)^{-1}\alpha_{\varepsilon}$ and $\Phi_{\lambda}^*\tilde{\alpha}_{\varepsilon}=\alpha_{\lambda}$, where Φ_{λ} is a diffeomorphism defined by (4.1).

In the same way, the K-contact flow ψ_t^{λ} of $(M_0 *_f \cdots *_f M_n, \beta_{\lambda}, g_{\lambda})$ is strictly equivalent to the one obtained by deforming the Reeb vector field $Z_{\varepsilon} = \sum_{j=0}^{n} Z_j$ of $(M_0 *_f \cdots *_f M_n, \beta_{\varepsilon}, g_{\varepsilon})$, where $\varepsilon = (1, \ldots, 1)$. In this case we take $V = \sum_{j=0}^{n} \mu_j Z_j$, where μ_j is the same as the above one.

In general, we apply the deformation in Theorem 4.3 for the following situation. Let (M, α, g) be a K-contact manifold of rank 1. We assume that there exists the T^k -action preserving α and g which satisfies the following three conditions; (1) $k \geq 2$, (2) T^k contains the K-contact flow of (M, α, g) , and (3) there is no T^{k+1} -action which extends this T^k -action. Then the Reeb vector field Z takes the form $Z = \sum_{j=0}^{k-1} (\xi_M)_j$, where $(\xi_M)_j$ is the vector field defined by $(\xi_M)_j(x) = d/dt \Big|_{t=0} \exp(t\xi_j) \cdot x$ at $x \in M$ for a basis ξ_0, \ldots, ξ_{k-1} of $\mathrm{Lie}(T^k)$.

Let $\lambda_0, \ldots, \lambda_{k-1}$ be positive constants such that $\lambda_0, \ldots, \lambda_{k-1}$ form a r-dimensional vector space over Q, where $1 \le r \le k$. We take a vector field $V = \sum_{j=0}^{k-1} \lambda_j(\xi_M)_j$ and consider $\tilde{\alpha}$ and \tilde{q} defined by (4.3). Then we have the following:

COROLLARY 4.4. $(M, \tilde{\alpha}, \tilde{g})$ is a K-contact manifold of rank r with Reeb vector field Z + V and is T^k -equivariantly contact diffeomorphic to (M, α, g) .

PROOF. The identity map gives a T^k -equivariant diffeomorphism between (M, α, g) and $(M, \tilde{\alpha}, \tilde{g})$.

We will show that there exist K-contact flows which are not K-contact equivalent. They are not obtained by the deformation in Corollary 4.4 out of the same K-contact flow of the K-contact manifold of rank 1.

Let Σ_g be the closed Riemann surface of genus g and $\Sigma_g \tilde{\times} S^{2n+1}$ be the non-trivial S^{2n+1} -bundle over Σ_g . Then our main theorem is the following:

THEOREM 4.5. For $n \ge 1$ there exist infinitely many different K-contact equivalence classes of K-contact flows on $\Sigma_q \times S^{2n+1}$ and $\Sigma_q \tilde{\times} S^{2n+1}$.

We will first consider the K-contact equivalence for K-contact flows of K-contact manifolds of rank n + 1 we constructed in Theorem 3.2.

Let $(M_0, \eta_0, g_0), \ldots, (M_0, \eta_n, g_n)$ and $(\tilde{M}_0, \tilde{\eta}_0, \tilde{g}_0), \ldots, (\tilde{M}_n, \tilde{\eta}_n, \tilde{g})$ be two sets of regular K-contact manifolds whose Boothby-Wang fibrations have the same base space. Then the images $S(L_0), \ldots, S(L_n)$ of M_0, \ldots, M_n in $M_0 *_f \cdots *_f M_n$ and the images $S(\tilde{L}_0), \ldots, S(\tilde{L}_n)$ of $\tilde{M}_0, \ldots, \tilde{M}_n$ in $\tilde{M}_0 *_f \cdots *_f \tilde{M}_n$ are two sets of points whose isotropy groups are isomorphic to T^n (see Remark (3) of Theorem 3.2). Hence if there exists a T^{n+1} -equivariant diffeomorphism Φ between $M_0 *_f \cdots *_f M_n$ and $\tilde{M}_0 *_f \cdots *_f \tilde{M}_n, S(L_0), \ldots, S(L_n)$ are mapped to $S(\tilde{L}_j), \ldots, S(\tilde{L}_n)$ by Φ such that (changing the order of suffix, if necessary), $S(L_j)$ is T^{n+1} -equivariantly diffeomorphic to $S(\tilde{L}_j)$ for all j. Thus M_j is S^1 -equivariantly diffeomorphic to \tilde{M}_j for all j. From the definition, it is obvious that K-contact flows on regular K-contact manifolds are K-contact equivalent if and only if they are isomorphic to each other as principal S^1 -bundles. Therefore we have the following:

LEMMA 4.6. If K-contact flows of $(M_0 *_f \cdots *_f M_n, \beta_\lambda, g_\lambda)$ and $(\tilde{M}_0 *_f \cdots *_f \tilde{M}_n, \tilde{\beta}_\lambda, \tilde{g}_\lambda)$ are K-contact equivalent, then K-contact flows of (M_j, η_j, g_j) and $(\tilde{M}_j, \tilde{\eta}_j, \tilde{g}_j)$ are K-contact equivalent for all j (changing the order of suffix, if necessary).

Let $(M_0, \eta_0, g_0), \ldots, (M_n, \eta_n, g_n)$, $(n \ge 1)$, be three-dimensional regular K-contact manifolds, whose Boothby-Wang fibration have the same closed Riemann surface Σ_g of genus g as base spaces. Then there are only two diffeomorphism classes of $M_0 *_f \cdots *_f M_n$, because $M_0 *_f \cdots *_f M_n$ is the S^{2n+1} -bundle over Σ_g and they are classified by the second Stiefel-Whitney class of the bundle (see [8], Proposition 1.12). More precisely, we have the following:

PROPOSITION 4.7. Let M_0, \ldots, M_n be as above. Then the fiber join $M_0 *_f \cdots *_f M_n$ is diffeomorphic to $\Sigma_g \times S^{2n+1}$ if $\sum_{j=0}^n w_j$ is even class, and to $\Sigma_g \times S^{2n+1}$ if $\sum_{j=0}^n w_j$ is

odd class. Here $\Sigma_g \tilde{\times} S^{2n+1}$ is the non-trivial S^{2n+1} -bundle over Σ_g and w_j is the second Stiefel-Whitney class associated with M_j .

PROOF OF THEOREM 4.5. Since $H^2(\Sigma_g; \mathbf{Z}) \cong \mathbf{Z}$, there exist infinitely many different isomorphism classes of principal S^1 -bundles over Σ_g . From this result together with Lemma 4.6 and Proposition 4.7, we obtain Theorem 4.5.

Finally, we discuss some related problems.

Let φ_t be a non-singular flow generated by a vector field Z on a manifold M. Let RZ be the trivial line bundle spanned by Z and D the smooth codimension one distribution on M transverse to RZ. Then φ_t is said to be transversely symplectic Riemannian flow if there exist a symplectic structure ω and a positive definite metric g_T on D such that $L_Z\omega=0$, $L_Zg_T=0$. From the definition, it is obvious that a K-contact flow of a K-contact manifold (M,α,g) is such a flow. In this case, D is a contact plane field ker α and a symplectic structure on it is given by $d\alpha$. In [10], Molino suggested the following problem:

PROBLEM 1. Classify the transversely symplectic Reimannian flows on closed connected 5-manifolds.

The case of n = 1 in Theorem 4.5 gives examples of such flows. Further examples are given by introducing a surgery along a closed K-contact flow in [16].

We have the following problems related to Theorem 4.4.

PROBLEM 2. Are there different K-contact flows on a sphere bundle over the symplectic manifold W such that dim $W \ge 4$?

The author does not know whether there exists a symplectic manifold W such that the isomorphism classes of the sphere bundle over W are finite and dim $W \ge 4$.

PROBLEM 3. Are there K-contact flows of K-contact manifolds of rank n+1 on a (2n+1)-dimensional manifold which are not K-contact equivalent to each other?

By the fiber join of regular K-contact manifolds, it is impossible to construct the (2n+1)-dimensional K-contact manifold of rank n+1.

REFERENCES

- [1] M. AUDIN, The Topology of Torus Action on Symplectic Manifolds, Progr. Math. 93, Birkhäuser, Basel, 1991.
- [2] A. BANYAGA AND P. MOLINO, Geometric des formes de contact completement integrables de type torique, preprint.
- [3] D. BLAIR, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin, 1976.
- [4] W. BOOTHBY AND H. C. WANG, On contact manifolds, Ann. of Math. 68 (1958), 721-734.
- [5] Y. CARRIERE, Variations on riemannian flows, Progr. Math. 73, Birkhäuser, Basel, (1988), 217-234.
- [6] S. KOBAYASHI, Principal fiber bundles with 1-dimensional toroidal group, Tohoku Math. J. 8 (1956), 29-45.
- [7] S. KOBAYASHI, Transformation Groups in Differential Geometry, Ergeb. Math. Grenzgeb. Band 70, Springer-Verlag, Berline, Heidelberg, New York, 1970.
- [8] B. LAWSON, JR. AND M. MICHELSOHN, Spin Geometry, Princeton Math. Ser. 38, Princeton Univ. Press, Princeton, 1989.

- [9] P. MOLINO, Reduction symplectique et feuiletages riemanniens; moment structural et theoreme de convexite, in Seminaire Gaston Darboux de geometrie et topologie differentielle 1987–1988, Universite des sciences et techniques du Languedoc, 1988, 11–25.
- [10] P. MOLINO, Orbit-like foliation, Proceeding of Geometric study of foliation held in Tokyo 1993 (Tadayoshi Mizutani et al. eds.), World Scientific, Singapore, 1994, 97–119.
- [11] P. MOLINO, Riemannian Foliations, Progr. Math. 73, Birkhäuser, Basel, 1988.
- [12] K. ONO, Some remarks on group actions in symplectic geometry, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35 (1988), 431–437.
- [13] T. TAKAHASHI, Deformations of sasakian structures and its application to the Brieskorn manifolds, Tohoku Math. J. 30 (1978), 37-43.
- [14] P. RUKIMBIRA, The dimension of leaf closures of K-contact flows, Ann. Global Anal. Geom. 12 (1994), 103-108.
- [15] P. RUKIMBIRA, Vertical sectional curvature and K-contactness, J. Geom. 53 (1995), 163–166.
- [16] T. YAMAZAKI, On a surgery of K-contact manifolds, preprint.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE SAITAMA UNIVERSITY SHIMO-OKUBO 255 URAWA, SAITAMA 338–8570 JAPAN

E-mail address: tyamazak@rimath.saitama-u.ac.jp