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Abstract. The main aim of this paper is to compute the index and the nullity of the

identity map of Sn x Sm and Sn x Tm. In order to obtain this we establish a rather general

result on the spectrum of the Hodge-Laplacian on fc-forms on a product manifold, which could

prove useful in other contexts.

1. Introduction. If / : (M, g) -> (N, h) is a smooth map between compact oriented

Riemannian manifolds, its energy is defined by

(1.1) E{f) = \ f \df\2dυM.
2 JM

Then a harmonic map is defined to be a smooth critical point of the functional (1.1). We refer

to the surveys [3], [4] for motivations and background on harmonic maps.

Let f~ιTN be the induced vector bundle by / over M and C(f~ιTN) the space of all

sections of f~ιTN. The second variation formula for a harmonic map / was first obtained

in [8] and [9]. It is given by

Hf(υ, w)= f (Vf~lτNυ, Vf~XτNw) - Trace (RN(df9 v)df, w)dvM

(1.2) JM

= / (Jfv,w)dυM,
JM

for all v, w e C(f~ιTN), where Vf~l™ = V is the connection on f~ιTN induced by

the Riemannian connections of M and N, and RN denotes the curvature tensor of N. Setting

Δυ = -Trace (V2υ), we have Jf = A - Trace RN(df, )df. The operator Jf is called the

Jacobi operator, which is linear, elliptic and self-adjoint.

The variational significance of the formula (1.2) can be expressed as follows: Let fs,t be

a smooth, 2-parameter variation of / with dfsj/ds\Sit=o = i; and dfsj/dt\s,t=o — w. Then

we have

(1.3)
dsdt

= Hf(υ,w).

s,t=O

This motivates the following definitions. The index of / , denoted by Ind(/), is the dimension

of the largest subspace of C(f~ιTN) on which Hf is negative definite. The nullity, denoted
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by Null(/), is the dimension of the kernel of // (Note that the spectral properties of elliptic

operators on compact manifolds imply that both Ind(/) and Null(/) are finite). Vector fields

v along / which satisfy J/v = 0 are called Jacobi fields.

A harmonic map / is said to be stable if Ind(/) = 0 (resp. unstable if Ind(/) > 0).

For instance, harmonic maps into nonpositively curved manifolds are absolute minima of the

energy in their homotopy class and thus are stable. Similarly, holomorphic mappings between

Kahler manifolds are stable. On the other hand, any harmonic map from or to 5", n > 3, is

unstable (see [3], [5], [11]).

As for the nullity of a harmonic map, it is convenient to introduce the notion of Killing

nullity [9] defined by

(1.4) NulU(/) = dim(span(/(Λ0, df(i(M))),

where the elements of i(N) (infinitesimal isometries) and df(i(M)) are considered as vari-

ation fields along / . Clearly, they are Jacobi fields and give rise to variations of / through

harmonic maps. This leads us to define the reduced nullity by

(1.5) NullΓ(/) = Null(/) - NulU(/).

The following qualitative problem can now be stated:

QUESTION (see [9], [12]). Do all Jacobi fields along a harmonic map / arise from a

variation of / through harmonic maps? We say that / is a generating harmonic map if this is

the case.

In general, the computation of the index and the nullity of a harmonic map is a difficult

task; in particular, to compute them for the (apparently innocuous) identity map of a compact

manifold M is geometrically significant. Indeed, in this case the Jacobi operator becomes

(1.6) JIdυ = Jv = Av - RicciMυ ,

where the Ricci tensor RicciM of M is regarded as a linear map on TM. Recall that the

Hodge-Laplacian Δ # (acting on vector fields via the musical isomorphisms) satisfies

(1.7) AHv = Δυ + RicciMι;.

Suppose now that (M, g) is an Einstein manifold, say RicciM = eg for some constant

c> 0. Then (1.6) and (1.7) yield

(1.8) J = AH-2cI,
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where / denotes the identity operator. This observation led Smith to relate the index and the

nullity of the identity map to the spectrum of M. In particular, he obtained

if n = 1,2,

(1.9) (ϋ)

(iii) 2

As for the flat torus Tn, we also have

(i) lnά(IdTn) = 0 for all n > 2,
(1.10) (ϋ) Nullr (IdTn ) = 0 for all n > 2,

(iii) NulljcVdTn) = dim H^ = n for all n > 2.

Certainly, the method of relating the spectra of / and Δ # relies heavily on the assump-

tion that (M, g) is Einstein. In this paper we show that some of these ideas can be adapted

to the case of a product of Einstein manifolds. In particular, we shall compute explicitly the

index and the nullity of the identity map of Sn x Sm and Sn xTm.

Our paper is organised as follows:

2. Statement of the results

3. Preliminaries

4. Proofs of the results

5. Conclusions

All manifolds are supposed to be smooth and without boundary.

2. Statement of the results. Let ft : (Af, , gfi -> (Λf;, Λ, ), i = 1, 2, be two harmonic

maps. We shall consider the product map

(2.1) / : M = (Mi x M2, gι x 92) ^ N = (Nι x N2, hi x hi),

which sends (JC, V) to (/ι(jt), /2OO). The map / is harmonic and one may hope to be able

to estimate (or compute) Ind(/) and Null(/) in terms of the Ind(//)'s and Null(//)'s. For

instance, a first easy result in this direction is:

PROPOSITION 2.1. (i) If f\ and fi are stable, then j is stable.

(ii)

(iii)

REMARK 2.2. In several cases, equality holds in (ii) and (iii) above. For instance, we

have (compare with (1.9))

0 i fn = 1,2,
(2.2) I n d ^ " ^ ) = l 2 ( w + 1 ) ί f n > 3 .

(2.3) Nuϊlk(IdSnxSn) = n(n +1) (n > 1).
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0 if n φ 2, n > 1,
(2.4) Nu\\r(IdSnχSn)= , , . .

6 if n = 2.

(Note that (2.2)-(2,4) are an easy consequence of the fact that Sn x Sn is Einstein.)

However, the following result shows that in general equality does not hold, even if M =

N is a product of two Einstein manifolds and / is the identity map. More precisely, we obtain:
T H E O R E M 2.3. Suppose, for convenience, thatm > n > l,m,n e N.

Part (i) [Index] Let Am,n = [k e N : k(k + n - 1) < m - 2}, Nm = C a r d A ^ i . Then

(2.5) Ind(WJlxS-)-{° ' / m = 2 '

MaxΛm, 2

(2.6) Ind(W52XiSm) = (m + 1) J ^ (2k + 1), m > 3 .

x , ' (2k-\-n - l)(k + n - 2 ) !
(2.7) Ind(/J5nχ5m) = (n + 1) + (m + 1) > — —

to k\(n-\)\
Part (ii) [Killing Nullity]

m(m + 1) n(n -f 1)
(2.8) Nulljt(/u5«χ5'") = h - -

m > n l .

Part (iii) [Reduced Nullity] As for the reduced nullity, we need to separate two cases:

Case (a) There exists k e N — {0} such that k(k + n — \) = m — 2. In this case we have

(2.9) Null (I dSnxS>n) = 2(m + 1), m > n = 1.

(2.10) Nu\\r(IdsnxSm) = 3 + (2* + l)(m + 1), m > n + 2.

(2.11) N u l l r ( / ^ χ ^ ) = (m + 1 ) ( 2 ^ t , , m>n>2.
k\(n - 1)!

(b) There exists no k e N — {0} .swc/z ί/zα/ k(k + n — I) = m — 2. In this case we

have
3 ifm = 2,n=l,

(2.12) NullΓ(/rf5»xS*) =
0 ί/ m > 2, n = 1.

(2.13) NullΓ(/J5nXιsm) = 3 m> n = 2.

(2.14) NullΓ(/d5πxs») = 0 m>n>2.

REMARK 2.4. As we shall see in Section 5 below, in (2.5)-(2.7) and (2.9)-(2.11) we

find Jacobi fields depending on both variables.

Based on similar principles, we also obtain the next result.

THEOREM 2.5. Part (i) [Index]

(2.15) Ind(/^2x 7v*) = 0, m > 2.
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N

(2.16) l n ά ( I d S n x T m ) = (n + l ) ] Π C a r d { z e Z m : \z\
2 = k 2 } , m > 2 n > 2 ,

N = Max{£ E W - {0} : 4π2k2 <n-2}.

Part (ii) [ift//mg Nullity]

n(n + 1)
(2.17) Nullk(Ids"xτm) = m H , m , n > 2 .

2
Part (iii) [Reduced Nullity]

{ 3 n = 2, m > 2,

0 n > 2 m>2

In the proof of Theorem 2.3 and Theorem 2.5, we shall need to know the spectrum

of the Hodge-Laplacian on 1-forms. Here we elaborate ideas of [1] and establish a rather

general result on A -forms. Let us begin with several notations. Let Ak(M) be the space of

smooth fc-forms on M. We denote by d : Ak(M) -> Ak+X(M) the exterior differential, while

d* : Ak+X (M) -> Ak (M) is its formal adjoint with respect to the L2-inner product induced on

differential forms by the Riemannian structure of M. Thus the Hodge-Laplacian on &-forms

is defined by

(2.19) AH = -(dd*+d*d).

We shall be concerned with the case that M is a product manifold with the product metric

(2.20) Λf = (Λfi x M2, 0i x gi).

In this context, a superscript M, indicates that the operator under consideration is to be taken

with respect to variables of M; only; dMi, d*Mi, Δ^' , for instance.

Let Vk (Mi, gi) be the eigenspace consisting of A -eigenforms associated to the eigenvalue

λ of Δ J J ' . We set

(2.21) Vk(Mi,9i) =

where SpecΛ(Λf, , g{) is the spectrum of Δ^' acting on A*(Λf, ). The projection maps

(2.22) p : (Mi x Λf2ϊ g\ x gi) -> (Mu g\), ^ : (Mi x M2, ^i x g2) -> (M2, 52)

induce, for 0 < / < m\ = dim Mi and 0 < j < mi = dim M2, the following maps

(2.23) pf : Ai-(Mi) -> Az"(Mi x M 2 ) , q* : A-/(M2) -> A >(Mi x M 2 ) .

We denote by pf (A1 (M\)) Λq*j (A7 (Λf2)) the linear subspace generated by the exterior product

forms pΐ(ai)Λq*(βj), where α, G A'(Λfi), jβy e A / (M 2 ) . (If/ = Oor,/ = 0, we get exterior

product forms of the type pl(oίώq*(βj) or pf(<Xi)qo(βo) respectively.)

Finally, we find it convenient to adopt the following convention. The greek letters λ,

a will be used to represent eigenvalues and differential forms respectively on the factor Mi.

Moreover, λι, α, denote the fact that α; € A1 (Mi) and λι e Spec* (Mi, g\). As for the factor

M2, we use in a similar way the greek letters μ, β.
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We are now in a right position to state our result

THEOREM 2.6. Consider a compact, oriented product manifold (Af, g) = (M\ x

Af2, 9l χ 92)- Then the following hold.

(i) The spectrum of the Hodge-Laplacian AH acting on k-forms is given by

(2.24) Spec*(Af, 9) = {λ1" + μ? : λ1" e Spec'(Mi, # ) , μ ' e Spec'(Λf2, # ) , i + j = k].

(ii) Lei y € Spec*(Af, g). Then the eigenspace associated to γ is

(2.25) Vk

y(M,g)= 0 0 p^V^Mu 9ι)) Λq*(VJ

μj(M2,92)).

(iii) Moreover,

(2.26) 7>*(Af, 0) = 0 pfCPWu 91)) A q*(Vj(M2, 92)).

3. Preliminaries. In this section we collect some known facts which will be used in

the proof of our results. We begin with some properties of infinitesimal conformal fields and

infinitesimal isometries. Let (Af, g) be a Riemannian manifold with metric g. We denote by

δυ the divergence of the vector field v on M. Note that the relation between 8 and d* is simply

given by

(3.1) δv = d*(υb),

where the superscript b denotes the operation of lowering indices using the metric g (classi-

cally, the inverse of this operator is indicated by JJ). Infinitesimal conformal fields are charac-

terized by the following formula

(3.2) L V 0 = — ? — ( ί υ ) 0 ,
dimM

where Lvg is the Lie derivative of the metric g in the direction v. In the special case that

Lυg = 0, v is called a Killing field (or, equivalently, v is an infinitesimal isometry). Next, the

following useful integral formula holds on a compact oriented manifold M (see [2])

(3.3) f (7υ, v)dvM =l-ί [\Lvg\2 - 2(δυ)2}dυM .
JM * JM

Putting together (3.2) and (3.3) we obtain:

(3.4) Let (Af, g) be a compact, oriented Riemannian manifold. Then the Killing fields are

precisely the divergence-free Jacobi fields.

Each eigenspace of AH on 1-forms decomposes into an orthogonal sum as follows:

(3.5) V{ (M, g) = (Vι

λ (M, g) Π KerJ) Θ (Vι

λ (Λf, g) Π KerJ*).

The previous discussion suggests that determining Null* and Nullr may require a complete

knowledge of the spectrum of AH on each of the subspaces on the right-hand side of (3.5).
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More precisely, we shall need the following facts (see [1], [6], [7]) (Sn, Tm are given the

standard metric):

(i) Spec°(Sπ) = {λ° = k(k + n - 1) : k e N}.

(ii) άimV%(Sn) = (2ik + π - l)(ik + n - 2)1/k\(n - 1)!.
h

( i i i ) SpecHsn)\κcrd = { λ ι

k = k ( k + n - l ) : k e N - {0 } } .
( 3 > 6 ) (iv) dimCP1, (Sn) Π Kerd) = dim V%(Sn).

λ λ4K

(v) Inf{Spec1(57Z)lκerrf*} = 2(n - 1).

(vi) άim(PL_l)(Sn) Π Kerd*) = n(n

(The symbol | denotes "restriction". Note also that elements in V\(Sn) Π Kerd correspond

precisely to the differentials of elements in V%(Sn).) As for the torus, it will suffice to know

that

(i) Spec°(Γm) = {μ°k = 4π2k2 : k e N}.

,<x Ί\ (ii) άim(V°0(Tm)) = Card{z € Zm : \z\2 = k2}.

(iii) ά\m(Vl (Tm)) = dim(7^ (Γ m ) Π KerJ*) = m .

Let us end this section by fixing some convenient notations concerning a product map /

as in (2.1). With reference to the canonical orthogonal sum decomposition

(3.8) Tfix,y)N = TMx)Nχ Θ TMy)N2 ,

we decompose the vector field v along / as follows:

(3.9) υ = ιv + 2v.

In the special case that 2v = 0 and ιv depends only on the x-variables, we say that v e

C(f^~ιTN\). Similarly, we define the subspace C(f^ιTN2). With this preparation, we can

now proceed to the proofs.

4. Proof of the results.

Proof of Proposition 2.1: A computation shows that the second variation formula (1.2)

for a product map / as in (2.1) becomes:

Hf(υ,w)=[ Hf2(
2v,2w)dvMι+ ί Hfι(

ιυ,ιw)dvM2

(4.1)

where m\ = dimM/, n, = dimΛf;, ί = 1,2. The e 's (resp. έ/s) are a local orthonormal

frame on TM\ (resp. ΎMi)\ and the d/duhs (resp. d/dϋk's) are a local basis for TN\ (resp.

TN2). Now the Proposition follows. Indeed, (i) follows from the facts that the H/ 's are
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positive definite, i = 1,2, and the terms in the last integral of (4.1) are nonnegative too. As

for (ii) and (iii), it suffices to consider energy decreasing or Jacobi fields in C(f^ιTN\) or

C(f^ιTN2) (for these vector fields the last integral in (4.1) vanishes).

Proof of Theorem 2.6: It is convenient to divide the proof into 5 steps.

Step 1. The space @i+j=k p*(A1* (Mi, g\)) A q*(Aj(M2, g2)) is dense in Ak(M)for

the L2-norm.

PROOF. We fix k\, k2 e N such that k\ + k2 = k. Let (U, x) (resp. (ί/', v)) be a local

chart on M\ (resp. M2). First, we consider a A -form w on M which is compactly supported

on the product chart (ί/ x ί/', (x, y)) and has the form

(4.2) w = aάxiχ Λ Λ dxik\ A dyh A Λ dyjk* ,

where a is a smooth function whose support lies on (U x Uf). (Note that the indices i\,... , 4,,

71, . . . , j k 2 are fixed.) We know from [1] that p%(A°(M\)) 0 q£(A°(M2)) is dense for the

uniform convergence norm in A°(M). Thus we can assume the existence of Σ f = o

q) e /7*(Λ°(Mi)) ® q^(A°(M2)) such that

(4.3)
r op)(groq)

r=0

< ε, ε > 0,

andsupp((/zro/?)(<7ro<7)) c supp(α) = supp(u ) (Here || ||oo denotes the uniform convergence

norm).

Next, we define

R

(4.4) w = ΣiQΐ o p)dxh A Λ dxik\) Λ ((gr o q)dyJι A - Λ dyjk2),
r=0

where w e p^ (Akι (Mi)) Λ q%2(Ak2(M2)) and supp(w ) c supp(u ). We get

(4.5) \\W-W\\2

L2 <Kε,

where K is a constant which depends only on the maximum of the coefficients of the Rie-

mannian metric on supp(w). Now the conclusion of Step 1 follows from the facts that ε in

(4.3) can be chosen arbitrarily, and each element of Ak(M) can be written (by means of a

convenient partition of unity) as a finite sum of &-forms of the type (4.2).

Step 2. The space ®i+j=k p*(V1 (Mx, gx)) Λ q*. (Vj (M2, g2)) is dense in Ak(M) for

the L2-norm.

PROOF. Owing to Step 1, it is enough to check that 0 I + y = * p * (

q*(Pj(M2, gi)) is dense in φi+j=k pf(A((Mu gύ) Λ^*(A^(M2, g2)) in the zΛnorm. Now

this follows from the fact that V[(M\, g\) (resp. VJ\M2, g2)) is dense in Al{M\) (resp.
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Step 3. Let λ e Spec1'(Λf 1,01), μ e Specj(M2,g2) and a e V[(Mu g\), β €

VJ

μ(M2, 92). Then

(4.6) AH(p*(a) A q*(β)) = (λ + μ)p?(α) Λ q*{β) .

PROOF. The key point is to show that

(4.7) d*(pf(a) A q*(β)) = p*_x(d*Mχa) A q*(β) + (-l)'"p*(α) A q*j_χ(d*M2β).

First we observe that (4.7) is equivalent to
r

I (Pi—\(d xcx) A q:(β) -\- (—1) PJ (oί) A q 1 (d 2β),w)dvM
JM J J

= ί (p*(a)Aq*(β),dw)dvM
JM J

for all w e A1 +)'~1 (M). Using a partition of unity and the linearity of d, it is enough to prove

the equality in (4.8) when w is a differential form as in (4.2), with k\ + k2 = i + j — 1.

Then we have

/ (p*_x(d*Mχa) A q*(β), adxiι A Λ dxikι A dyh A Λ dyjk2)dυM

JM

= I \(β, dyjx A - - Λ dyjk2) I (d*Mχa, adxlχ A Λ dxlk\ )dvMx ) dv\f2

(4 g\ J M2 \ J M\ J

= ί \ { β , d y j x A Λ dyJk2) f {a, dMχ ( a d x i χ A--Ά dxik\ ) ) d v M χ ) dvMl

JM2 \ JMX )

= ί (pf(a) A q U β ) , dMχ ( a d x i χ A - Λ d x i k ι A d y j x A--Ά d y j k 2 ) ) d υ M ,
JM

where the first and the third equalities are due to Fubini's Theorem, while the second is ob-

tained using the fact that d*Mχ is the formal adjoint of dMχ provided that the v-variables are

considered as fixed. It should also be noticed that Ίίk\ φ i — \ or k2 φ j , then the first and

the last term of (4.9) are both equal to 0. In a similar way, we also obtain

ί (-1)'(/>*(«) Λ ̂ *_ 1 (J* Λ / 2 ^) , adxiχ A Λ dxik\ A dyjx A--Ά dyjk2)dvM

(4.10) JM .
= / (p*(a) A qUβ), dMl(adxlχ A Λ dxlk* A dyJX A-Ά dyJk2))dυM

JM

Now we add (4.9) and (4.10) and obtain (4.8). Finally, a short calculation using (4.7) gives us

(4 11) AH(p*(a)Λq*(β)) = P*(Δ^α) Λ q](β) + p » Λ q*(Δ%2β)

= (λ + μ)pί(a)Λqτ(β),

completing the proof of Step 3.

REMARK 4.1. It is easy to see that, in general, the following formula

(4.12) d*(ω\ Aω2) = d*(ω\) Aω2 + (-l)'ωi Ad*(ω2),
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where ω\ e A((M), ω2 e A-J(M), does not hold (even if M is compact). So the validity of

(4.7) is due to the very special type of forms under consideration.

Step 4. Suppose that for any r e N, there exists a linear subspace Wr ofAk(M) such

that the following two conditions are satisfied:

(A) There exists γr e R such that AHW = γrwfor all w e Wr;

(B) ΣreN wr is dense in Ak (M) for the L2-norm.

Then Spec*(M, g) = {yr}reN andVk

γr{M, g) = Wr.

PROOF. The proof of this Step is done by an adaptation of Lemma A I I 1 of [1], so we

omit it.

Step 5. End of the proof of Theorem 2.6: Let

(4.13) Sk = {λι + μj : λ1" G Spec'^Λfi, ^i), μj e Spec^(M2, g2), i+j=k}.

We order the elements of Sk in such a way that we obtain an increasing sequence (γr)reN so

that

(4.14) Sk = {γr}reN.

Now, let reiV.We set

(4.15) Wr= 0 0 ptiV^iMu gύ) Λq*(VJ

μj(M2, gi)).
i+j=k λi+μj=γr

Because of Step 4, it is sufficient to show that conditions (A) and (B) above are satisfied.

Indeed, Step 3 implies that (A) is fulfilled. Moreover, from the definition of Wr and from Step

3, we obtain

(4.16) ΣWr= Θ Λ*(^(^ i ' 9ύ) Λ<7*CPj"(Λf2, 92))
reN i+j=k

On the other hand, it follows from (4.16) and Step 2 that (B) holds too. This completes the

proof.

Proof of Theorem 2.3: Let υ e C(T(Sn x Sm)). Refering to the decomposition (3.9),

we have

(4.17) Ricci5" x 5 m(ι;) = Ricci5Yt;) +Ricci 5 W( 2ι;) = (n - I) 1 ! ; + (m - l)2v .

Using this, together with (1.6) and (1.7), we find that the second variation for Ids"χsm takes

the following form:

(4.18) HIdsnχSm(v, w) = H\(v, w) + 2(m - n) / (ιυ,
JSnxSm

x Sm)), where

'υ,w)= I (Δ//υ — 2(m — l)v, w)dvs»xsm

JSnxSm

for all υ, w e C(T(Sn x Sm)), where

(4.19)
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(Note that the use of musical isomorphisms to pass from vector fields to 1-forms and its

converse is always tacitly assumed.)

Now the idea of the proof is to control the term H\ in (4.18) due to the spectral result in

Theorem 2.6. The appearance of an additional term in (4.18) makes it necessary to develop

some further technicalities. More precisely, keeping notation as in Step 5 above, let γr e

^ S " x Sm). Its associated eigenspace is

(4.20) Wr = 0 [p*0(V°λ0(Sn)) 0 q\{V\λ (Sm))] Θ [p\{V[x (Sn)) 0 <7o*

(Here and below, we omit to write λ1' e Spec^S"), μj e Spec >(Sm), ί = 0, 1.)

If we prove that the eigenspace Wr is a sum of subspaces orthogonal to HidsnxSm (de-

noted by H from now on), then we can apply standard properties of bilinear forms to deduce

that

\nά(H\Wr) =

(4.21)

and, similarly,

(4.22)

where lnά(H\y) (resp. Null(//|y)) denotes the index (resp. the nullity) of the restriction of

H to the subspace V.

To sum up, (4.21) and (4.22) hold provided that we show that the various subspaces

which appear on the right-hand side of (4.20) are orthogonal to H. For this purpose, we

consider the following two cases:

Case 1. Let υ = (/λo o p)q*ι(βμι) e P^(V°λo(Sn)) 0 ^ ( ^ ( S " 1 ) ) and w = (9μo o

q)p*(aλι) e qζ(V°0(Sm)) 0 p\(Vι

χX (Sn)), where λ° + μ} = λ1 + μ° = γr. In this case we

find:

i) ί (v,'
JSnxSm

(ii) H\(υ, w) = {yr - 2(m - 1)) / (υ, w)dvSnxSm ,
JSnxSm

from which it follows immediately that H(v,w) = 0.

(i) / (υ,w)dυs*xsm = 0,

(4.23)
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Case 2. Let v be as in Case 1. Also, let w = (/#> o p)q*(ββι) € PQ(V~p(Sn)) ®

q\{V\, (Sm)), where λ° -f μ 1 = λ° + μ} = yr, λ° ^ λ°. In this case we find:

(2v2(i) / (v, w)dvsn*sm = / (2v,2w)dυsnχsm

nxSm

(i) / (v, w)dvsn*sm = /
JSnxSm JSn

(4.24) = / (fχo, fλo)dvSn \ (βn\, βμι)dvs™ = 0,
Jsn Jsm

(ii) /fi(υ, w) = (γr - 2(m - 1)) / (υ,

from which again it follows that H(υ, w) = 0. The remaining cases are similar, so we

conclude that (4.21) and (4.22) hold. Moreover, in a similar spirit, it is easy to show that if

Wr and Wr> are two distinct eigenspaces of Δ # , then they are orthogonal to H.

Next, let γr e Spec1 (Sn x Sm). We observe that, if γr > 2(m - 1) (resp. γr > 2(m - 1)),

then

(4.25) H(υ, v)>0 (resp. H(υ, υ) > 0),

for all v e Wr. Putting these facts together, we conclude that

Ind(#) = Σ lnά(H\wr) = Σ lnά(H \
(426) γr<2(m-l)

and similarly,

N u l l ( / 0 =

(

Each eigenspace decomposes into the sum of two subspaces which are orthogonal to H, that

is,

(4.28) V\λ (Sn) = (V[λ (Sn) Π Kerds") θ (P{λ (Sn) Π KerJ*5")

(similarly for V1, (5W), of course). On the other hand, a simple computation yields

(4.29) H(v, v) = (λ° + μ 1 - 2(m - 1)) ί (υ,
JSnxSm

for all υ e p^0(Sn)) 0 f̂ ( P ^ (5W)). Similarly,

(4.30) H(v, v) = (λ1 + μ° - 2(π - 1)) ί (v, υ)
JsnxSm

for all υ G p f ί ^ , (Sn)) ® ^ 0 * ( ^ 0 ( ^ m ) ) .
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Now we use (3.6) (i), (iii), (v), together with m > n, to deduce from (4.29) and (4.30)

that

, (Sm) Π

(4.31) λo+μ1<2(m-l)

+ Σ άim(Pι

λl (Sn) Π Ken/5") άim(V°μ0(Sm)),

λι+μ°<2(n-\)

and

Null(#) = Σ dim(V°0(Sn)) dim(Pι

μί (Sm) Π Ken/5™)

λo+μ1=2(m-l)

Finally, a long but straightforward computation of (4.31) and (4.32) using (3.6) enables us to

complete the theorem. (Note that, in order to separate the Killing nullity from the reduced

nullity, we use (3.4).)

Proof of Theorem 2.5: The arguments follow closely those of the previous theorem, so we

confine ourselves to indicate how the main steps have to be modified. Since Tm is Ricci flat,

the analogue of (4.18) reads here

(4.18)r HSnxTm(v,w) = H2(v, tu) + 2(/ i- 1) / (2v,2w)dvSnxT™ ,
JSnxTm

,w) = I (Δ#υ - 2(n - l)υ,
JSnxTm

where

H2(υ,
JSnxT

Also, instead of (4.29) and (4.30), we find

(4.29/ tf (v, υ) = (λ° + μ1) ί (υ, v)dvSnxTm
JSnxTm

for all υ e p%(V°0(Sn)) 0 q*(Pι

μl (Tm)\ and

(4.30)' H(υ, v) = (λ1 + μ° - 2(n - 1)) [ (υ, υ)dυSn
JSnxTm

xTn

for all υ e p\(V[λ (Sn)) j

The rest is the same. Indeed, we just use (3.7) to have the required information on the

spectrum of Δ^".
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5. Conclusions. (I) The proofs of Theorem 2.3 and Theorem 2.5 tell us explic-

itly how to construct energy decreasing or Jacobi fields in terms of eigenfunctions and 1-

eigenforms. We can also point out some cases where Ids"xsm is certainly a generating har-

monic map: more precisely, that happens when the conditions in (2.12), (2.13) or (2.14) apply.

Similarly, we find that Idτ"xsm is a generating harmonic map for all n, m(n > 2).

(II) Here we compute explicitly the flow of a certain Jacobi field v along Ids\xSβ.

This flow does not consist of harmonic maps (i.e., Ids\ xSβ is not a generating harmonic map.

Moreover, the same occurs in all cases included in (2.9), and the proof is similar). Let us first

introduce a convenient set of coordinates on Sι x S6:

(5.1) S1 x S6 B (0, sinrω,cosr) Ά (0, sinrω, cosr) e Sι x S6 ,

where 0<θ<2π,0<r<π9ωeS5 (the obvious immersion into R9 is tacitly assumed).

Because of (2.9), we know that Nullr(Ids\ xSβ) = 14. Moreover, the associated Jacobi fields

are of the form

(5.2) v = /(0)5(r, ω),

where / is an eigenfunction of Δ ^ associated to the eigenvalue k2 = m — 2 = 4, while v is

a conformal field on S6, i.e., v is the projection on ΓS 6 of the gradient of a linear function on

RΊ. A simple choice for such a v is

/l \ a
(5.3) v = - ί - sin(20) j sin r — .

Because of the symmetries in the construction, we expect the flow of υ to have the following

form

(5.4) Sι x S6 3 (0, sinrω, cosr) A (0, sinh(t, r, 0)ω, cosh(t, r, 0)) e S1 x S6 ,

where \t\ < ε and the function h(t, r, 0) must be such that

(5.5) (i)F0 = Id (ii)—- =v.
dt ί=o

In terms of h, conditions (5.5) become

(5.6) (ί)Λ(0,r,β) = r (π)
dh(t,r,θ)

dt

Then it is straightforward to check that

= - ί - sin(20) J sin r ,

(5.7) h(t,r, 0) = Arccos ί cosίcosr + - sin(20) sin2 r j , \t\ < ε

fulfills both conditions in (5.6). Moreover, it is easy to see that (5.4), with h as in (5.7), is

smooth across r = 0, r = π for all \t\ < ε (ε small), just by showing that these F,'s are

restrictions to Sι x S6 of smooth maps ofR9 into itself. Finally, a routine verification shows

that a diffeomorphism as in (5.4) can be harmonic only if h does not depend on 0, a fact which
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is false for h as in (5.7). This shows that the flow of such a v does not consist of harmonic

maps.

(Ill) The method of proof of Theorem 2.3 and Theorem 2.5 works, more generally,

when one wants to compute Ind(IdMιxM2)
 0 Γ Null(/dMixM2)> provided that one knows

Spec*(Δ^|κeπ/M<) a n d sP e c*(Δί/'\eitf*M<)' i = *' 2> a n d (Mi,gϊ) a r e compact Einstein
manifolds. For instance, spheres of radius r φ 1 or other tori Rm /Γ could be easily treated in
this way. We leave the details to the interested reader.
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