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UNIQUENESSTHEOREMSIN AN ANGULAR DOMAIN
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Abstract. There are many papers on the uniqueness theory of meromorphic functions
in the whole planeC. However, the uniqueness theory concerned with shared sets in an an-
gular domain does not yet seem widely investigated. In this paper, we deal with the problem
of uniqueness for meromorphic functions@under some conditions in an angular domain
instead of the whole plane. Moreover, examples show that those conditions are necessary.

1. Introduction and main results. In this paper, unless otherwise stated, by a mero-
morphic function we mean that the function is defined and meromorphic in the whole(hlane
We also assume that the reader is familiar with the basic results and notation of Nevanlinna’s
value distribution theory of meromorphic functions (see [11] or [12]), sudiasf), N (r, f)
andm(r, f). Meanwhile, the lower order and the ordek of a meromorphic functiorf are
defined as follows:

. e 1ogT(r, f)
= p(f) = liminf “logr
and
. e log7'(r, f)
)L._)L(f)_llin_)sogp ogr

Let S be a subset of distinct elementsGrand X C C. Define
Ex(S, f) = |Jlz € X | fu(2) =0, counting multiplicities,

aes
Ex(S. f) =iz € X | fuz) = 0, ignoring multiplicitieg ,
aes
wheref,(z) = f(z) —aif a € Cand f(z) = 1/f(2).
Let f andg be two non-constant meromorphic function€nlf Ex (S, f) = Ex(S, g),
we sayf andg share the sef CM (counting multiplicities) inX. If Ex(S, f) = Ex(S, g),
we sayf andg share the sef IM (ignoring multiplicities) in X. In particular, wher§ = {a},
wherea € C, we sayf andg share the value CM in X if Ex(S, f) = Ex(S, g), and we
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say f andg share the value IM in X if Ex(S, f) = Ex(S, g). WhenX = C, we give the
simple notation as befor&(S, f), E(S, f) and so on (see [28]).

In [10], Gross proved that there exist three finite sgt$j = 1, 2, 3) such that any two
non-constant entire functions and g satisfyingE(S;, f) = E(S}, g) for j = 1,2, 3 must
be identical, and asked the following question (see [10, Question 6]).

QUESTION A. Can one find two finite set§; (j = 1, 2) such that any two entire
functions f andg satisfyingE(S;, /) = E(S;, g) (j = 1, 2) must be identical?

Yi seems to have been the first to give thérafative answer to the above Question A
completely (see [23]). Since then, many results have been obtained concerning this question
and related topics (see [5-7, 13-15, 19, 21, 22] and [24-27]).

In [10], Gross noted that ‘if the answer to €stion A is affirmative, it would be inter-
esting to know how large both sets would have to be’, namely he also asked the following
question.

QUESTION B. What are the smallest cardinalities $f and S», whereS1 and S, are
two finite sets such that any two entire functiofisindg satisfyingE(S;, f) = E(S;, g) for
J = 1,2 must be identical?

In 1998, Yi actually proved the following theorems as the answers to these two questions,
respectively.

THEOREM A ([27, Theorem 4]). Let S; = {0} and S2 = {w | w"(w + a) — b = 0},
where n (> 2) isan integer, and a and b are two non-zero constants such that the algebraic
equation w"(w + a) — b = 0 has no multiple roots. If f and g are two entire functions
satisfying E(S;, f) = E(Sj, g) for j =1,2,then f = g.

THEOREM B ([27, Theorem 2]). If S1 and S» are two finite sets such that any two
entire functions f and g satisfying E(S;, f) = E(S;, g) for j = 1, 2 must be identical, then
max{#(S1), #(S2)} > 3, where #(S) denotes the cardinality of the set S.

Zheng [31] and [32] considered the uniqueness of meromorphic functions with shared
values in angular domains. Following him, we ask the following question.

QUESTION 1. Does there exist an angular domain= X (o, 8) :={z | @ < argz <
B} (0 < a < B < 27) such thatf = ¢ is always the case whefiand g are two entire
functions satisfyingcx ({S;}, f) = Ex({S,}, g) for j = 1, 2in Theorem A?

Note that Yi and one of the authors of this paper extended Theorem A to the following
results on some class of meromorphic functions.

THEOREM C ([29, Theorem 1]). Let S1 = {0}, S2 = {o0} and S3 = {w | w"(w +
a)—b = 0}, wheren (> 3) isaninteger, and ¢ and b are two non-zero constants such that the
algebraic equation w” (w+a) —b = 0 hasno multipleroots. If f and g are two meromorphic
functions satisfying E(S;, f) = E(S;, g) for j =1,2,3and ®(co, f) > O,then f = g.
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In [29, Theorem 2], it is also shown that the same conclusion still holds when the two
assumptionsr > 3’ and ‘©(co, f) > 0 are replaced byr > 2’ and ‘© (oo, f) > 1/2’,
respectively.

Therefore, we may also ask Question 1 for Theorem C, that is, meromorphic functions
and three set§; (j = 1, 2, 3) given there.

In this paper, we prove the following theorems from this point of view in Question 1.

THEOREM 1. Let S1 = {0}, S2 = {oo} and S3 = {w | w"(w + a) — b = 0}, where
n (>3) isaninteger, and a and b are two non-zero constants such that the algebraic equation
w" (w + a) — b = 0 hasno multiple roots. Assume that f isa meromorphic function of lower
order u(f) € (1/2,00) inCand s := 8(t, f) > Ofor some: € C\ {0, —a}. Then for each
o < ocoWithu(f) <o < A(f) thereexistsan angular domain X = X («, B) With0O <« < 8
and

4 )
(1) B—oa> max{z, 2 — — arcsin\/j} ,
o o 2

such that if the conditions E(S1, f) = E(S1, 9) and Ex(S;, f) = Ex(S;, 9) (j = 2, 3) hold
for a meromor phic function g in C of finite order or more generally with the growth satisfying
either logT (r, g9) = O(logT (r, f)) oOr

loglogT (r, g9)

() Am — loar loaT =0,
B minflogr, log T (r, 1)}

where E1 isa set of finite linear measure, then f = g.

REMARK 1. The following example shows that the inequality (1) cannot be replaced
by ‘=", so the condition (1) is best possible.

EXAMPLE 1. Let f(z) = e % andg(z) = e %%. Theni(f) = A(g) = u(f) =
u(g) = 1. The algebraic equation*® — (1/2)w® + 1/1000 = 0 has four distinct roots
whose absolute values are strictly less than 1. Herfée- (1/2) f3 + 1/1000 # 0 and
g* — (1/2)¢% + 1/1000 + 0 on{z | Jz > 0}. Obviously,s := §(co, f) = 1,0 = 1 and
E(S1, f) = E(S1,9) = E(S2, f) = E(S2, g) = 0. Hence,

(72 (7 aesin
maxy —, 2r — ( — | arcsin,/ = ¢ = 7.
o o 2

If we takeX = X (0, r) orevenifX = {z | 0 < argz < &, orz = 0}, thenEx(S3, f) =
Ex(S3,9) =0, butf #g.

On the other hand, for argy> 0, one can find two different pointg andzz in X (0, 7 +
&) such thatf (z1)* — (1/2) f (z1)% + 1/1000= ¢(z2)* — (1/2)g(z2)% + 1/1000= 0, because
f andg have a Julia direction on the real axis, respectively.

We note that the condition (1) no longer has any meaning when1/2, since Z >
B—a > m/o. Inthis case, however, by takidg = Cregarded as the closure {0, 2r) and
t = 00, our consideration is reduced to the result of Theorem C, sinee, f) > §(oco, f).
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REMARK 2. The following example (see [29]) shows that the condition of deficiencies
in Theorem 1 is necessary.

EXAMPLE 2. Let

_aef(e -1 _a(e™ =1
f(Z)——m—eg(Z), g(Z)——e(HT-

1
It is easy to see that # ¢ and they satishE(S;, /) = E(S}, g) for j = 1,2, 3. For any
t #0, —a,weseethat := (¢, f) = 0, sotha(l) become® —«a > 27, which is impossible.
This shows that the assumptioh:= 8(¢, f) > 0 for some # 0, —a’ in Theorem 1 cannot
be simply deleted.

In fact, the pair of functiong and g in Example 2 is essentially a unique exception in
Theorem 1. Concretely, the above deficienopdition can be replaced by the condition that
f andg are not of the form

ae’(e"V —1) y _a@r =1
T T by 1 €9 9T T arhy — 10

wherey is an entire function. See the proof of Lemma 6 below.
If we exclude the case whegandg are given by

ah(h" — 1) a(h" — 1)
f==paog =he 9=~

whereh is a meromorphic function i€ which is analytic and zero-free i, the conclusion
of Theorem 1 is also true under the conditions:
() Ex(Sj, f)=Ex(Sj,9) (j=1223);and
(i) f attains one of the values 6o and—a at least once iiX;;
instead of the conditions:
(i) E(S1, f) = E(S1, 9) andEx(S;, f) = Ex(S;, 9) (j = 2,3); and
(i) 8:=68(, f) > 0forsome # 0, —a.

REMARK 3. Itis clear that the constantas well ash should never be zero. In fact,
for any meromorphic functiorf in C and a primitive(n 4+ 1)th root of unitye, two functions
fandg :=ef satisfyE(S;, f) = E(S;, g) for j =1,2,3witha = 0.

THEOREM 2. Let S1 = {O}and S2 = {w | w"(w +a) — b = O}, wheren (= 2)
is an integer, and a and b are two non-zero constants such that the algebraic equation
w"(w + a) — b = 0 has no multiple roots. Assume that f is an entire function of lower
order u(f) € (1/2, >0). Then, for eacho < oo with u(f) < o < A(f), there exists an an-
gular domain X = X («, ) whose opening 8 — « islarger thann /o ifo < 1,and 27 — /o
if o > 1 withthefollowing property: If the conditions E(S1, f) = E(S1, g) and Ex(S2, f) =
Ex(S2, ¢) hold for an entire function ¢ satisfying either log T (r, g) = O(log T (r, f)) or (%)
in Theorem 1 holdsasr — oo possibly outside a set E1 of finite linear measure, then f = g.
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REMARK 4. The conditiom > 2 in Theorem 2 is sharp, since two entire functions
f(@) =e*—1landg(z) = e~ — 1satisfyE(Sy, f) = E(S1, g) andEx (S2, f) = Ex(S2. 9)
for anyw andg with 8 — « > 7w when our algebraic equation is given oyw + 3) + 2 = 0.

In the meantime, it seems open whether the assumptien3 is sharp or not in Theo-
rem 1.

Under the condition that( ) = oo, we obtain the following theorems.

THEOREM 3. Let S1, So and S3 be defined asin Theorem 1. Assumethat f isa mero-
mor phic function of infinite order, but that it grows not so rapidly that

lim Supw < 00
F—00 logr

bl

and assume further that §(¢, f) > O for some: e C\ {0, —a}. Then there exists a direction
argz = « (0 < a < 2m) such that for any ¢ (0 < ¢ < /2), if a meromorphic function g
satisfies the growth condition

(k%) logT(r,q) = O logrT(r, f)), r¢&E

for aconstant ¢ > 0 and a set E of finite linear measure, and E(S1, f) = E(S1, g) and
Ex(S;, f) = Ex(S;,g) for j = 2,3 inthe angular domain X = X(« — ¢, a + ¢), then
f=g

THEOREM 4. Let S1 and S» be defined as in Theorem 2. Assume that f is an entire
function of infinite order but that it satisfies

loglogT
lim Supw < 00
F—00 logr
Then there exists a direction argz = « (0 < « < 27) suchthat for anye (0 < ¢ < 7/2),
if an entire function ¢ with the growth (xx) in Theorem 3 satisfies the conditions E(S1, ) =
E(S1, 9) and Ex(S2, f) = Ex(S2, g) inthe angular domain X = X(x — ¢, o + ¢), then
f=g

2. Some lemmas. We shall prove the theorems by using the Nevanlinna theory of
meromorphic functions defined in an angular domain (see [16]). First of all, we recall some
notation and definitions. Lef(z) be a meromorphic function on the closed angular domain
X = X(, B) = {z | « < argz < B} U {0}, where O< 8 — « < 2x. Nevanlinna defined the
following notation (also see [9]):

tw

rr1 . . d
Agp(r, ) = %/l (t—w — m){log* |f(te'®)| + log® |f(te“f‘)|}7t,
B .
Bug(r, f) i= %/ log™ | f(re'?)| sinw(® — ) db ,

Cop(r, f):=2 Z ( = — |€n;lw> sinw (9, —a),

w
1<|by|<r D




514 W. LIN, S. MORI AND K. TOHGE

wherew = /(8 — «), 1 < r < oo andb,, = |b,|e!% are the poles of (z) on X appearing
often according to their multiplicitiesC, g (r, f) is called the angular counting function of
the poles off on X and the Nevanlinna angular characteristic function is defined as follows:

Sup(r, ) = A p(r, f)+ Bap(r, ) + Cop(r, ).

Similarly, fora # oo, we can definedq g(r, fa), Ba.g(r, fa), Cap(r, fa) and S, g(r, fu)
with f, = 1/(f — a) and so on. For the sake of simplicity, we omit the subscript of all
the notation and use the notatidrir, a), B(r, a), C(r, a) andS(r, a) instead ofAq g(r, fa),
By.g(r, fa), Ca,p(r, fo) andS, g(r, fa) if a # oo. We shall give some properties 8fr, f)

as follows.

LEMMA 1 ([9]). Let f(z) be a meromorphic function on X (o, 8). Then, for an arbi-
trary finite complex number a, we have

S(r,a) = S(r, f) +¢e(r,a),
wheree(r,a) = O(1) asr — oo.

LEMMA 2 ([9]). Let P(z) bea polynomial of degreed > 1,and f(z) be a meromor-
phic function on X (a, 8). Then

S(r, P(f)) =dS(r, )+ O(1).

For a meromorphic functiogi defined inC, we denote by (r, f) a quantity satisfying:
i) OG, f)=01) asr — coif A(f) < o0;
@iy O, f)=0(ogrT(r, f)) asr — oo andr ¢ E if L(f) = oo, whereE is a set
of finite linear measure.

LEmMMA 3 ([9]). Let f(z) bea meromorphic functioninC,and0 < o < 8 < 2.

Then , )
(- 5)ea(:7) - onn

Lemma 3 was first demonstrated by Nevanlinna [16] in the case where the function f(z) isa
meromor phic function of finite order in the whole plane, and then it was generalized into the
present form by Dufresnoy [2] and Ostrovskii [17] (see also [9, Chapter II1]). It was an open
question whether for any meromorphic function f(z) defined only on X («, B),

(2) A<r, f7/) + B<r, f7/> =o(S(. f)),

holds as r — oo possibly outside a set of finite linear measure. In 1975, Gol’ dberg [8]
constructed an unexpected counterexample. He showed that, for any function ¢ (r) — oo,
r — oo, thereisan entire function f(z) suchthat S(r, f) = 0but A(r, f//f)/¢(r) — oo as
r — oo. Thus, (2) isnot valid in general (see[4]).

LEMMA 4. Let f(z) beameromorphicfunctioninC,and0 <« < 8 < 2x. Then

S(r, f) <C(r, )+ é(r, %) + é(r, 7 i c) - Co(r, %) +0(r. f),
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where, as we noted above, Q(r, f) = O(logrT(r, f)), r € E, E is a set of finite linear
measure and ¢ # 0. Moreover, C(r, f) is the reduced counting function of poles of f,
each distinct pole of f(z) in X(a, B) N {z | |z| < r} being counted only once; Co(r, 1/f7)
is the counting function of the zeros of f’ but not the zeros of f and f — ¢ in X (&, B) N
{zllz| <r}

Lemma 4 can be proved by the same argument as in the proof of Nevanlinna’s second
fundamental theorem (see [11, Theorem 2.1]).

Next, we introduce some notation for the following main lemma.

Let f be a meromorphic function on a closed angular donia, 8). We denote by
Ca(r, f) the counting function of the poles ¢gfin {z € X(«, B) | |z| < r}, where a simple
pole is counted once and a multiple pole is cedhtwice. In the same way, we can define
Ca(r, 1/f).

LEMMA 5. Let F and G betwo non-constant meromor phic functionsin C such that F
and G share 1, oo CM in X («, 8). Then one of the following three cases holds:

(i) S(r)<Co(r,1/F)+ C2(r,1/G)+2C(r, F)+ Q(r, F) + Q(r, G);

@iy F=G;

(i) FG=1,
where S(r) = maxS(r, F), S(r, G)}, Q(r, F) and Q(r, G) are as defined above immediately
before Lemma 3 was stated.

PROOF. ~ Set

F// F/ G// G/

3 ®=— -2 - — i
3) F’ F-1 G’ + G-1

Suppose that? # 0. Using Lemma 4, we can deduce th@a¢r, F') = Q(r, F) and
Q(r, G') = Q(r, G). Therefore, we have

(4) A(r,®)+ B(r,®) = Q(r, F) + Q(r, G) .
SinceF andG share 100 CM in X («, 8), we have

C(r,®)<C = +C = +C 1
r, =Ce r,F @ r,G OV’F’

1
+ C0<r, —,> + 0@, F)+ 0@, G),

(%)
G

whereCy(r, 1/F') is the same as in Lemma 4, aﬁ@lz(r, 1/F) denotes the counting function
of zeros ofF with multiplicity at least 2 in{z € X («, 8)]|z] < r} counting twice.
Combining (4) and (5), we have

S(r,®) < C ! +C 1 +C 1
rs - (2 er (2 r’G Oer,

1
+ Co<r, a) + 0@ F)+ 0@, G).

(6)
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Suppose thaiy is a simple zero of’ — 1. Then, by an elementary calculation, we obtain
thatzg is also one of the zeros @f. Thus, we obtain from (6) that

1 1 1
Cy <V, a 1) =Cy <r, o 1) < C<r, 5) <S(r, @)+ 01
= C_‘(2<r, 1) + C(z(r, i)
F G
1 1
+Co< F,>+Co( G,>+Q(r F)+ 0@, G),

whereCy)(r, 1/ F) denotes the counting function of zerosfwith multiplicity one in{z €

PR L) }_) ufr ) +e(nrts)
oty e d) ol

ol (R W
=
+Co( >+Co< )—i—Q(rF)—i—Q(rG)

Applying again Lemma 4 té& andG, we deduce that

1 1 1
S(r, F) + S(r, G) < C<r, e 1) + C2<r, f) + C2<r, 5)
+2C(r, F) + Q(r, F) + Q(r, G)..

| /\

Therefore, (i) holds.
Suppose tha® = 0. By integration, we have from (3) that
1 A
G-1 F-1
whereA (# 0) andB are constants. It follows that
(B+1)F+(A—-B-1)
BF + (A - B)
We distinguish the following three cases.
Case 1. Suppose thak # 0, —1.If A — B — 1 # 0, then from (7) we obtain

- 1 _ 1
C(r’ 5) - C(” F+(A-B-D/(B+ 1))'
By Lemma 4, we have

+ B,

) G=

1
F+(A—B-1/(B+1)

S(r, F) < C<r, %) +C@r, F) + C<r, ) + 0, F)

= C<r, %) +C@r, F) + C(r, é) + 0@, F).
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Thus, (i) holds. IfA — B — 1 = 0, we rewrite (7) as
_(B+DF
~ BF+1°

A 1
(&)=l wam)

S(r, F) < C_‘<r, %)+C(r, F)+C<r

Then

Using Lemma 4, we have
% , F
an 1/3) +0(r, F)

C<r, %) +C@r,F)+C(r,1/G)+ Q(r, F).

Thus, (i) also holds.
Case 2. Suppose thak = 0. We rewrite (7) as
F+(A-1
—a
If A #1,thenC(r,1/G) = C(r,1/(F + A — 1)). By a similar method to Case 1, we also
obtain (i). If A = 1, it follows thatF = G. Thus, (ii) holds.
Case 3. Suppose thak = —1. We rewrite (7) as
B A
C —F+(A+1)°
If A+ 1+ 0,thenC(r,G) = C(r, 1/(F — (A + 1))), and similarly we also obtain (i). If
A + 1 =0, we deduce that (iii) holds. This completes the proof of Lemma 5.

G =

Let f andg be two non-constant meromorphic functiongdnandSs = {w | w"(w +
a) — b = 0}, wheren (> 2) is an integer, and andb are two non-zero constants such that
the algebraic equation” (w + a) — b = 0 has no multiple roots. We denote
f"(f+a) G — 9" (g +a)

b ’ B b '
Obviously, if Ex(S3, f) = Ex(S3, g) thenF andG share 1 CM inX. In the following, we
shall give some lemmas relating foandG.

LEMMA 6. Supposethat E({0}, f) = E({0}, g) and 8¢, f) > Ofor c € C\ {0, —a}.
If F = G,where F and G aredefined as (8), then f = g.

(8) F=

In particular, we assume thdtis an entire function and > 3. ThenF = G implies
f = g even if the two condition€ ({0}, f) = E({0}, g) ands(., f) > Ofor. € C\ {0, —a}
are replaced by the single conditidx ({0}, f) = Ex ({0}, g) for some domainX c C.
Whenn = 2, we have an exception:

f= —%eiﬂ(eH —o)ef —c?) = —%(2 cosh# +1) and

g= —3ie—H(eH — (et — ) = —%(2 coshH — 27i/3) + 1),
C
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whereH is an entire function and = exp(2ri/3).
In general, ifEx ({0}, f) = Ex({0}, g) holds for a domairX in C, F = G does imply
f =g, unless
_ah("-1) _a(" =1
f=—mpa—g =M 9=—pmao g
for some meromorphic functiol defined inC which is analytic and zero-free iX.

PROOF. Suppose that # g. SinceF = G, we have
9) f"(f+a)=g"(g+a),

and hence from the assumpti@an{0}, f) = E({0}, g) we see thalf andg share Qoo CM.
Thus, we may assume that

(10) Lo,

g
wherey is an entire function. By # ¢, we obtain tha¢” # 1. From (9) and (10) we deduce
that

ae¥ (" — 1)

B ae" —1)
f=- ety — 1

(11) T ety — 1

and g =

If eV is a constant, then it follows from (11) thtis also a constant. This is a contradiction.
If eV is non-constant, then we have from (11) that

T, f)=nT(r e")+ S, f), N(r, f];l) =nT@r,e")+ 80, f), 1#0,—a.

It follows thatd (¢, f) = 0. This contradicts (¢, f) > O.

Now we assume thafx ({0}, f) = Ex ({0}, ¢) holds for a domairk in C. Similarly to
the above discussion, we see thfaand g share 0 ando CM in the domainX, and therefore
f = g unless there is a non-constant meromorphic functian C which is analytic and
zero-free inX such thatf andg are given by

ah(h" — 1) a(h" — 1)

Further if f is an entire function, its denominatdf + 4"~1 + ... + h 4+ 1 should also be
zero-free inC, which is however impossible for > 3. Whenn = 2, 1 does not attain two
primitive cubic roots of unity¢, ¢2, and therefore there is a non-constant entire funciion
such thath = c(e” — ¢)/(e” — 1). Then we obtain the desired expressions by substituting
this into the above expressions frandg, respectively.

This completes the proof of Lemma 6.

Note that by using the above process of the proof, we can also obtain the result of
Lemma 6 in the case wheé€0, f) > 1/n.

LEMMA 7. Let S; (j = 1,2,3) be defined as in Theorem 1, and let F and G be
defined as (8). Assumethat Ex (S1, f) = Ex(S1, 9) and Ex(S;, f) = Ex(S;, 9) (j = 2,3)
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for X = X(o, B)WithO <o < B < 27. If F # G, then

_ 1 (1
(12) C<r, ?> = C(r, ;) =00 f)+ 0. 9).

PROOF. Set

F’ G’

1 Hy = — .
(13) YU Fo1T 61
SinceEx(S;, f) = Ex(Sj, g) for j = 2,3, we see thaF andG share 1,00 CM in X.
Hence, (13) implies that (r, H1) = 0, so that by Lemma 3 we have
(14) S(r, H1) = Q(r, f) + Q(r, 9) .

We discuss the following two cases.

Case 1. Suppose thatf; = 0. By integration, we have from (13)

(15) F—-1=AG-1),

where A is a non-zero constant. Sinde # G, we haveA # 1. This together with the
assumption give& x (S1, f) = Ex(S1, g) = ¢. Thus, (12) holds.

Case 2. Suppose thatl; # 0. Assume thatg is a zero off and g of multiplicities
p andgq, respectively. Therg is a multiple zero ofF and G of multiplicities np andng,
respectively, so that we havé;(zo) = 0. By the assumptio x (S1, f) = Ex(S1, g) and

(14), we have
é( 1) 6( 1><C(r 1) Q0. f)+ Q(r.g)
r’— = r,— = e = s s .
f g Hy g

which proves Lemma 7. O

LEMMA 8. Under the conditions of Lemma 7, we have

1
(16) Cr,f)=C(r,g) < ;{S(H ) +Sr )+ 0, )+ 0@, g).
PROOF  Set

. e (7o) (5-5)

(17) 2=\F-1 6-1) \F G )

Then

F' G’
H;

T FF-1 GG-1°
It follows that

_ 1 - 1 - 1
1 H Clr,= C|r, Clr, .
(18) ot = (r f)+ (rf+a)+ (rg+a)
Therefore, by a lemma on the logarithmic derivative, (12) and (18), we obtain that

(19) S(r, H2) = S(r, f) +S(r, 9) + Q(r, /) + Q(r, 9) .

We discuss the following two cases.
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Case 1. Suppose thatl; = 0. By integration, we have from (17)

20) F_1=BG_1,
F G
whereB is a non-zero constant. Sinéé# G, we haveB # 1. Again by (20), we deduce
thatEx (S2, f) = Ex(S2, g) = ¢. Therefore, (16) holds.
Case 2. Suppose thall> £ 0. Assume that; is a pole of f with multiplicity p; then
an elementary calculation gives thatis a zero ofH, with multiplicity atleastn+1)p —1 >

np. From this and (19), we obtain

1
(21) nC(r, f) < C(h Fz) =S(r, ) +S(r,9) + O, )+ Q(r, 9) .

We obtain from (21) that (16) holds. This completes the proof of Lemma 8.

Moreover, we need the following important lemmas concerning Polya peaks (see [3,
20]).

LEMMA 9. Let f(z) be a transcendental meromorphic function of finite lower order
w and order » (0 < A < o0) in C. Then for an arbitrary positive number o satisfying
u < o < A, thereexist a set E of finite linear measure and a sequence of positive numbers
{rn} such that:
() r & E,Nlim,_oo(rn/n) = 00;
(i) liminf,—oc(l0gT (14, f))/l0gr, > o;
(i) T, f)<@Q+o@)t/rn)°T(rn, f),t € [ra/n, nryl.

A sequencdr,} in Lemma 9 is called a sequence of Pélya peaks of ardentsideF,
which was proved in [20].

Given a positive functiom = A(r) on (0, co) with A — 0 asr — oo, we define for
r>0anda € C

Dj(r,a) = {9 €[—m,m) | log

> AT (r, f)}

-
| f(rei?) —al
and
D4(r,00) := {0 € [-m, ) | log" | f(re'?)| > AT (r, f)}.
The following lemma was proved by Baernstein [1].

LEMMA 10. Let f(z) be atranscendental meromorphic function of finite lower order
wandorder & (0 < A < 00)inC. Suppose that § := 8(a, f) > 0for somea € C; then
for arbitrary Polya peaks {r,} of positive and finite order o (1 < o < 1) and an arbitrary
positive function A = A(r) with A — 0asr — oo, we have

. ) 4 .6
liminf measD 4 (r,,, a) > mm{Zn, — arcsm\/j} .
n—o0 o 2

Further, we need one more important lemma given in [18, Theorem VII.3]. We first
introduce some notation.
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Let f(z) be a meromorphic function in a domain containing an angular domaia {z |
largz| < «} and its closure with respect @ Let A(r) be the part oA which is contained in

|z| <r.We put
i |f@|>2 0
S:(r, A tdido, 7 =te",
p 4= [AmQ+M@F e=te

TH(r, A) = /0 Sf(tt’ - dt,
which are called the Ahlfors-Shimizu characteristic functionsfobn A. We denote just
simply by S*(r, f), T*(r, f) the above characteristic functions 6¢z) in the whole plane,
§%(r,©), T} (r, ©).
Letiif(r, A,a) = i(r, A, f = a) (a € C) be the number of distinct zeros g (z)
contained inA(r). We put

Y Y "ng(t, A, a)
Nf(rsAya)::N(r,A,f:a)z fdt
1

Then we shall give the following analogue of the second fundamental theorem.

LEMMA 11. Let f(z) be a meromorphic function in the plane. Then, for any three
distinct pointsaz, az, az in C, we have
3
Si(r, A) <3 ip(2r, A, a) + O(logr)
i=1

and
3

T}(r. A) < 32 Ny(2r, A, a;) 4+ O((logr)?) .
i=1
Finally, from [11, Theorem 1.4], we have the following lemmas.

LEMMA 12. Let f(z) beameromorphic functionin the plane. Then

\T(r, f) = T*(r, £)| < log* | f£(0)] + (1/2)log 2.

LEMMA 13 ([12, Lemma1.1.1]). Let g : (0,400) — R, h : (0,+00) — R be
monotone increasing functions such that ¢(r) < h(r) outside of an exceptional set E of finite
linear measure. Then, for any o > 1, there exists ro > 0 such that g(r) < h(ar) for all
r > rQ.

3. Proof of theorems. We shall prove Theorem 1 by the method whose idea comes
from Zheng [30].

3.1. Proof of Theorem 1. First, we defidéand G as in (8); thenF andG share 1
andoo CMin X.

Suppose thafF' = G. Lemma 7 implies that

(22) C(r,1/f)=C@r, 1/g9) = O(r, )+ Q(r, 9).
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Therefore, by the definition af andG and (22), we have
Cz(r, 1) + Cz(r, i) +2C(r, F)
F G
< C(r, i) +C<r, L) +2C(r, )+ Q. )+ Q(r. 9) .
f+a gta
SetSy(r) := maxS(r, f), S(r, g)}. Then we have from (8)

(24) S(r)=m+1DS0) + 0D,

whereS(r) = max{S(r, F), S(r, G)}. By the estimation (16) obtained in Lemma 8 and (23),
we deduce that

(25) Cz(r, %) + Cz(r, é) +2C(r, F) < <2+ g)sl(”) + 0@ )+ 0@ 9.

Suppose also thatG # 1. By Lemma 5 and noting that > 3, we have from (24) and (25)
that,S1(r) < Q@, f) + Q(r, g). Therefore, from (22), we have

(26) S(r, /) = 0og(rT(r, HT(r,9))), r ¢ E2,

for some sett> C [0, co) of finite linear measure.
By (1), we choose a real numbeie (0, (8 — «)/4) such that

(23)

4 L)
27) 2n+oc—,8+4s<—arcsm\/;.
o

Recalling thatu(f) < oo, A(f) > 0andu(f) < o < A(f), we can apply Lemma 9
to f(z) in order to confirm the existence of the PdOlya peékg of ordero of f outside
the setE := E1 U Ep, whereE1 and E» are sets of finite linear measure appearing in the
assumptior(x) and (26), respectively. Furthermore, applying Lemma 10 to the Pélya peaks
{r.}, we have either

4 )
(28) measD 4 (r,, 1) > — arcsm\/j —&
o 2
or
(29) measD 4 (r,, 1) > 2w — ¢,

for each sufficiently large, sayn > ng. Thus, it follows from (28) that

measD(r,, ) N(x+ ¢, B —¢)}
> measDy(r,, 1) —measg[—m, m]\ (¢ +¢,B—¢)}
=measD(r,,t) —meag[—nw, o +e]U[B —¢, ]}
=meaDp(ry,) —2r+a—pf+2) >¢>0.
It also follows from (29) that

measDs(r,, ) N(x+¢e,—¢e)} >e>0.
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Therefore, by the definition ab 4 (r,,, t) and settingA(r) = 1/ logr, we have

p—e 1 1
/ Iog+—.9d62/ I +7.9d9
(30) a+te f(rpe?) —u D (rp,0)N(a+e,B—¢) f(rpel?) —u
T(rnv f)
> & n=>no.
logr,

Furthermore, we have by the definitionBf 4 (r,, 1/(f —v)) and (26) that

p—e
/ log"
(31) a+e

From (30) and (31), we obtain

0 < iB r L
= 2wsin(ew) P\ T

w

= LOGOQ;’ T(rn, f)T(rn,9)), n=>no
2w Sin(sw) nea g -

1y,
f(raeify —u

(32) T, ) < 20021007

= MO(Iong(m, AT s 9)).

Hence, from the assumptions (1) a@d, (32) implies that
log 7 (ry, f) <

o < liminf

w<o,
n—00 logr,

which is impossible.
Therefore, we havé'G = 1. From (8) we obtain

f(f +a)g" (g +a) = b,
which implies thatf does not take 0—a andoo in X. By using Lemma 4, we obtain
S(r, f) = 0(ogrT(r, f)), r¢E,

for some seft C [0, co) of finite linear measure.

By a similar argument as above that (26) results in a contradiction, we can also de-
duce a contradiction. We remark here th@ = 1 does not hold, even whelix (S;, f) =
Ex(Sj,9) (j =1,2,3) andf attains one of the three values®, and—a at least once iX.
Hence, we obtai’ = G. By Lemma 6, we haveg = g¢.

This completes the proof of Theorem 1.

3.2. Proof of Theorem 2. Proceeding as in the proof of Theorem 1uwithro, we
have (23) and (24), and hence

1 1 -
C2<r, F) + C2<r, 5) +2C(r, F) =25(r) + Q(r, /) + Q(r, 9) .

By Lemma 5 and noting that > 2, we deduce that
Su(r) = Q(r, )+ Q(r, 9) .

Therefore, we also obtain the conclusion of Theorem 2. O
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3.3. Proofs of Theorem 3 and Theorem 4. Suppose that Theorem 3 does not hold.
Then, for anya € [0, 27), we have a constant, € (0, 7/2) and a meromorphic func-
tion g := ¢!*! in Csuch thatt (S1, f) = E(S1, ') andEx «)(S;, f) = Ex(a)(S;, g'*)) for
j =23, butf # ¢l*l whereX (@) := {z | |argz — a| < &q}.

We defineF andG as in (8); thenF and G share 1 CM inX («). By Lemma 6, we
deduce thatr # G. Proceeding as in the proof of Theorem 1, we have (26y6r = 1.
Suppose thatF'G = 1. Then we can deduce a contradiction as proved there. Therefore, by
Lemma 1 and (26), for any valuee C, we have

(33)  Cx(ra) = Co—eyate,(ra) = O(logrT(r, £)T(r, g, r & E,,

whereE, is a set of- of finite linear measure depending erand possibly ory andg.
On the other hand, we defifdé (@) = {z | |argz — «| < &4/2}. Note that if anz-point
by = |bm|e?® of fin X(a)isin X1(x),

Ea

SiNw By — (@ — £4)) > sin(%) _t

sincew = wy := m/(2¢4)(> 1). Then we have

1 |bm|w -
Cxwy(@2r,a) =2 { B SiNWw B, — (o — £4))
. l<b2:<2r lbm|©  (2r)% . )
‘9’"_2|<8a
1 |bm|w }
>2 B
) 1<|§<Zr {|bm|w (2r)2w
‘9)71*Ol|<3a/2
E L0 2 np(t, X1(e), a)
=2 e @ [ 20200 .

w 2r 3
ny(2r, Xl(a),a)—i-W/l np(t, X1(a), a)r® 1dt}+0(1)

@r)®
> /2 —"’"(Z;;U(fl) D 2 — 1)+ np(r. Xa(@), )32 — r)} + 0
201
> V3n,(r, X1(0), a){ o o ,—w} +0().

It follows from (33) that
(34) ny(r, X1(a), a) = O(r®logrT (2r, )T (2r, g*Y), r ¢ E,.

If we identify the interval0, 27r) with the unit circle anda — ¢, /4, a + &4 /4) with the
corresponding open arc on the unit circle then, since the unit circle is compact and

Ea Eq
o2n)c | ] (e—=2 o
[0, 27) < <a 4,a+4),
a€[0,21)

we can choose finitely many coverin@g —eq, /4, a1+, /4), (02—€q, /4, a2+84,/4), - ..,
(ax — € /B, ax + &4, /4) Of the interval[0, 277). Therefore, using Lemma 11 and (34), for
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any three distinct complex numberg, j = 1, 2, 3, and recalling the assumptig®s), we
have

k
S*r, ) < )85 A)

i=1

k 3
(35) < Z{?)Zﬁf(Zr, A,-,aj)} + 0(logr)

i=1% j=1
= 0% logrT4r, f)), r ¢ Eo,

whereA; = A(ai_gai/4’ai+gai/4) i=1,...,k), 2 :=maXxw(a1),...,w(u), t}andEg :=
E1U..-UE,UE. Thus,

(36) T*(r, f) = 0+ logrT (4r, f)), r ¢ Eo.
By Lemma 12, it follows from (36) that
T, )= 0w ogrT4r, f)), r ¢ Eo.

Here we use Lemma 13 in order to remove the exceptiond get

Now we have by Lemma 13 thdt(r, f) < M(**+LlogrT(kr, f)) without any ex-
ceptional set of-, for someM > 0 andx > 4. Therefore, by the assumption, we have
limsup._, ., 1097 (r, f)/logr < oco. Sincer(f) = oo, thisis a contradiction. Therefore, we
have Theorem 3. The proof of Theorem 4 is similar to that of Theorem 3, so we omitit.

4. Concludingremarks. In fact, we can obtain the following result from Section 3.

REMARK 5. The assumptionE(S1, f) = E(S1, g)’' in Theorem 1 can be replaced by
‘E(S1, f) = E(S1,9). Similarly, in Theorem 2, Theorem 3 and Theorem 4, the
assumption£(S1, f) = E(S1, g)’ can be replaced byE (S1, f) = E(S1, g)'.

The above theorems in Section 1 indeed show the existence of an angular domain
such that ifE(S1, f) = E(S1,9) and Ex(S;, f) = Ex(Sj, g) for j = 2,3 for certain
meromorphic or entire functiong andg, then f = g.

Finally, we make one remark concerning the conditiosand (xx*), which look really
redundant. However, it does not seem straightforward to remove them in our discussion given
above.

In fact, Lemmas 11 and 12, and the assumptiBrsS;, f) = Ex(S;, ¢) (j = 1,2,3)
imply that

TH(r. X) < Tr(r,X)+ 0

n+1

IA

%{N(r, X,G=0+N@r X,G=00)+ N, X,G = 1)} + 0((logr)?
n

IA

O(Tg(r, X)) + 0((logr)?) < O(T; (r, X)) + 0((logr)?).



526 W. LIN, S. MORI AND K. TOHGE

If we hope to remove the conditiogx) in Theorems 1 and 2 by using this estimate, we
need however to have takéh = C, which is inconsistent with our viewpoint mentioned in
Section 1. Regarding the conditi¢g«) in Theorems 3 and 4, thg®! in the proof of those
theorems must have been all independent of the angl@ < i < k). However, we now
should be careful enough to doubt the truth of this matter in general.

Under the conditiorQ(r, ) = O(logrS, g(r, f)), Zheng in [31] obtained uniqueness
of the meromorphic functions which have five shared values in a precise subSedraf
in [32] considered the case of dealing with four shared values. Following his proof, the con-
dition (x) would imply the same conclusion as his result for meromorphic functio@s in
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