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Abstract. We present a self-contained combinatorial approach to Fujita’s conjectures
in the toric case. Our main new result is a generalization of Fujita’s very ampleness conjecture
for toric varieties with arbitrary singularities. In an appendix, we use similar methods to give
a new proof of an analogous toric generalizatidifrgjita’s freeness conjecture due to Fujino.

1. Introduction. Given an ample divisoD and any other Cartier divisad’ on an
algebraic variety, we can choossufficiently large so thatD + D’ is basepoint free or very
ample. In either case, it is not easy to say how large we must changgeneral. However,
for the case wher®’ is in the canonical clasky, Fujita made the following conjectures.

FuJITA’s CONJECTURES Let X be an n-dimensional projective algebraic variety,
smooth or with mild singularities, D an ample divisor on X.

(i) Fort=>n+11D+ Ky isbasepoint free.

(i) Forr>n+2,tD+ Ky isveryample.

The case wherg is P" and D is a hyperplane shows that Fujita’s conjectured bounds
are best possible.

For smooth varieties, the corresponding statements with “basepoint free” and “very am-
ple” replaced by “nef” and “ample”, respeatily, are consequences of Mori's Cone Theorem
[Fuj]. For divisors on smoottoric varieties, nefness and ampleness are equivalent to freeness
and very ampleness, respectively, so Fujita’s conjectures follow immediately for smooth toric
varieties. One can also deduce Fuijita’s conjextdor smooth toric varieties by general (non-
toric) cohomological arguments of Ein andzarsfeld in characteristic zero [EL], and Smith
in positive characteristic [Sm1, Sm2], againngthe fact that ample divisors on smooth toric
varieties are very ample.

For toric varieties with arbitrary singularisea strong generalization of Fujita’s freeness
conjecture was proved by Fujino [Fu]. We follow the usual toric convention fix{izg =
— " Dj, the sum of thel'-invariant prime divisors each with coefficientl, as a convenient
representative of the canonical class.

FuJINO'S THEOREM. Let X be a projective n-dimensional toric variety not isomor-
phicto P". Let D and D’ be Q-Cartier divisorssuchthat 0 > D’ > Kx, D + D’ is Cartier,
and D - C > n for all T-curves C. Then D + D’ isbasepoint free.
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Fujita's freeness conjecture for toric varieties is the special case of Fujino’s Theorem
when X is GorensteinD’ = Kx, andD = tL for some ample Cartier divisdt and some
integerr > n+ 1. Fujino’s Theorem shows that, for toric varieties, Fujita’s conjectured bound
can be improved by excluding the extremal cAs& P”".

Of course, the case ¢ can be analyzed separately. The canonical divisoP'biis
linearly equivalent tq—n — 1)H, so D’ ~ sH for some 0> s > (—n — 1). Any Q-Cartier
divisor D onP" is linearly equivalent to H for somer € Q. ThenD + D’ is Cartier exactly
whent + s is an integer, and basepoint free exactly whens is a nonnegative integer.

The main purpose of this paper is to prove an analogous generalization of Fujita’s very
ampleness conjecture for toric Veties with arbitrary singularities.

THEOREM 1. Let X bea projective n-dimensional toric variety not isomorphic to P”.
Let D and D’ be Q-Cartier divisors such that 0 > D’ > Kx, D + D’ is Cartier, and
D-C >n+ 1forall T-curvesC. Then D + D’ isvery ample.

The statement of Fujino’s Theorem can be strengthened by removing the assumption that
D + D’ is Cartier. A Cartier divisor on a toric variety is basepoint free if and only if it is nef,
i.e., if and only if D intersects every curve nonnegatively [La, Proposition 1.5]. Without the
hypothesis thaD + D’ is Cartier, the sharper statement of Fujino’s Theorem, which one may
deduce from [Fu, Theorem 0.1], is then:

FuJINO'S THEOREM™. Let X be a projective n-dimensional toric variety not isomor-
phicto P". Let D and D’ be Q-Cartier divisorssuchthat 0 > D’ > Kx and D - C > n for
all T-curvesC. Then D + D’ isnef.

Similarly, the statement of Theorem 1 can be strengthened by using a toric characteriza-
tion of very ampleness to remove the hypothesis that D’ is Cartier. Since every divisor
on a toric variety is linearly equivalent toZzinvariant divisor, we may assuniz and D’ are
Q-linear combinations of -invariant divisors. To state the stronger theorem, we need some
notation from toric geometry.

Let D = Y d;D; be aT-Q-Cartier divisor on a complete toric variel§. Let M the
character lattice of’, and letMgo = M ® Q. For each maximal cone in the fan defining
X, we have a poink, € Mq determined by the conditiong,, v;) = —d; for each of the
primitive generators; of the rays ob. WhenD andD’ denoteT-Q-Cartier divisors, we will
write u, andu, for the points ofMq associated t@ andD’, respectively. The association
D ~> uq islinear,i.e.yD ~ tus andD + D' ~ u, +ul . A T-Q-Cartier divisorD is Cartier
if and only if u, € M for all maximal cones . Also associated t® is a polytopePp C Mq
cut out by the inequalitie&:, v;) > —d; for all of the primitive generators; of the rays of
the fan. WhenD is T-Q-Cartier and nef, théu, } are the vertices oPp. If we translatePp
so that the vertex, is at the origin, then all oPp, sits inside the dual cone”. Write Py for
this translation, i.e.P? := Pp — u,. In caseD is Cartier, thenD is very ample if and only
if P7, N M generates the semigroapy N M for all maximal cones . Without the hypothesis
thatD + D’ is Cartier, the stronger version of Theorem 1 we will prove is then:
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THEOREM 2. Let X be a projective n-dimensional toric variety not isomorphic to P”.
Let D and D’ be T-Q-Cartier divisorssuchthat0 > D’ > Ky and D - C > n + 1 for all

T-curvesC. Then Pp. ,, N M generateso ¥ N M for all maximal coneso.

Theorem 1 is the special case of Theorem 2 wheq D’ is Cartier.

Our approach starts from an obsefwa made by Laterveer in [La]: iD is ample, then
the lattice length of the edge & corresponding to &-curveC is preciselyD - C. This fact
can be seen as a consequence of Riemann-Roch for toric varieties [Ful, p. 112]. Adding
corresponds to moving the faces®y inward at most a unit distance with respect to the dual
lattice. When all of the edges dfp have lattice length at least+ 1, we show tha’y
contains an explicit generating set fof N M for all maximal cones. The computations
are straightforward in the simplicial case, as can be seen in the example at the end of the
introduction.

In the proof of Fujino’s Theorem, there is a simple reduction to the simplicial case (see
[La, Lemma2.4] or[Fu, 1.12, Step 2]). That reduction works via a partial projective resolution
of singularities corresponding to a rdgr triangulation of the fan defining. This type of
reduction seems not to work for very ampéss. Instead, for each nonsimplicial maximal
coneo, we make a canonical subdivision of the dual cerfe

The earliest results on Fuijita’s freeness conjecture for singular toric varieties of which
the author is aware are due to Laterveer. In [La], Laterveer proved Fujino’s Theorépa for
Gorenstein toric varieties whdd' = Kx using toric Mori theory, as developed in [Re]. Our
statement of Theorem 1, like the statement of Fujino’s Theorem, is influenced byt&sista,
formulations in [Mu]. In particular, Musta,stated and proved Fujino’s Theorem and Theorem
1 for smooth toric varieties wheb and D’ are Cartier as consequences of a characteristic-
free vanishing theorem for toric varieties. For proofs of Fujino’s Theorem that do not use
vanishing theorems or toric Mori theory, see also [Lin] or the Appendix.

The only previous result on Fujita’s very gieness conjecture for singular toric vari-
eties of which the author is aware is due to Eimho proved the conjecture for simplicial
Gorenstein toric varieties in dimensien 6 [Lin]. In [La], Laterveer also claimed to prove
a generalization of Fujita’s very ampleness conjecture for arbit@aGorenstein toric vari-
eties. As noted by Lin, there is an error in the proof of this claim. In particular, it is not true
in general thatP; p1k, containsP;_1yp. The case wher& is P" and D is a hyperplane is
a counterexample. Nevertheless, Laterveer’s approach to Fujita’s very ampleness conjecture
for singular toric varieties contains fruitful insights, in particular, the realization Ffiais
the only toric extremal case and the characterization of the intersection numbets for
T-curvesC, as the lattice lengths of the edgesRj. The results we prove here are strong
enough to imply all of the very ampleness results claimed in [La].

* Another effective very ampleness result for singular toric varieties, due to Ewald and Wessels [EW], may be
stated as follows: leX be ann-dimensional projective toric variety and a 7-Q-Cartier divisor onX such that
D-C >n—1forall T-curvesC. ThenP? N M generates ¥ N M for all maximal cones . In particular, ifD is
Cartier, thenD is very ample.
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ExampPLE. We illustrate the essential techniques of this paper in a concrete simplicial

example. Let, ..., u, be linearly independent primitive vectorsi. Let P be the simplex
with vertices{O, u1, . .., u,}. Associated taP, there is a projective toric variety p with an
ample divisorD such thatP = Pp [Ful, Section 1.5]. The vertex 0 a? corresponds to a
maximal coner of the fan definingX » whose dual cone" is spanned byus, ..., u,}. Let
D1, ..., D, be the divisors corresponding to the raysgfand letD’ = —D1 — --- — D,,.
We will show that, for > n + 1, P%, ,, N M generates¥ N M.

Every point inM can be written uniquely as an integer linear combination of{th¢
plus a fractional part. So the semigrasp N M is generated by0, u1, ..., u,} together with
{(aqu1 + - - - + ayu,) € M |0 < a; < 1}. Forr > n + 1, we will show tha , contains
this generating set.

Define a linear function on Mg by

o
tPtD+D

AMaiug + -+ agup) =a1+---+ay .

Note thatP,p = {u € oV |A(u) < t}. In other words, if{v;} are the primitive generators of
the rays ofo, then P, p is cut out by the condition&:, v;) > 0 and the condition.(«) < .
Similarly, Pipyp = {ul+u|u € oV, Mul +u) < t},i.e., Pipyp is cutout by the conditions
(u, vi) > (ul, v;) =1 and the condition(u) < ¢. It follows that any lattice point irP; p that
is in the interior ofo ¥ is contained in?, p p/. Indeed, ifu isin P;p, theni(u) < ¢, and ifu

is a lattice point in the interior of ¥, then(u, v;) is a positive integer.

Suppose > n + 1. Thenus + - - - 4+ u, is a lattice point inP, p that is in the interior of
oV, sou1+ - -+ u, is contained inP, o pr. Note that/, is the point ofP, pp for which x
achieves its minimum. In particulax(u ) < A(uy + - - -+ u,) = n.

For eachy;, we haver(u) +u;) = 2(ul)+1<n+1<t. Therefore: +u; € Pipip,
i.e.,u; € PI‘}HD/. Given a lattice poinp of the formp = aju1+- - - +ayu, with0 < a; < 1,
we have another lattice poipt = (1 —a1)us + - - -+ (1 — ay)u, in P;p thatis in the interior
of V. Sop' is contained inP, p, p/, and therefore

Aul) <AMp)=n—Arp).

Soi(ul, + p) <n <t,and hence € Py, p» @s required.

| wish to thank M. Hering, P. Horja, R. Lazarsfeld, and M. Mu&tir helpful conversa-
tions related to this work. | am especially grateful to W. Fulton for his encouragement on this
project and for his comments and suggestions on earlier drafts of this paper.

2. Preliminaries. As afirst step to proving Theorem 2, we have:

LEMMA 1. Let X, D, and D’ satisfy the hypotheses of Theorem 2. Let o be a maximal
cone, and let {u1, . .., us} bethe primitive generators of theraysof o V. Then Pg+D, contains
{0, u1, ..., us}.
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PROOF. By Fujino’s Theorert, (n/(n + 1)) D 4+ D’ is nef. Therefore, for any-curve
Cl

1 n
D+D) - C=——D-C ——D+D).-C>1.

By Laterveer’s observation, this means that every edglof, has lattice length at least
1. Translating the vertex, to the origin, it follows thatP}, ,,, contains 0 and the primitive
generators of each of the raysof. O

If o is regular, then = n and{0, u1, ..., u,} generates" N M, so the conclusion of
Theorem 2, i.e., the fact tha{g+D, N M generates ¥ N M, follows immediately. In general,
if we let A = con0, u1, ..., us}, then Lemma 1 says thadt]_ , containsA. If o is not
regular, themA may not contain a generating set for N M. The following example, due to
Ewald and Wessels [EW], illustrates this possibility.

EXAMPLE. LetM =Z3;u1 = (1,0,0),u2 = (0,1, 0), anduz = (1,1, 2). Leto be
the cone spanned Hy1, up, us}, soA = con0, u1, up, uz}. ThenANM = {0, ui, uz, us},
so the semigroup generated Byn M only contains lattice points whose third coordinate is
even. In particular, the lattice poit, 1, 1) = (1/2)(u1 + u2 + u3) is inoY, but not in the
semigroup generated byN M.

Although A may not contain a generating set fof N M, we will show thatP? . ,,
contains a dilation oft that does contain a generating set. twet min{(D+ D’)-V (o N1)},
wheret varies over all maximal cones adjacenbtpso thatm is the minimum of the lattice
lengths of the edges at7 , , incident to the vertex 0. Note thatA is the largest rational
dilation of A contained inP7 , ,,,. We will show thatm A does contain a generating set for
oV NM.

In preparation for proving this, we develop a few preliminaries. First, we generalize
Laterveer’s observation on the lattice lengths of the edggyofo the case wher® is not

necessarily ample.

LEMMA 2. Let X beacompletetoric variety and D a T-Q-Cartier divisor on X. Let
o, T be adjacent maximal cones in the fan defining X, and let u be the primitive generator of
theray of 0¥ perpendicular to o N 7. Then

Ur = g +(D-VieNt)u.

PrROOF.  Sinceu, andu, agree ornr N t, their difference must vanish annN , i.e.,
u; — u, = ku for some rational numbé. By the toric intersection formulas in [Ful, Section
5.1], forv; the primitive generator of any ray efnot contained i,
D-V(eNt) = (o —ur, vj)
—(u, vj)
Therefore,
(ku,v;) B

k. O
(u, vj)

D-V(eNt) =
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Now we develop some tools for working with rational cones. &étbe a strictly convex
n-dimensional rational cone, and lei, . . ., u; be the primitive generators of the rayscof.
Define a function.™" ono Vv by

ANy = minf(ag + - - + ay) |agur + - - - + asus = u, a; > 0}.

Define AM similarly. A few combinatorial properties of™" and ™ all of which are
immediate from the definitions, will be useful in what follows.

First, A™n and AM2 are anticonvex and convex, respectively. In other words, for any
u,u' €ov,

)Lmin(u —i—u/) < )Lmin(u) +)Lmin(u/)’

and similarlyA™®(y + u’) > AM3X (@) + ATy,

Second, suppose the restriction®@f= " d!D; to the affine oped/, is minus-effective,
i.e., for each of the primitive generatarsof the rays otr, d/ < 0. Then(u,,, v;) = —d; > 0.
Sou/ isin the dual cone Y. In particular,)\mi”(u;) andA™M®(y’ ) are well-defined.

Finally, with A = con{0, u1, ..., us}, note that

mA = {ueo” [ X"Mw) < m).

The distinction betweea™" and ™2 is meaningful only in the nonsimplicial case;
whenge is simplicial, then the primitive generators of the raygdfare linearly independent,
so the expressiom = aju1 + - - - + ayu, is unique.

In order to show thaiz A contains a generating set fe’ N M, one seeks lower bounds
for m. To get a rough idea of how one might get such bounds, imaginePih# very large,
as it will be under the hypotheses of Theorem 2. When we add a small, minus-effective
divisor D’ to D, we getPp, pr by moving the faces ofp in a small distance. The main idea
is to control the decrease in the lengths of the edges as the faces move in. After the faces
containingu, move in a small distance, the new veriex+ u/, of Pp, p will be inside Pp
and a small distance from the old vertexof Pp. We can measure this distance)tfg}”(uj,).
Suppose thaPp containst, +t A for some large positive Looking out from the new vertex
us, + u,, in the direction of the ray spanned by, we see tha?p containsu, + u. + bu;
for0 < b < r — AM™"w/ ). Now we want to know what portion of this segment is actually
contained inPp4p/. This will depend on how far the faces cutting off the other end of the
edge move in. If these faces move in a distanaeith respect to the dual lattice, then the
resulting edge oPp p will have length at least — A™"(u. ) — r. The key to giving lower
bounds form will be the following proposition, which makes the essence of this discussion
precise.

PROPOSITION Let X be a complete toric variety, and o a maximal cone in the fan
defining X. Let D and D’ be T-Q-Cartier divisorssuchthat D isnefand0 > D’ > K. Let
t=min{D-V(eNt)landm = min{(D+ D’)- V(o Nt)}, where t varies over all maximal
cones adjacent to 0. Supposer > A™"(/ ). Then

m>1t— Amin(ué) -1.
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PrRoOF Although we will only use the proposition as stated, we will prove somewhat
more. We replace the global conditior®0D’ > Kx by the following “local” conditions near
o:

1. The restriction o)’ to U, is minus-effective, i.ed{ < 0 for each primitive gener-
atorv; of aray ofo.

2. There is a positive rational numbeand, for each maximal coneadjacent tar, a
primitive generatop; of aray int \ o such thatl} > —r.

Under these revised hypotheses, we will show that  — Ami”(uﬁ,) — r. In the case
where 0> D’ > Ky, the conditions hold for = 1, so the proposition as stated will follow.

Let ¢ be a maximal cone adjacentdo Letu be the primitive generator of the ray of
o perpendicular ter N 7, and letv; be the primitive generator of a ray in\ ¢ such that
d; > —r.Letc=1 — Mgy, and letk = (D + D') - V(o Nt). We aim to show: — k < r.

First, we claim thati, + u), + cu isin Pp. SinceD is nef, Pp containsu, + tA, so it
will suffice to showaA™(u/. + cu) < t. Now, cu is in o andA™(cu) = ¢, so

Amin(u:, +cu) < )»min(u:,) +c=t.
This proves that, + u/, + cu is in Pp. Therefore, we have
1) (ug +ul, +cu,vj) > —d;j.

Next, recall thait, + u andu. + u, are the points oMq associated t® + D’ for o
andz, respectively. By Lemma 2,

ur-l—u’r =ug+u;+ku.
So,
(2) (Uo +u, +ku,vj) = (ur +ul,v;) = —d; —d; <—dj+r.
Subtracting (2) from (1), we have — k)(u, v;) > —r. Since(u, v;) is a negative integer, it
follows thatc — k < r. O
REMARK. The conclusion of the proposition is false in general Ami”(u;). Con-
sider, for example, the complete toric surfaewhose fan is spanned by three rays, the
primitive generators of which satistyy + v2 + 2v3 = 0. (X is isomorphic to the weighted
projective planeP(1, 1, 2).) Let o be the cone spanned by andvs. Taking T-Q-Cartier
divisorsD = D1 andD’ = Kx, one computes = D - Do = (1/2), \™"(u/) = 2, and
(D + D') - D2 = —3, which is strictly less thafil/2) — 2 — 1.
The proposition givegood lower bounds for, provided we can give good upper bounds
for A™"(u’ ). We will get sufficient bounds indirectly by using convexity to bourff*(u., ).
LEMMA 3. Let D' be T-Q-Cartier, with0 > D’ > Kx. Then A™u/) < AM®(x)
for any lattice point u in theinterior of V.

PROOF. For any lattice point in the interior ofo ¥, and for the primitive generatar;
of any ray ofo, (u, v;) is a positive integer. Now,, , v;) = —d}., which, sinceD’ > Ky, is
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atmost 1. Therefore — u), isinc . Sincex™® s convex and nonnegative orY, it follows
thatAM®*(wu]) < AM&(y). ]

3. Proof of Theorem 2. Let X, D, and D’ satisfy the hypotheses of Theorem 2, and
let o be a maximal cone in the fan definitfy Letm = min{(D + D) - V(o N 1)}, where
T varies over all maximal cones adjacentstoLet {u1, ..., us} be the primitive generators
of the rays ofoV, and letA = conV{0, u1, ..., us}. To prove Theorem 2, it will suffice to
show thatn A contains a generating set fel’ N M. To prove this, we will give a canonical
subdivision of¢¥ and show that, for each maximal copeof the subdivision,y N mA
contains a generating set fom M.

We claim that\™®X is piecewise-linear and therefore defines a canonical subdivision of
oV the subdivision whose maximal cones are the maximal subcone$ ofi whichi M is
linear. This subdivision can also be realized by lookin@at conus, ..., uy} and taking
the cones over the “lower faces” df, i.e., the faces of) visible from the vertex 0 o6 ".
Indeed, for any > 0, ¢Q is the set ofx in oV that can be writtem = ajuy + - - - + asu,
with ¢; > 0 anda1 + - - - + a; = t. Now the points in the lower faces ¢f are precisely those
points that are not contained i@ for anyz > 1. So the restriction of™®* to the lower faces
of Q is identically 1. Since.™®(cu) = cA™®u) for anyc > 0, it follows thatAM# s linear
precisely on the cones over the lower facegof

Lety be the cone over a maximal lower face@fand lety ™ c {ug, ..., u;} denote the
set of primitive generators of the raysjof We must show that Nm A contains a generating
set fory N M. Every point ofy can be written as a nonnegative linear combination:

U =aiuj + -+ anpli, ,

wherea; > 0, and{u;;} C y is linearly independent. This expression can be decomposed
as a nonnegative integer combination of thg} plus a nonnegative fractional part. o M
is generated by 0 and™® together with{(a1uj, +- - -+anu;,) € M0 <a;j < 1, {u;;} C y®
linearly independent}. By Lemma i3 A contains 0 angrD. It will therefore suffice to show
that any lattice poinp that is a nonnegative fractional linear combination of some independent
set{u;;} C y is contained inn A. For this, it will suffice to show that > A™(p).

Suppose = au;; + - - - + auu;, € M, where 0< a; < 1, and{u;;} C y D is linearly
independent. Thep’ = (1 — ayui, + --- + (1 — ay)u;, is a lattice point in the interior of
oV. By Lemma 3" (u;) < A™¥(p"), and since\™*™is linear ony andAM®(u;;) = 1,
we have

APy =1 —a)+--+ A —ay) =n—1"Xp).
Therefore,
)LmaX(u:T) E n— )LmaX(p) .

Lets be as in the Proposition, i.e.= min{D - V(o N 1)}, wherer varies over all maximal
cones adjacent te. Thens > n +1 > A™"(u;), so we can apply the Proposition with= 1
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to obtain

m>n +1—Amin(u;) —-1.
>n— A"¥wl).
> 1" (p). O

REMARK. The collection of cones over the lower faces@fis an example of what
is called a “regular subdivision”. In general, a regular subdivision of a cone is constructed
by choosing a nonzero point on each of the rays of the cone, and perhaps specifying some
additional rays inside the cone with nonzero points on them as well. One looks at the convex
hull of all of these points and then takes the cones over all of the lower faces. For more
details on regular subdivisions of convex polytopes, see [Lee] and [Zi]. The translation from
polytopes to cones is straightforward.

In the toric literature, regular subdivisions have generally been applied to the fan defining
a toric variety, and sometimes to the polytope defining an ample line bundle. See, for instance,
[OP], [GKZ, Chapter 7], and [KKMS, §I.2]. The regular subdivisions that we have used in
this paper are of the dual congs”}. The author is not aware of any significant geometric
interpretation for these subdivisions.

The subdivisions of a falr' correspond naturally and bijectively to the proper birational
toric morphismsX — X (X) [Ful, Section 2.5], and the regular subdivisions3fare pre-
cisely those for which the corresponding morphism is projective. A regular subdivision of
X is obtained by specifying a continuous functiénon the support o& that is convex and
piecewise-linear on each cone. By subdividing each conE @ito the maximal subcones
on which¥ is linear, we get a projective birational morphism for whikhs the piecewise-
linear function associated to a relatively amleQ-Cartier divisor onX. In particular, if
D =Y d;D; is aT-Q-Weil divisor onX, and if we definal[® on each maximal cone by

Zaivi=v,ai20},

V€O

Uy = max{ Z —a;d;

[ESTes

then we get the unique projective birational morphism X — X such that the proper
transform ofD is Q-Cartier and relatively ample, andis an isomorphism in codimension 1.

If D is effective (resp. minus effective) then, for each maximal eortee same subdivision is
obtained by looking at corvl/d;)v; | v; € o} (resp. cony—(1/d;)v;, | v; € o}) and taking

the cones over the upper faces (resp. lower faces). Note that, for a subdivision of a fan to
be regular, it is not enough for the subdivisitmbe regular on each cone. This is the toric
manifestation of the fact that quasiprojectivity is not local on the base (see [EGA, 11.5.3]).

4. Appendix: Proof of Fujino's Theorem™. The ideas and techniques of the main
part of this paper also give a new proof of Fujino’s Theotermhis yields a unified combina-
torial approach to Fujita’s conjaates for toric varieties with &itrary singularities, which is
independent of vanishing theorems and toric Mori theory.
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From the Proposition, we can immediately deduce a generalization of Fujita’s freeness
conjecture for toric varieties with arbitraryngularities. The statement we get in this way
is similar to Fujino’s Theorem, but without the improved bound obtained by excluding the
extremal case whelk is P”".

COROLLARY TO PROPOSITION Let X bea projectiven-dimensional toric variety. Let
D and D’ be Q-Cartier divisorssuchthat0 > D’ > Ky and D - C > n + 1 for all T-curves
C. Then D + D’ isnef.

PROOF. We may assume thd andD’ areT-Q-Cartier. By the Proposition, it suffices
to show thatxmi”(u;,) < n. Write u/, = aqu1 + --- + ayu,, wherea; > 0 and they; are
linearly independent primitive generators of raysdf The conditionD’ > Kx implies that
eache; < 1.S0A™(u!) <a;+---+a, <n. ]

To prove Fujino’s Theorem, it remains to show that the bound on the intersection num-
bers can be improved by one by excluding the case wki€keP”.

Using the Proposition, we can work “locally,” considering one maximal eoaea time.
The following lemma allows us to reduce to the case wheieregular.

LEMMA 4. Let D' bea T-Q-Cartier divisor,0> D’ > K. If o isamaximal conein
the fan defining X that is not regular, then A™"(u/ ) < n — 1.

PROOF By Lemma 3, it will suffice to show that there is a lattice pgirin the interior
of 0¥ such thatt™®(p) < n — 1. Sinceo is not regularg " is not regular either. Consider
two cases, according to whetheY is simplicial.

Supposer ¥ is simplicial, and letus, ..., u, be the primitive generators of the rays of
oV. Sincec" is not regular, after possibly renumbering the there is a lattice point =
aju1 + - -- + ayu, in M, where O< a; < 1andr > 2. Thenp = ug +--- 4+ u, —u and
p' =u-+ur41+---+u, are lattice points in the interior of¥. Now AM&(p) + AM&X(p’) =
2n —r < 2n — 2. So miffAM™¥X(p), AM¥X(p")} < n — 1, as required.

Suppose ¥ is not simplicial. Let{us, ..., u,} be a set of linearly independent primitive
generators of rays in some subconerdfon whichA™¥is linear. Lety be the cone spanned
by {u1,...,u,}. Sincey C oV, atleast one of the facets pfis not contained in a face of".
Sayt, spanned byus, ..., u,—1}, is not contained in a face of”. Then the relative interior
of 7 is contained in the interior of V. In particular,p = u1 + --- + u,—1 is a lattice point
in the interior ofo . SinceA™® is linear ony andA™®(u;) = 1, it follows thatA™®(p) =
n—1. O

PROOF OFFUJINO'S THEOREM™. LetX, D, andD’ satisfy the hypotheses of Fujino’s
Theorent. Leto be a maximal cone in the fan definiag Lett = min{D - V(¢ N )} and
m = min{(D + D’) - V(o N )}, wheret varies over all maximal cones adjacentoto It
will suffice to show thain > 0. If o is not regular, then, by Lemma nt"‘“(u;,) <n-—1
Applying the Proposition, we have >t —n > 0, as required.
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We may therefore assume thats regular. Let, ..., v, be the primitive generators of
the rays ofr, and letu, . .., u, be the dual basis. In particulary, ..., u, are the primitive
generators of the rays of'. By adding toD the numerically trivial diviso®_(u,, v;) D;, we
may assume that, = 0, and henceé’] = Pp. Consider two cases, according to whetRgr
is a simplex.

Casel: Ppisasmplex. Inthis case, PicX) = Z. We may linearly order P ® Q so
that[ D] is positive and the nef divisor classes are exactly those that are greater than or equal
to zero. We aim to show théb + D’] > 0. It will suffice to show thatp_ p is nonempty. In
fact, we will show thatp = u1 + - - - + u, isin Pp,pr. Furthermore, sinceD] > [(n/¢) D],
it will suffice to prove this in the case where= n.

Let vg be the primitive generator of the unique ray of the fan defirkinidpat is not ino.
Now Pp. p is cut out by the inequalities, v;) > —d; for1 <i < n,and(u, vo) > —do—d,.
Forl<i <n,wehavep, v;) = 1> —d;. So it will suffice to show thatp, vo) > —do—d,.

Write Pp = con\0, aius, ..., ayu,}. After possibly renumbering, we may assume
a1 = min{a;} = n. Furthermore, one of theg must be strictly greater than(otherwisePp
would be a regular simplex and sbwould be isomorphic té”). The ray spanned byp,
which is perpendicular to the face 8, not containing 0, is also spanned by

~

V= —a---ayV1 —+++-—Aa1---4j AV —+++— a1+ Ap—1Vy .

Sovg = bv for some positive rational numbeér Sinceuy is a lattice pointpay - --d; - - - ay
must be an integer for ea¢hln particularbas - - - a, is an integer. Therefore,

do = —({aiu1, vo) = bai---a, =nbay---ay,

is an integer.
Now, sincear; = min{a;} = n and somey; > n, we have

(p,vo) = b(p,v) > —nbayz---a, = —dp.

Since both(p, vg) and —dp are integers, their difference must be at least 1.(&8ag) >
—do+ 1> —do — d,.

Case 2: Pp isnotasimplex. Sinceo is simplicial butPp is not a simplex,Pp has a
vertexug that is not adjacent te, = 0. Define a piecewise linear functiénrono " by

i) = min{(nap + a1+ - - - +ay) |aguo + - - - + ayu, = u,a; > 0}.

Now Pp contains con{0, uo, nuz, ..., nu,} = {u € o | A(u) < n}. An argument identical
to the proof of the Proposition shows that> n — A (u.) — 1. It will therefore suffice to show
thati(u,) <n —1.

After possibly renumbering, we may writg) = bju1 + - - - + b,u,, whereb; > 0 and
r > 2. We claim thath; > n. Indeed, the rays along the edgesRy coming out from
up span a translated cone containifg, and hence containing 0. Sin¢g, v;) = b; > 0,
there must be some vertexof Pp adjacent taug such that(u, v;) < (ug, v;). Let C be
the T-curve corresponding to the edge connectingndug. Sinceu € Pp C oV, we have
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b; = (ug, vi) > (uo — u, v;). Letu’ be the primitive generator of the ray spanneddpy- u.

By Lemma 2, we have
(uo—u,v;) = (D-C)u',v;) =D -C=n.

This proves the claim.
Let ¢ be the largest rational number such that— coug isinoV, i.e.,

co=min{—d//bi |11 <i <r}.
So we may write
uy, = couo+ -+ Cultn
wherec; > 0 and some; = 0 fori > 1. Sayc; = 0. We claim thakico + ¢2 < 1. Indeed,
nco+c2 < baco+c2=—ds < 1.
Therefore,

Mul) <nco+ca+--+eyn <1l—dy—---—d, <n-—1. m]
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