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Abstract. This paper classifies all toric Fano 3-folds with terminal singularities. This
is achieved by solving the equivalent combinatorial problem; that of finding, up to the action
of GL(3, Z), all convex polytopes inZ3 which contain the origin as the only non-vertex lattice
point. We obtain, up to isomorphism, 233 toric Fano 3-folds possessing at worstQ-factorial
singularities (of which 18 are known to be smooth) and 401 toric Fano 3-folds with terminal
singularities that are notQ-factorial.

0. Background and Introduction. A toric variety of dimensionn over an alge-
braically closed fieldk is a normal varietyX that contains a torusT ∼= (k∗)n as a dense
open subset, together with an actionT × X → X of T onX that extends the natural action of
T on itself.

LetM ∼= Zn be the lattice of characters of the torusT , with dual latticeN = Hom(M, Z).
Then every toric varietyX has an associated fan∆ in N ⊗ Q. The converse also holds; to any
fan ∆ there is an associated toric varietyX(∆). For details on the construction and deeper
properties of this crucial bijection see [Dan78, Oda78, Ful93, Ewa96, Cox02].

A normal varietyX is aFano variety if some multiple of the anticanonical divisor−KX

is an ample Cartier divisor. ThusX is Q-Gorenstein. There is a well-known description of
what it means for a toric varietyX to be a Fano variety in terms of its fan∆: Let {ρi}i∈I be the
set of rays of∆. For eachi ∈ I there exists a unique primitive lattice element ofρi , which by
a traditional abuse of notation we continue to denoteρi . ThenX is Fano if and only if{ρi}i∈I

correspond to the vertices of a convex polytope inN (see [Dan78, Ewa96]).
Fano varieties are important for several reasons. In particular they play a significant role

in the Minimal Model Program (see [Wiś02, FS03]). Many general results concerning smooth
toric Fanon-folds are known [Wís02]; of particular relevance, it has been shown that there
exist precisely 18 smooth toric Fano 3-folds.

A normal varietyX is Q-factorial if every prime divisorΓ ⊂ X has a positive integer
multiplecΓ which is a Cartier divisor. Once again, in the toric case there exists a well-known
description in terms of the fan. The toric varietyX is Q-factorial if and only if the fan∆ is
simplicial (see [Oda78, Dai02]).

We say that a fan∆ is terminal if each coneσ ∈ ∆ satisfies the following:
(i) the lattice pointsρ1, . . . , ρk corresponding to the rays ofσ are contained in an

affine hyperplaneH := {n ∈ NQ | m(n) = 1} for somem ∈ MQ

2000Mathematics Subject Classification. Primary 14J45; Secondary 14J30, 14M25, 52B20.
Key words and phrases. Toric, Fano, 3-folds, terminal singularities, convex polytopes.



102 A. KASPRZYK

(ii) with the exception of 0, there are no other elements of the latticeN in the part of
σ under or onH ; we have,

N ∩ σ ∩ {n ∈ NQ | m(n) ≤ 1} = {0, ρ1, . . . , ρk} .

A toric varietyX is terminal (i.e., has terminal singularities [Rei83]) if and only if the
fan∆ is terminal.

Terminal singularities play an important role in birational geometry. A great deal of
classification results exist in various cases; for example the results of [Mor82, Rei83, MS84,
MMM88]. In [Mor85] it was shown that, with two exceptions, isolated canonical cyclic quo-
tient singularities in dimension three are all either Gorenstein or terminal. In [Rei85] Reid
addresses the issue of classifying 3-fold terminal singularities. In the notation of [Rei85, The-
orem 6.1, II] we are in the case(1/r)(a,−a, 1, 0; 0).

We are now in a position to state our aim, a complete classification of all toric Fano
3-folds with terminal singularities, in terms of apurely combinatorial problem. Namely, we
wish to find, up to the action ofGL(3, Z), all convex lattice polytopes inZ3 which contain
only the origin as a non-vertex lattice point (by which we mean that no lattice points lie on
the surface of the polytope other than the vertices, and no lattice points are contained in the
interior of the polytope other than the origin).

An equivalent restatement for 2-folds can be found in [Ewa96, pp. 192–193]; precisely
five polytopes are found, of which two are minimal (the Fano triangle and the Fano square,
which make an appearance in Section 3) and one is maximal, in the sense of Definitions 3.2
and 4.1. The approach used for this classification relies on the basic result that, up to the action
of GL(2, Z), there is a unique lattice point free triangle (namely conv{0, e1, e2}). This fails
to hold in dimension three (see [Sca85]). It is also worth observing that in dimension two all
polytopes are simplicial (and hence the corresponding toric variety is, at worst,Q-factorial),
something which is clearly notthe case in dimension three.

The classification presented in this paper is inspired by the work of A. Borisov and L.
Borisov [BB, BB93]. Results given in [BB93, Bor00] assure us that a finite classification is
possible. The combinatorial approach we adopt is based on that formulated in [BB]. In this
unpublished work, the essential steps described can be outlined thus:

(i) Observe that every polytope can be “grown” from a “minimal” polytope.
(ii) These minimal polytopes divide into tetrahedra and non-tetrahedra.
(iii) The minimal tetrahedra can be classified in terms of their barycentric coordinates.
(iv) The minimal non-tetrahedra can be determined directly.
(v) A recursive algorithm can be written, allowing a computer to “grow” these minimal

polytopes and hence classifyall polytopes of interest.
The result of Proposition 1.4 is a specific case of [BB93, Proposition 3]. However the

proof presented here is of an elementary combinatorial nature, in keeping with the style of
the remainder of this paper. In addition the results of Table 4 are obtained more explicitly
than in [BB93]; again the justification for repeating these results lies in the methods used to
obtain them. With a nice restatement of Proposition 1.4 (concerning tetrahedra containing one
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non-vertex lattice point) we obtain a result which closely mirrors one of [Sca85] (concerning
tetrahedra containing no non-vertex lattice points), although once more the methods of proof
are very different.

For practical reasons the final classification is not contained in this paper, but has been
made available on the internet (see the end of Section 4 for the address). We conclude this
introduction by presenting a summary of the main features of this list (see also Table 7).

THEOREM 0.1. Up to isomorphism, there exist exactly 233 toric Fano 3-folds having
at worst Q-factorial singularities, of which 18 are smooth. There exist additional 401having
terminal singularities that are not Q-factorial.

There exist 12 minimal cases with at worst Q-factorial singularities: eight with Picard
number 1, two with Picard number 2,and two with Picard number 3. There exists one minimal
case with terminal singularities, corresponding to a polytope with 5 vertices.

There exist nine maximal cases, corresponding to polytopes with 8 (three occurrences),
9, 10 (two occurrences), 11, 12and 14 vertices. Only those with 8 vertices are Q-factorial.

The author would like to express his gratitude to Professor Alexander Borisov for mak-
ing [BB] available; the current paper relies heavily upon many of the ideas developed in this
unpublished work. Special thanks to Dr. Gregory Sankaran for introducing me to this prob-
lem, and for his invaluable explanations and advice.

The author wishes to acknowledge funding by an Engineering and Physical Sciences
Research Council (EPSRC) Mathematics CASE studentship from GCHQ.

1. Classifying the tetrahedra: The barycentric coordinates. Throughout this pa-
per we takeN := Z≥0 = {0, 1, 2, . . .}. When we refer toe1, e2 or e3 we mean the stan-
dard basis elements ofZ3. If x is a point inZ3, by x1, x2 and x3 we mean the integers
such thatx = (x1, x2, x3). For anyq ∈ Q we define
q� := max{a ∈ Z | a ≤ q} and
�q
 := min{a ∈ Z | a ≥ q}. The fractional part of q, which we shall denote{q}, is given
by q − 
q�.

We will make frequent appeals to the following well-known result:

LEMMA 1.1. Any lattice point free triangle with vertices {0, x1, x2} ⊂ Z3 is equivalent
under the action of GL(3, Z) to the triangle with vertices {0, e1, e2}.

Let {x1, . . . , x4} ⊂ Z3 be the lattice point vertices of a tetrahedron containing the origin.
Let µ1, . . . , µ4 ∈ Q give the (unique)barycentric coordinate of the origin with respect to the
xi ; i.e.,

µ1x1 + · · · + µ4x4 = 0 ,

µ1 + · · · + µ4 = 1 ,

µ1 ≥ 0, . . . , µ4 ≥ 0 .

Chooseλ1, . . . , λ4 ∈ N coprime such thatµi = λi/h, whereh = λ1 + · · · + λ4.

LEMMA 1.2. For any κ ∈ {2, . . . , h − 2} we have that
∑4

i=1 {λiκ/h} ∈ {1, 2, 3}.



104 A. KASPRZYK

PROOF. Since
∑4

i=1 λiκ/h = κ ∈ N it follows that
∑4

i=1 {λiκ/h} ∈ {0, 1, 2, 3}. Sup-
pose for someκ ∈ {2, . . . , h − 2}, {λiκ/h} = 0 for i = 1, 2, 3, 4. We have thath | κλi for
eachi, so letp be a prime such thatp | h, so thath = prh′ wherep � h′. Thenpr | κλi .
Suppose thatpr � κ . Thenp | λi for eachi. Hencep | gcd{λ1, . . . , λ4} = 1, a contradiction.
Thuspr | κ . By induction on the prime divisors ofh we see thath | κ , so in particularh ≤ κ ,
which is a contradiction. �

For convenience we make the following definition:

DEFINITION 1.3. We say a tetrahedron isFano if the vertices lie at lattice points and
the only non-vertex lattice point it contains is the origin, which lies strictly in the interior of
the tetrahedron.

PROPOSITION 1.4. If the tetrahedron associated with the λi is Fano then
(i)

∑4
i=1{λiκ/h} = 2 for all κ ∈ {2, . . . , h − 2}, and

(ii) gcd{λi, λj } = 1 for i �= j .

PROOF. Let theλi be associated with a Fano tetrahedron. Since the origin is strictly in
the interior theλi are all non-zero. By Lemma 1.2 we only need to consider the cases where∑4

i=1{λiκ/h} = 1 or 3. But if
∑4

i=1{λiκ/h} = 3 for someκ , then
∑4

i=1 {λi(h − κ)/h} = 1.
Suppose for someκ ∈ {2, . . . , h − 2} the sum is 1. Letχi = {λiκ/h}. Then(χ1, . . . , χ4)

is the (unique) barycentric coordinate for some point in the tetrahedron. We shall show that it
is a non-vertex lattice point not equal to the origin.

We have that
∑4

i=1
λiκ/h�xi is a lattice point, call ita ∈ Z3. We also have that∑4
i=1(λiκ/h)xi = 0. Thus

4∑
i=1

χixi =
4∑

i=1

λiκ

h
xi −

4∑
i=1

⌊
λiκ

h

⌋
xi = −a ∈ Z3 .

By the uniqueness of barycentric coordinates we have that−a is a non-vertex point, since
eachχi < 1. Furthermore suppose−a = 0, so thatχi = λi/h for i = 1, 2, 3, 4. For each
i, λiκ/h − 
λiκ/h� = λi/h, so we obtain that
λiκ/h� = λi(κ − 1)/h and hence that
h | λi(κ − 1). As in the proof of Lemma 1.2 we find thath | κ − 1, and so in particular
h+ 1 ≤ κ . This contradicts our range forκ . Hence−a must be a non-vertex, non-zero lattice
point in the tetrahedron, contradicting our hypothesis.

Now suppose for a contradiction that gcd{λ1, λ2} �= 1. We have

λ3

gcd{λ1, λ2}x3 + λ4

gcd{λ1, λ2}x4 = − λ1

gcd{λ1, λ2}x1 − λ2

gcd{λ1, λ2}x2 ∈ Z3 .

Since the triangle with vertices{0, x3, x4} is lattice point free, by Lemma 1.1 there exists an
element ofGL(3, Z) mappingx3 �→ e1 andx4 �→ e2. Hence it must be that gcd{λ1, λ2} | λ3

and gcd{λ1, λ2} | λ4, thus gcd{λ1, . . . , λ4} �= 1. �

COROLLARY 1.5. Let (λ1, . . . , λ4) be associated with a Fano tetrahedron. Then
(i)

∑4
i=1�λiκ/h
 = κ + 2 for all κ ∈ {2, . . . , h − 2}, and
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(ii) gcd{λi, h} = 1 for i = 1, . . . , 4.

PROOF. Proposition 1.4 tells us that
∑4

i=1 {λiκ/h} = 2 for all κ ∈ {2, . . . , h − 2}.
Since{λiκ/h} < 1 it must be that{λiκ/h} = 0 for at most one value ofi. We shall show that
in fact {λiκ/h} �= 0 for all i = 1, . . . , 4.

Suppose (with possible relabelling of the indices) that:{
λ4κ

h

}
= 0 .(1.1)

Then
∑3

i=1 {λiκ/h} = 2 and hence
∑3

i=1 {λi(h − κ)/h} = 1. We obtain

4∑
i=1

{
λi(h − κ)

h

}
= 1 .(1.2)

But equation (1.2) contradicts Proposition 1.4. Hence,{
λiκ

h

}
�= 0 for i = 1, . . . , 4 .(1.3)

By hypothesis we have{λ1κ/h} + · · · + {λ4κ/h} = 2, and by definitionλ1κ/h + · · · +
λ4κ/h = κ . Hence we obtain
λ1κ/h� + · · · + 
λ4κ/h� = κ − 2. This, combined with
(1.3), tells us that
λiκ/h� = �λiκ/h
 − 1 for i = 1, . . . , 4. This proves the first part of the
claim. Finally suppose that, for somei, gcd{λi, h} �= 1. Then takingκ = h/ gcd{λi, h} ∈
{2, . . . , h − 2} we have{λiκ/h} = 0. Hence gcd{λi, h} = 1. �

Although not required, it is worth observing the similarity between Corollary 1.5 and the
following:

PROPOSITION 1.6 ([Sca85]). Let a lattice point tetrahedron containing no non-vertex
lattice points have the vertices of Lemma 2.3with x, y, z ≥ 1. Let d := x + y + z − 1. Then

(i) �κx/d
 + �κy/d
 + �κz/d
 = κ + 2 for all κ ∈ {1, . . . , d − 1}, and
(ii) gcd{x, d} = gcd{y, d} = gcd{z, d} = 1.

Let h ≥ 4. By making use of Corollary 1.5 we can construct bounds on theλi . We may
assume without loss of generality thatλ1 ≤ · · · ≤ λ4. For eachκ ∈ {2, . . . , h − 2} and each
i let a(κ)

i = �λiκ/h
. The following conditions are immediate:

a
(κ)
1 ≤ · · · ≤ a

(κ)
4 ,

a
(κ)
1 + · · · + a

(κ)
4 = κ + 2 ,

(a
(2)
1 , a

(2)
2 , a

(2)
3 , a

(2)
4 ) = (1, 1, 1, 1) .

(1.4)

We have also that(h/κ)(a
(κ)
i − 1) < λi < (h/κ)a

(κ)
i , and so

h max
2≤n≤κ

1

n
(a

(n)
i − 1) < λi < h min

2≤n≤κ

1

n
a

(n)
i .
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Recalling thatλi/h = µi gives us

1

κ
(a

(κ)
i − 1) < µi <

1

κ
a

(κ)
i ,(1.5)

max
2≤n≤κ

1

n
(a

(n)
i − 1) < µi < min

2≤n≤κ

1

n
a

(n)
i .(1.6)

This suggests a recursive method of determining an upper bound forh. Assume
h ≥ 4 is associated with a Fano tetrahedron. Then it is possible to construct a sequence
{(a(κ)

1 , . . . , a
(κ)
4 )}2≤κ≤h−2 satisfying the conditions (1.4) and (1.6) for allκ ∈ {2, . . . , h − 2}.

Moreover we have that for eachκ ∈ {2, . . . , h − 3} there exists somei ∈ {1, . . . , 4} such that

a
(κ+1)
j =

{
a

(κ)
j for j �= i ,

a
(κ)
j + 1 for j = i .

LEMMA 1.7. Let a, k ∈ N be such that a < k. Then a/k > a/(k + 1) and a/k <

(a + 1)/(k + 1).

An immediate consequence of Lemma 1.7 is that

1

κ + 1
a

(κ+1)
i = 1

κ + 1
(a

(κ)
i + 1) ≥ min

2≤n≤κ

1

n
a

(n)
i

and hence, using (1.5) and (1.6), we obtain

1

κ + 1
(a

(κ+1)
i − 1) = 1

κ + 1
a

(κ)
i < µi < min

2≤n≤κ+1

1

n
a

(n)
i = min

2≤n≤κ

1

n
a

(n)
i .

Thus we have the requirement that

1

κ + 1
a

(κ)
i < min

2≤n≤κ

1

n
a

(n)
i .(1.7)

Conditions (1.4) and (1.7) are independent ofh, so by writing a simple recursive func-
tion on a computer it is possible to test these conditions for large values ofκ , using all the
sequences obtained forκ to check whether a sequence exists forκ + 1. If no such sequence
exists we have found an upper bound forh, namelyh ≤ κ + 2.

It is worth observing that this method for finding a bound forh really does do that; when
all possible sequences have terminated it is impossible to proceed any further. Noa priori
guarantee that this search along all possible sequences will terminate has been given here.

It is also worth noting that the bound this method gives is not the tightest, but this defi-
ciency is balanced by the fact that it providing a technique which is independent ofh.

This yields a bound forh ≤ 30. Proposition 1.8 now follows from Proposition 1.4 by the
easy task of checking all possibleλi up to this bound. An alternative proof of Proposition 1.8
can be found in [BB93].

PROPOSITION 1.8. Let λ1 ≤ · · · ≤ λ4 be associated with a Fano tetrahedron. Then
(λ1, . . . , λ4) is equal to one of the following:

(1, 1, 1, 1) (1, 1, 1, 2) (1, 1, 2, 3) (1, 2, 3, 5)

(1, 3, 4, 5) (2, 3, 5, 7) (3, 4, 5, 7) .
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2. Classifying the tetrahedra: The coordinates of the vertices. Let {x1, . . . , x4} ⊂
Z3 be the lattice point vertices of a Fano tetrahedron. Assume that the indices have been
chosen such thatλ1 ≤ · · · ≤ λ4. We represent this tetrahedron by the 3×4 matrix

(
xt

1 . . . xt
4

)
,

wherext
i denotes the vertexxi regarded as a column vector.

PROPOSITION 2.1. Let λ1 ≤ · · · ≤ λ4 be associated with a Fano tetrahedron. Then,
by means of the action of GL(3, Z), we can transform the tetrahedron to the form

1 0 k′′λ4 − aλ1 −k′′λ3 − bλ1
0 1 k′λ4 − aλ2 −k′λ3 − bλ2
0 0 kλ4 −kλ3




where a, b ∈ Z, a > 0 are such that aλ3 + bλ4 = 1, and k, k′, k′′ ∈ N are such that

0 ≤ k′′λ4 − aλ1 < kλ4 ,(2.1a)

and 0 ≤ k′λ4 − aλ2 < kλ4(2.1b)

with one of these inequalities equal to zero only if λ4 = 1.

PROOF. By virtue of Lemma 1.1 we may assume without loss of generality that our
tetrahedron has vertices{e1, e2, x, y} with λ1e1 + λ2e2 + λ3x + λ4y = 0. Thus we see that
λ3x3 = −λ4y3, and soy3 = −(λ3/λ4)x3 ∈ Z. Henceλ4 | λ3x3, but gcd{λ3, λ4} = 1 and so
it must be thatλ4 | x3. Thus there exists somek ∈ Z such that

x3 = kλ4 , y3 = −kλ3 .

We may takex3 positive, and sok ∈ N.
We also have thatλ2 + λ3x2 + λ4y2 = 0, so thatλ3x2 + λ4y2 = −λ2. Now since

gcd{λ3, λ4} = 1 there exista, b ∈ Z, a > 0 such thatλ3a + λ4b = 1. This gives us that
λ3(−λ2a) + λ4(−λ2b) = −λ2, so thatλ3(x2 + aλ2) + λ4(y2 + bλ2) = 0. Thus there exists
somek′ ∈ Z such that

x2 = k′λ4 − aλ2 , y2 = −k′λ3 − bλ2 .

Similarly we obtain that there exists somek′′ ∈ Z such that

x1 = k′′λ4 − aλ1 , y1 = −k′′λ3 − bλ1 .

By applying 
1 0 c

0 1 d

0 0 1


 ∈ GL(3, Z)

for suitably chosenc, d ∈ Z, we can arrange matters so that (with possible relabelling ofk′
andk′′)

0 ≤ k′λ4 − aλ2 < kλ4 ,

0 ≤ k′′λ4 − aλ1 < kλ4 .
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Now suppose thatk′λ4−aλ2 = 0. Since gcd{λ2, λ4} = 1, there must exist some constant
m ∈ Z such thatk′ = mλ2 anda = mλ4. In particular, this gives us thatλ4(mλ3 + b) = 1, so
thatλ4 = 1. Similarly, if k′′λ4 − aλ1 = 0. �

The exceptional case in Proposition 2.1 occurring whenλ1 = · · · = λ4 = 1 will be dealt
with now.

PROPOSITION 2.2. Using the notation introduced above, the only exceptional case is
given, up to equivalence, by the tetrahedron with vertices {e1, e2, e3,−e1 − e2 − e3}.

PROOF. Using the notation introduced in the proof of Proposition 2.1, we may take
a = 1, b = 0 and so takingk′λ4 − aλ2 = 0 implies thatk′ = 1. Thus we see that our
tetrahedron has the form 

1 0 k′′ − 1 −k′′
0 1 0 −1
0 0 k −k




wherek′′ andk are to be determined.
The triangle defined by the origin, the first and the third vertices in the above matrix is

lattice point free. Thus

det

(
1 k′′ − 1
0 k

)
= ±1 .

This forcesk = 1 and the resulting tetrahedron is equivalent to that given in the statement.�

The following two results are taken from [Sca85]. A proof is given for the first result
because we need to know explicitly the steps required for the transformation.

LEMMA 2.3 (cf. [Sca85]). A lattice point tetrahedron containing no non-vertex lattice
points can, by means of a translation and the action of GL(3, Z), be transformed to the form

1 0 0 x

0 1 0 y

0 0 1 z




where x, y, z ∈ Z, x, y ≥ 0, z ≥ 1.

PROOF. By applying a translation if necessary and considering Lemma 1.1, we may
assume without loss of generality that the tetrahedron is in the form

0 1 0 x

0 0 1 y

0 0 0 z




wherez ≥ 1, but the conditions onx andy remain to be determined.
Let x �→ x (modz) andy �→ y (modz). Observe that this is equivalent to the (left)

action of 
1 0 a

0 1 b

0 0 1


 ∈ GL(3, Z)
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for suitably chosena, b ∈ Z. Thus we can assume that 0≤ x < z and 0≤ y < z. Suppose
thatz < x + y. Then set

µ1 := 1 − µ2 − µ3 − µ4 , µ2 := 1 − x

z
, µ3 := 1 − y

z
, µ4 := 1

z
.

Clearly
∑

µi = 1, andµ2, µ3, µ4 ≥ 0. We have also thatµ1 = (x + y − z − 1)/z ≥ 0. But
then

µ1


0

0
0


 + µ2


1

0
0


 + µ3


0

1
0


 + µ4


x

y

z


 =


1

1
1




gives us a non-vertex lattice point in the interior of the tetrahedron, a contradiction. Thus it
must be thatz ≥ x + y.

Finally we apply the unimodular transformationz �→ −x − y + z + 1 which yields the
result. �

PROPOSITION 2.4 (cf. [Sca85], Simplification of Howe’s Theorem).Let a lattice point
tetrahedron containing no non-vertex lattice points have the vertices of Lemma 2.3 with
x, y, z ≥ 1. Then {x, y, z} ∩ {1} �= ∅.

Let us now consider a Fano tetrahedron presented in the form given in Proposition 2.1.
In addition we shall assume thst we are not looking at the case handled in Proposition 2.2.
The tetrahedron with vertices given by{0, e1, e2, (x, y, z)}, where

x := k′′λ4 − aλ1 ≥ 1 , y := k′λ4 − aλ2 ≥ 1 , z := kλ4 ≥ 1 ,

is lattice point free. By following the proof of Lemma 2.3 we see that it is equivalent to
1 0 0 x

0 1 0 y

0 0 1 z − x − y + 1




and thatz ≥ x + y. Proposition 2.4 tells us that{x, y, z − x − y + 1} ∩ {1} �= ∅. Thus

either k′′ = (1 + aλ1)/λ4 ∈ Z if and only if x = 1
or k′ = (1 + aλ2)/λ4 ∈ Z if and only if y = 1

or k − k′ − k′′ = −a(λ1 + λ2)/λ4 ∈ Z if and only if z − x − y + 1 = 1 .

The result of applying this to the barycentriccoordinates found in Proposition 1.8 is given in
Table 1. Observe that the only cases of ambiguity are for(1, 1, 1, 1) and(1, 1, 1, 2).

PROPOSITION 2.5. Let λ1 ≤ · · · ≤ λ4 be associated with a Fano tetrahedron pre-
sented in the form given in Proposition 2.1. Then

0 ≤ kλ3 − k′′λ3 − bλ1 < kλ3

and 0 ≤ kλ3 − k′λ3 − bλ2 < kλ3
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TABLE 1. The values depending ona.

(λ1, λ2, λ3, λ4) a b (1 + aλ1)/λ4 (1 + aλ2)/λ4 a(λ1 + λ2)/λ4

(1, 1, 1, 1) 1 0 2 2

(1, 1, 1, 2) 1 0 1 1

(1, 1, 2, 3) 2 −1 1 —

(1, 2, 3, 5) 2 −1 — 1 —

(1, 3, 4, 5) 4 −3 1 — —

(2, 3, 5, 7) 3 −2 1 — —

(3, 4, 5, 7) 3 −2 — — 3

with one of these inequalities equal to zero only if λ3 = 1, in which case the tetrahedron is
equivalent either to that given in Proposition 2.2or to

1 0 1 −1
0 1 1 −1
0 0 2 −1


 .

PROOF. Sinceaλ3 + bλ4 = 1 we have thata = (1 − bλ4)/λ3. By substituting this
into equation (2.1a) we obtainλ1/λ4 ≤ k′′λ3 + bλ1 < kλ3 + λ1/λ4. Splitting this into two
inequalities yields:

kλ3 − k′′λ3 − bλ1 > −λ1/λ4

and kλ3 − k′′λ3 − bλ1 ≤ kλ3 − λ1/λ4 .

Recall thatλ1/λ4 ∈ (0, 1]. Hence we have that 0≤ kλ3 − k′′λ3 − bλ1 < kλ3. If instead we
start with equation (2.1b) we derive that 0≤ kλ3 − k′λ3 − bλ2 < kλ3.

Now suppose thatkλ3 − k′′λ3 − bλ1 = 0. Then we have that(k − k′′)λ3 = bλ1, and
since gcd{λ1, λ3} = 1 there must exist somec ∈ Z such thatk − k′′ = cλ1 andb = cλ3. But
thenaλ3 + cλ3λ4 = 1, which forcesλ3 = 1 (as required). The only cases whereλ3 = 1 are
whena = 1, b = 0. Hencek = k′′.

There are two possible choices forλ4. First consider the case whereλ4 = 1. We have
thatk ≥ k′′ + k′ − 2, andk′ ≥ 2. Thusk′ = 2. Hence we see that our Fano tetrahedron is
equivalent to the form 

1 0 −1 0
0 1 1 −2
0 0 k −k


 .

The triangle with vertices given by the origin, and the second and fourth column of the above
matrix is lattice point free. By Lemma 1.1 it must be thatk = 1, which gives a tetrahedron
equivalent to that derived in Proposition 2.2.
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Finally, consider the case whereλ4 = 2. We have thatk ≥ k′′ + k′ −1, andk′ ≥ 1. Thus
k′ = 1. Hence we see that our Fano tetrahedron is equivalent to the form

1 0 −1 0
0 1 1 −1
0 0 2k −k


 .

As before we see thatk = 1 and the result follows. �

We consider a Fano tetrahedron presented in the form given in Proposition 2.1 and as-
sume we are not looking at the case handled in Proposition 2.5. By Proposition 2.4 we have
that

either k − k′′ = 1 + bλ1

λ3
∈ Z

or k − k′ = 1 + bλ2

λ3
∈ Z

or k − k′ − k′′ = b
λ1 + λ2

λ3
∈ Z .

The result of applying this to the barycentric coordinates found in Proposition 1.8 is presented
in Table 2. The results of Table 1 and Table 2 complement each other beautifully, allowing
the relationships amongstk, k′ andk′′ shown in Table 3 to be established.

We are now in a position to calculate the vertices of the Fano tetrahedra (up to the action
of GL(3, Z)). We will proceed by taking each barycentric coordinate in turn and combining
the results of Table 3 and Proposition 2.1. The final results are collected together in Table 4.
It is worth comparing this with the results of [Suz02].

Recall that the matrix
(
xt

1 . . . xt
4

)
is used to represent the tetrahedron with vertices

{x1, . . . , x4}. In what follows, references to the vertexxi should be regarded as references
to thei th column of this matrix.

(i) First we consider the case with barycentric coordinate(1, 1, 1, 1). From the results
of Table 3 and Proposition 2.1 we have that our Fano tetrahedron has two possible forms, both

TABLE 2. The values depending onb.

(λ1, λ2, λ3, λ4) a b (1 + bλ1)/λ3 (1+ bλ2)/λ3 b(λ1 + λ2)/λ3

(1, 1, 1, 1) 1 0 1 0

(1, 1, 1, 2) 1 0 1 0

(1, 1, 2, 3) 2 −1 0 −1

(1, 2, 3, 5) 2 −1 0 — −1

(1, 3, 4, 5) 4 −3 — −2 −3

(2, 3, 5, 7) 3 −2 — −1 −2

(3, 4, 5, 7) 3 −2 −1 — —
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TABLE 3. The relationships amongk, k′ andk′′.

(λ1, λ2, λ3, λ4) k k′ k′′

(1, 1, 1, 1) k k − 2 2

k 3 k − 1

(1, 1, 1, 2) k k − 1 1

k k − 1 2

(1, 1, 2, 3) k k 1

1 1 1

(1, 2, 3, 5) k 1 k

(1, 3, 4, 5) k k − 2 1

k k + 2 1

(2, 3, 5, 7) k k + 1 1

(3, 4, 5, 7) k 2 k + 1

of which are equivalent to 
1 0 1 −2

0 1 −3 2
0 0 k −k


 .

We observe thatx3 tells us that gcd{3, k} = 1 andx4 tells us that gcd{2, k} = 1. Furthermore,
takingk = 1 gives us a tetrahedron equivalent to that found in Proposition 2.2. Suppose that
k ≥ 7. Then(4/k)x2 + (2/k)x3 + (1/k)x4 = e3, which contradicts our tetrahedron being
Fano. Thus the only remaining possibility is thatk = 5, which by inspection we see does
indeed give us a Fano tetrahedron.

(ii-a) Now we consider the case with barycentric coordinate(1, 1, 1, 2). By Table 3 and
Proposition 2.1 we see once more that our Fano tetrahedron can take two possible forms. First
we consider the form equivalent to

1 0 1 −1
0 1 −3 1
0 0 2k −k


 .

If we takek = 1 we obtain a Fano tetrahedron equivalent to that found in Proposition 2.5.
Suppose thatk = 2. Then(1/2) (1,−3, 4) + (1/2) (−1, 1,−2) = (0,−1, 1) is a non-vertex,
non-zero lattice point in the interior of the tetrahedron, and hence it is not Fano. The third
column tells us that gcd{3, k} = 1. Finally, the tetrahedron is not Fano ifk ≥ 4 since then
(2/k)x2 + (1/k)x3 + (1/k)x4 = e3.

(ii-b) Now we consider the second possibility, which is equivalent to
1 0 3 −2

0 1 −3 1
0 0 2k −k


 .
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Whenk = 1 we obtain a Fano tetrahedron equivalent to the one previously found.x3 and
x4 tell us that gcd{3, k} = 1 and gcd{2, k} = 1, respectively, and ifk ≥ 7 we have the
non-vertex, non-zero internal lattice point given by(3/k)x1 + (1/k)x3 + (3/k)x4 = −e3.
Thus the only remaining possibility isk = 5, which contains the lattice point(1/5)(1, 0, 0)+
(2/5)(3,−3, 10) + (1/5)(−2, 1,−5) = (1,−1, 3).

(iii) For barycentric coordinate(1, 1, 2, 3) the two possibilities are (up to equivalence)
1 0 1 −1

0 1 −2 1
0 0 3k −2k


 and


1 0 1 −1

0 1 1 −1
0 0 3 −2


 .

The third column tells us thatk must be odd, but ifk ≥ 3 we have the interior lattice point
(1/k)x2 + (1/k)x3 + (1/k)x4 = e3. Thus the only possibility is thatk = 1, but the resulting
tetrahedron is equivalent to that already found.

(iv) When we have barycentric coordinate(1, 2, 3, 5) our tetrahedron equivalent to
1 0 −2 1

0 1 1 −1
0 0 5k −3k


 .

The third column tells us thatk is odd, and ifk ≥ 3 we have the internal lattice point(1/k)x1+
(1/k)x3 + (1/k)x4 = 2e3. By inspection we see that the case wherek = 1 is Fano.

(v-a) For barycentric coordinate(1, 3, 4, 5) we have two possibilities. First we consider
the case where our tetrahedron is equivalent to

1 0 1 −1
0 1 −22 17
0 0 5k −4k


 .

x3 tells us thatk is odd. Ifk ≥ 7 then it is not Fano, since(5/k)x2+ (1/k)x3 + (1/k)x4 = e3.
If k = 5 then(1/5)(1,−22, 25) + (1/5)(−1, 17,−20) = (0,−1, 1), and ifk = 3 thenk = 3
then(1/3)e1 + (1/3)e2 + (1/3)(−1, 17,−12) = (0, 6,−4). By inspection we see that the
case wherek = 1 is Fano.

TABLE 4. The vertices of the Fano tetrahedra, up to the action ofGL(3, Z)

(1/4)(1, 1, 1, 1) (1/4)(1, 1, 1, 1) (1/5)(1, 1, 1, 2) (1/7)(1, 1, 2, 3)
1 0 0 −1

0 1 0 −1
0 0 1 −1





1 0 1 −2

0 1 −3 2
0 0 5 −5





1 0 1 −1

0 1 1 −1
0 0 2 −1





1 0 1 −1

0 1 −2 1
0 0 3 −2




(1/11)(1, 2, 3, 5) (1/13)(1, 3, 4, 5) (1/17)(2, 3, 5, 7) (1/19)(3, 4, 5, 7)
1 0 −2 1

0 1 1 −1
0 0 5 −3





1 0 1 −1

0 1 −2 1
0 0 5 −4





1 0 1 −1

0 1 −2 1
0 0 7 −5





1 0 −2 1

0 1 2 −2
0 0 7 −5



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(v-b) The second possibility is the tetrahedron equivalent to
1 0 1 −1

0 1 −2 1
0 0 5k −4k


 .

We require thatk is odd, but ifk ≥ 3 we obtain the point(1/k)x2 + (1/k)x3 + (1/k)x4 = e1,
and whenk = 1 we obtain the tetrahedron found above.

(vi) Continuing in the same vein, for barycentric coordinate(2, 3, 5, 7) we have
1 0 1 −1

0 1 −2 1
0 0 7k −5k


 .

This tells us thatk is odd, and ifk ≥ 3 we obtain the internal lattice point(1/k)x2+(1/k)x3+
(1/k)x4 = 2e3. Thusk = 1 is the only possibility, and we see by inspection that it is indeed
Fano.

(vii) Finally consider barycentric coordinate(3, 4, 5, 7).
This gives us 

1 0 −2 1
0 1 2 −2
0 0 7k −5k


 .

Once more we see thatk must be odd, and that ifk ≥ 3 then it is not Fano since we have
(1/k)x1 + (1/k)x3 + (1/k)x4 = 2e3. Whenk = 1 we do indeed get a Fano tetrahedron.

3. Classifying the minimal polytopes. We extend Definition 1.3 to any polytopeP .

DEFINITION 3.1. We say a lattice point polytopeP in Z3 is Fano if P is convex and
the only non-vertex lattice point it contains is the origin, which lies strictly in the interior of
the polytope.

Given any Fano polytopeP with vertices{x1, . . . , xk} we make the following definition:

DEFINITION 3.2. We sayP is minimal if, for all j ∈ {1, . . . , k}, the polytopeP ′ given
by the vertices{x1, . . . , xk} \ {xj } is not Fano.

DEFINITION 3.3. LetM = {p1, . . . , pk} be a finite set of points inNQ. Theconvex
hull of M is given by convM := {∑k

j=1 νjpj | νj ≥ 0 for all j,
∑k

j=1 νj = 1} ⊂ NQ.

Let us consider a minimal Fano polytopeP . Since 0 ∈ P there exist non-coplanar
verticesx1, . . . , x4 of P such that 0∈ conv{x1, . . . , x4} =: P ′.

EitherP is equivalent to one of the tetrahedra in Table 4, or it is not. If it is not, then
minimality gives us that it does not contain a Fano tetrahedron; in particularP ′ is not Fano.
We assume that this is the case.

SinceP ′ is not a Fano tetrahedron it must be that either the origin lies on a face ofP ′ or
on an edge ofP ′. If the origin lies on a face ofP ′ thenP contains a Fano triangle. Thus there
exist three vertices ofP which lie in a plane containing the origin, and the origin lies strictly
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in the interior of the triangle defined by these three points. This possibility will be discussed
in further detail below.

Assume now thatP does not contain a Fano triangle. Then it must be that the origin lies
on one of the edges ofP ′, say on the edge defined byx1 andx2. Since the origin lies in the
strict interior ofP there must exist distinct verticesy1, . . . , y4 of P not equal tox1 or x2 such
that conv{x1, x2, y1, y2} is a Fano square and conv{x1, x2, y1, y2, y3, y4} is a Fano octahedron.
Minimality gives thatP is a Fano octahedron, and these will be classified in Lemma 3.4.

We return now to considering in more detail the case whereP contains a Fano triangle,
say that defined by{x1, x2, x3}. Since the origin lies in the strict interior ofP there must exist
verticesy1 andy2 lying on either side of the plane containing our Fano triangle. Minimality
then gives us thatP is precisely the polygon with vertices{x1, x2, x3, y1, y2}.

Now consider the line passing through the origin andy1. This line crosses the polytope
P at pointsy1 ∈ Z3 andx not necessarily inZ3. There are three possible locations forx:

(i) x is equal toy2. Theny2 = −y1. These will be classified in Lemma 3.5.
(ii) x lies on the edge with endpoints{x1, y2}. Then conv{x1, y1, y2} is a Fano triangle.

We use the fact that the origin has barycentric coordinate(1/3, 1/3, 1/3) with respect to
{x1, y1, y2}. Thus the line passing throughx1 and the origin bisects the line with endpoints
{y1, y2} at a pointx ′, say. Now the length of the line joining{x1, 0} is twice the length of
the line joining{x ′, 0}. Similarly by considering the Fano triangle conv{x1, x2, x3}, the line
passing throughx1 and the origin bisects the line with endpoints{x2, x3} at a pointx ′′, say,
and we have that the distance fromx1 to the origin is twice the length of the line joining the
origin tox ′′. Hence we see that{x2, x3, y1, y2} are coplanar and form a parallelogram. These
will be classified in Lemma 3.6.

(iii) x ′ lies strictly in the interior of the triangle conv{x1, x2, y2}. But then
conv{x1, x2, y1, y2} is a Fano tetrahedron, contradicting our assumption.

LEMMA 3.4. The vertices of the minimal Fano octahedra (up to the action of GL(3,Z))
are given by 

1 0 −1 0 0 0
0 1 0 −1 0 0
0 0 0 0 1 −1


 ,


1 0 −1 0 1 −1

0 1 0 −1 1 −1
0 0 0 0 2 −2


 .

PROOF. By making use of Lemma 1.1 and recalling thatP does not contain a Fano
triangle, we may take the vertices ofP to be {e1,−e1, e2,−e2, x1, x2}. We observe that
x1 = −x2, for otherwise we would have thatP contains a Fano tetrahedron. So takex =
−x2 = x1 = (a, b, c). First we shall show that, without loss of generality, we may take
a, b, c such that

0 ≤ a ≤ b ≤ c

2
.(3.1)

Trivially we may assume that 0≤ a ≤ b. Suppose thatb > c/2. Thenb − c > −c/2 and so
c − b < c/2. This process corresponds to the action ofGL(3, Z) transforming
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
1 0 −1 0 a −a

0 1 0 −1 b −b

0 0 0 0 c −c


 to


1 0 −1 0 a −a

0 −1 0 1 c − b −(c − b)

0 0 0 0 c −c


 .

Hence we may assume that the inequality (3.1) holds.
Now consider the pointe3. Eitherx = e3 or e3 lies outside ofP . The first possibility

gives us the first Fano octahedron. The second possibility tells us thate3 must lie on the
opposite side to the origin of the plane defined by{−e1,−e2, x}. This plane intersects the
z-axis at the point(0, 0, c/(a + b + 1)). This gives us thatc ≤ a + b. Combining this with
(3.1) gives us thatb ≤ a and sob = a. This in turn gives us thatc ≤ 2b and 2b ≤ c, and so we
obtain 2a = 2b = c. Thus (up to the action ofGL(3, Z)) we have thata = 1, b = 1, c = 2,
which gives us the second Fano octahedron. �

LEMMA 3.5. If P is a minimal Fano polytope with vertices {x1, x2, x3, y1,−y1} such
that {x1, x2, x3} are the vertices of a Fano triangle, then P is equal (up to the action of
GL(3, Z)) to one of

1 0 −1 0 0
0 1 −1 0 0
0 0 0 1 −1


 ,


1 0 −1 1 −1

0 1 −1 2 −2
0 0 0 3 −3


 .

PROOF. By making use of Lemma 1.1 we may take the vertices ofP to be {e1, e2,

−e1 − e2, x, y}. If y �= −x thenP would contain a Fano tetrahedron, which contradicts
minimality. Letx = (a, b, c). We claim that, without loss of generality, we may takea, b, c

such that 0< a ≤ b ≤ c and

a + b ≤ c .(3.2)

Clearly we can take 0< a ≤ b andc > 0. Suppose thata + b > c. Then we have that
(c − a) + (c − b) < c. By using the fact thaty = −x and applying the transformation

1 0 −c

0 1 −c

0 0 −1


 ∈ GL(3, Z)

we see that we may assume that the inequality (3.2) holds.
Now consider the pointe3. Eitherx = e3 or e3 lies outside ofP . The first case gives us

the first Fano polytope in the statement. The second case tells us that we havee3 lies on the
opposite side to the origin of the plane defined by{e1,−e1 − e2, x}. This plane intersects the
z-axis at the point(0, 0, c/(2b − a + 1)), and so

2b − a ≥ c .(3.3)

Now consider the pointx ′ = e2 + e3. Either x ′ = x, which gives a Fano polytope
equivalent to the one previously found, orx ′ lies outside ofP . If this is the case we have
thatx ′ lies on the opposite side to the origin of the plane defined by{e2,−e1 − e2, x}. This
plane intersects the line passing through the origin ande2 + e3 at the point(0, k, k) where
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k := c/(2a − b + c + 1). Hence

b ≤ 2a .(3.4)

Now suppose bothe3 andx ′ lie outsideP . Combining the inequalities (3.2) and (3.3)
gives us that 2a ≤ b, and so by (3.4) we obtain that 2a = b. Thus (up to the action of
GL(3, Z)) we have thata = 1, b = 2, c = 3. A quick check confirms that this is indeed
Fano. �

LEMMA 3.6. If P is a minimal Fano polytope with vertices {x1, x2, x3, x4, x5} such
that {x2, x3, x4, x5} are coplanar and give the vertices of a parallelogram, then P is equal
(up to the action of GL(3, Z)) to 

1 0 −1 1 0
0 1 −1 1 0
0 0 0 1 −1


 .

PROOF. SinceP does not contain a Fano tetrahedron it must be that opposite cor-
ners of the parallelogram, along withx1, give us a Fano triangle. Thus we can (by virtue
of Lemma 1.1) writeP in the form

1 0 −1 a + 1 −a

0 1 −1 b + 1 −b

0 0 0 c −c




where 0< a + 1 ≤ b + 1 ≤ c.
Consider the point−e3. Eithera = 0, b = 0, c = 1, which gives the Fano polytope

in the statement, or−e3 lies outsideP . Thus−e3 lies on the opposite side to the origin
of the plane defined by{e1, e2, (−a,−b,−c)}. This plane intersects thez-axis at the point
(0, 0, c/(a + b + 1)). Thus we have that−c > −a − b − 1 and so

c ≤ a + b .(3.5)

Now letx ′ = e1 + e2 + e3. Eithera = 0, b = 0, c = 1, which gives the Fano polytope in
the statement, orx ′ lies outsideP . Thusx ′ lies on the opposite side to the origin of the plane
defined by{e1, e2, (a + 1, b + 1, c)}. Thus the plane intersects the line through the origin and
x ′ at the point(k, k, k), wherek := c/(2c − a − b − 1). Thus we see thatc < 2c − a − b − 1
and so

c > a + b + 1 .(3.6)

Now suppose both−e3 andx ′ lie outsideP . But then both inequalities (3.5) and (3.6)
must be satisfied, which is impossible. �

Combining the results of Table 4 and Lemmas 3.4–3.6 we obtain Table 5.

4. Classifying all Fano polytopes. Given any Fano polytopeP with vertices
{x1, . . . , xk} we make the following definition (cf. Definition 3.2):
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TABLE 5. The vertices of the minimal Fano polytopes, up to the action ofGL(3, Z)

Comments Vertices

4 Vertices
Simplicial


 1 0 1 −2

0 1 −3 2
0 0 5 −5




4 Vertices
Simplicial


 1 0 1 −1

0 1 −2 1
0 0 7 −5




4 Vertices
Simplicial


 1 0 −2 1

0 1 2 −2
0 0 7 −5




4 Vertices
Simplicial


 1 0 0 −1

0 1 0 −1
0 0 1 −1




4 Vertices
Simplicial


 1 0 1 −1

0 1 −2 1
0 0 5 −4




4 Vertices
Simplicial


 1 0 −2 1

0 1 1 −1
0 0 5 −3




4 Vertices
Simplicial


 1 0 1 −1

0 1 1 −1
0 0 2 −1




Comments Vertices

4 Vertices
Simplicial


 1 0 1 −1

0 1 −2 1
0 0 3 −2




5 Vertices
Simplicial


 1 0 1 −1 −1

0 1 2 −1 −2
0 0 3 0 −3




5 Vertices
Simplicial


 1 0 0 −1 0

0 1 0 −1 0
0 0 1 0 −1




5 Vertices


 1 0 1 −1 0

0 1 1 −1 0
0 0 1 0 −1




6 Vertices
Simplicial


 1 0 1 −1 0 −1

0 1 1 0 −1 −1
0 0 2 0 0 −2




6 Vertices
Simplicial


 1 0 0 −1 0 0

0 1 0 0 −1 0
0 0 1 0 0 −1




DEFINITION 4.1. We sayP is maximal if, for all xk+1 ∈ Z3 \ {x1, . . . , xk}, the poly-
topeP ′′ given by the vertices{x1, . . . , xk, xk+1} is not Fano.

We will also make the following non-standard definition:

DEFINITION 4.2. LetP = conv{x1, . . . , xk} andP ′′ be Fano polytopes and letxk+1 ∈
Z3 be a point such that, up to the action ofGL(3, Z), P ′′ = conv{x1, . . . , xk, xk+1}. Then we
say thatP is theparent of P ′′, and thatP ′′ is thechild of P .

Clearly a polytopeP is minimal if and only if it has no parents, and is maximal if and
only if it has no children.

Let P be any Fano polytope. Then the following results are immediate:
(i) Any Fano polytope can be obtained from a (not necessarily unique) minimal Fano

polytope by consecutive addition of vertices.
(ii) The number of possible vertices that can be added toP to create a Fano polytope

P ′′ is finite. For supposeP has vertices{x1, . . . , xn} and the vertexxn+1 is to be added. Then
the line throughxn+1 and the origin, extended in the direction away fromxn+1, crosses∂P at
some pointx ′, not necessarily inZ3. x ′ corresponds to either a vertex point ofP , lies on an
edge ofP , or lies on a face.



TORIC FANO THREE-FOLDS WITH TERMINAL SINGULARITIES 119

TABLE 6. The vertices of the maximal Fano polytopes, up to the action ofGL(3, Z)

Comments Vertices

8 Vertices
Simplicial


 1 0 0 −1 −1 0 −1 3

0 1 0 −1 0 −1 1 −2
0 0 1 −1 0 −1 2 −1




8 Vertices
Simplicial


 1 0 0 −1 −1 1 −2 3

0 1 0 −1 0 −1 −1 −2
0 0 1 −1 0 0 −1 −1




8 Vertices
Simplicial


 1 0 1 −2 −1 1 0 0

0 1 −3 2 1 −1 −1 1
0 0 5 −5 −2 2 1 −1




9 Vertices


 1 0 0 −1 −1 0 1 −1 −2

0 1 0 −1 0 −1 1 −2 1
0 0 1 −1 0 0 0 −1 −1




10 Vertices


 1 0 0 −1 −1 0 0 −1 0 −1

0 1 0 −1 0 −1 0 1 −1 2
0 0 1 −1 0 0 −1 0 1 1




10 Vertices


 1 0 0 −1 −1 0 0 −1 0 −1

0 1 0 −1 0 −1 0 1 1 −2
0 0 1 −1 0 0 −1 0 −1 −1




11 Vertices


 1 0 0 −1 −1 0 0 1 −1 0 1

0 1 0 −1 0 −1 0 1 1 −1 0
0 0 1 −1 0 0 −1 1 0 1 −1




12 Vertices


 1 0 0 −1 −1 0 0 1 −1 1 −1 0

0 1 0 −1 0 −1 0 1 −1 1 0 1
0 0 1 −1 0 0 −1 1 0 0 1 −1




14 Vertices


 1 0 0 −1 −1 0 0 1 −1 1 −1 1 0 0

0 1 0 −1 0 −1 0 1 −1 1 0 0 1 −1
0 0 1 −1 0 0 −1 1 0 0 −1 1 1 −1




The first possibility gives us thatxn+1 = −xi for somei ∈ {1, . . . , n}. The second pos-
sibility tells us that conv{xi, xj , xn+1} is an Fano triangle for some distincti, j ∈ {1, . . . , n},
and hence thatxn+1 = −xi − xj . The final possibility splits naturally into two cases.

The first case corresponds to being able to choose three verticesxi, xj , xk defining the
face such that conv{xi, xj , xk, xn+1} is a Fano tetrahedron (wherei, j, k are necessarily dis-
tinct, i, j, k ∈ {1, . . . , n}). Henceλσ1xi+λσ2xj +λσ3xk+λσ4xn+1 = 0 for some(λ1, . . . , λ4)

in Proposition 1.8 and someσ ∈ S4.
The second case corresponds to such a selection being impossible. In this case the face

containingx ′ has four vertices which, up to possible renumbering, correspond to the vertices
x1, x2, x3 andx4, andx ′ equals the intersection of the lines joiningx1 to x3 andx2 to x4.
Thus conv{x1, x3, xn+1} is a Fano triangle, and soxn+1 = −x1 − x3 (or, equivalently, equals
−x2 − x4).
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TABLE 7. The number of Fano polytopes inZ3.

Vertices 4 5 6 7 8 9 10 11 12 13 14

Polytopes 8 38 95 144 151 107 59 21 8 2 1

Simplicial 8 35 75 74 35 5 1 0 0 0 0

Minimal 8 3 2 0 0 0 0 0 0 0 0

Maximal 0 0 0 0 3 1 2 1 1 0 1

(iii) If {x1, . . . , xn} are the vertices ofP , and the Fano polytopeP ′′ is created by adding
the vertexxn+1, then

P ′′ \ P ⊂
⋃
i,j

conv{0, xi, xj , xn+1} .

Using these results and our list of minimal Fano polytopes, it is a relatively straightfor-
ward task to write a recursive function to allow a computer to calculate all the Fano polytopes
up to the action ofGL(3, Z). In particular, (ii) asserts that the calculation will terminate,
since the list is finite; a stronger finiteness result to includeε-log-canonical toric Fano vari-
eties (0< ε ≤ 1) can be found in [BB93, Bor00].

The source code for such a function is available on the Internet at
http://www.maths.bath.ac.uk/∼mapamk/code/Polytope Classify.c.

Using this code a complete classification was obtained in under 20 minutes on an average
personal computer. This list, along with a table giving the parents and children of each Fano
polytope, is available on the Internet at
http://www.maths.bath.ac.uk/∼mapamk/pdf/Fano List.pdf (or .ps).

The maximal polytopes are reproduced in Table 6, and a summaries of the results are
given in Theorem 0.1 and in Table 7.
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