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Abstract. This paper classifies all toric Fano 3-folds with terminal singularities. This
is achieved by solving the equivalent combinatorial problem; that of finding, up to the action
of GL(3, Z), all convex polytopes i3 which contain the origin as the only non-vertex lattice
point. We obtain, up to isomorphism, 233 toric Fano 3-folds possessing at @dastorial
singularities (of which 18 are known to be smooth) and 401 toric Fano 3-folds with terminal
singularities that are n@-factorial.

0. Background and Introduction. A toric variety of dimensionn over an alge-
braically closed fieldk is a normal varietyX that contains a toru¥ = (k*)" as a dense
open subset, together with an actibrx X — X of T on X that extends the natural action of
T on itself.

Let M = Z" be the lattice of characters of the tofliswith dual latticeN = Hom(M, Z).
Then every toric varietX has an associated fahin N ® Q. The converse also holds; to any
fan A there is an associated toric varietyA). For details on the construction and deeper
properties of this crucial bijection see [Dan78, Oda78, Ful93, Ewa96, Cox02].

A normal varietyX is aFano variety if some multiple of the anticanonical diviserK x
is an ample Cartier divisor. Thus is Q-Gorenstein. There is a well-known description of
what it means for a toric variet¥ to be a Fano variety in terms of its fat1 Let{p; };c; be the
set of rays ofA. For each € I there exists a unique primitive lattice elemenpgpfwhich by
a traditional abuse of notation we continue to dengtelr'henX is Fano if and only if p; }ics
correspond to the vertices of a convex polytop&/ifsee [Dan78, Ewa96)).

Fano varieties are important for several reasons. In particular they play a significant role
in the Minimal Model Program (see [\802, FS03]). Many general results concerning smooth
toric Fanon-folds are known [W&02]; of particular relevance, it has been shown that there
exist precisely 18 smooth toric Fano 3-folds.

A normal varietyX is Q-factorial if every prime divisorI” C X has a positive integer
multiple cI" which is a Cartier divisor. Once again, in the toric case there exists a well-known
description in terms of the fan. The toric varietyis Q-factorial if and only if the fanA is
simplicial (see [Oda78, Dai02]).

We say that a famt is terminal if each coner € A satisfies the following:

(i) the lattice pointsps, ..., px corresponding to the rays ef are contained in an
affine hyperplanéd := {n € Ng | m(n) = 1} for somem € Mg
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(i) with the exception of 0, there are no other elements of the laftide the part of
o under or onH ; we have,

NNoN{neNg|mmn) <1} ={0,p1,..., 01}

A toric variety X is terminal (i.e., has terminal singuldies [Rei83]) if and only if the
fan A is terminal.

Terminal singularities play an importantleoin birational geometry. A great deal of
classification results exist in various cases; for example the results of [Mor82, Rei83, MS84,
MMM88]. In [Mor85] it was shown that, with two exceptions, isolated canonical cyclic quo-
tient singularities in dimension three are all eittGorenstein or terminal. In [Rei85] Reid
addresses the issue of classifying 3-fold terhgingularities. In the notation of [Rei85, The-
orem 6.1, lI] we are in the casé/r)(a, —a, 1, 0; 0).

We are now in a position to state our aim, a complete classification of all toric Fano
3-folds with terminal singularities, in terms ofpaurely combinatorial problem. Namely, we
wish to find, up to the action of'L(3, Z), all convex lattice polytopes id® which contain
only the origin as a non-vertex lattice pointy(tvhich we mean that no lattice points lie on
the surface of the polytope other than the vertices, and no lattice points are contained in the
interior of the polytope other than the origin).

An equivalent restatement for 2-folds can be found in [Ewa96, pp. 192—-193]; precisely
five polytopes are found, of which two are minimal (the Fano triangle and the Fano square,
which make an appearance in Section 3) and one is maximal, in the sense of Definitions 3.2
and 4.1. The approach used for this classification relies on the basic result that, up to the action
of GL(2, Z), there is a unique lattice point free triangle (namely ¢bnw1, e2}). This fails
to hold in dimension three (see [Sca85]). It is also worth observing that in dimension two all
polytopes are simplicial (and hence the corresponding toric variety is, at vi@fattorial),
something which is clearly nahe case in dimension three.

The classification presented in this paper is inspired by the work of A. Borisov and L.
Borisov [BB, BB93]. Results given in [BB93, Bor00] assure us that a finite classification is
possible. The combinatorial approach we adopt is based on that formulated in [BB]. In this
unpublished work, the essential steps described can be outlined thus:

(i) Observe that every polytope can be “grown” from a “minimal” polytope.

(i) These minimal polytopes divide into tetrahedra and non-tetrahedra.

(i) The minimal tetrahedra can be classified in terms of their barycentric coordinates.

(iv) The minimal non-tetrahedra can be determined directly.

(v) Arecursive algorithm can be written, allowing a computer to “grow” these minimal
polytopes and hence class#yl polytopes of interest.

The result of Proposition 1.4 is a specific case of [BB93, Proposition 3]. However the
proof presented here is of an elementary coratorial nature, in keeping with the style of
the remainder of this paper. In addition the results of Table 4 are obtained more explicitly
than in [BB93]; again the justification for repeating these results lies in the methods used to
obtain them. With a nice restatement of Propositio4 (concerning teéthedra containing one
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non-vertex lattice point) we obtain a result which closely mirrors one of [Sca85] (concerning
tetrahedra containing no non-vertex lattice points), although once more the methods of proof
are very different.

For practical reasons the final classificatis not contained in this paper, but has been
made available on the internet (see the end of Section 4 for the address). We conclude this
introduction by presenting a summary of the main features of this list (see also Table 7).

THEOREM 0.1. Up to isomorphism, there exist exactly 233toric Fano 3-folds having
at worst Q-factorial singularities, of which 18 are smooth. There exist additional 401 having
terminal singularities that are not Q-factorial.

There exist 12 minimal cases with at worst Q-factorial singularities: eight with Picard
number 1, two with Picard number 2, and two with Picard number 3. There existsone minimal
case with terminal singularities, corresponding to a polytope with 5 vertices.

There exist nine maximal cases, corresponding to polytopes with 8 (three occurrences),
9, 10 ¢wo occurrences), 11, 12and 14 vertices. Only those with 8 vertices are Q-factorial.

The author would like to express his gratitude to Professor Alexander Borisov for mak-
ing [BB] available; the current paper relies heavily upon many of the ideas developed in this
unpublished work. Special thanks to Dr. Gregory Sankaran for introducing me to this prob-
lem, and for his invaluable explanations and advice.

The author wishes to acknowledge funding by an Engineering and Physical Sciences
Research Council (EPSRC) Mathematics CASE studentship from GCHQ.

1. Classifying the tetrahedra: The barycentric coordinates. Throughout this pa-
per we takeN := Z-o = {0, 1, 2,...}. When we refer ta1, e2 or e3 we mean the stan-
dard basis elements @2. If x is a point inZ3, by x1, x» and x3 we mean the integers

such thatx = (x1, x2, x3). For anyg € Q we define|lq] := maa € Z|a < g} and
[q] := min{a € Z| a > ¢}. Thefractional part of ¢, which we shall denotéy}, is given
byg — lq1.

We will make frequent appeals to the following well-known result:

LEMMA 1.1. Anylatticepoint freetrianglewith vertices {0, x1, x2} C Z2isequivalent
under the action of GL(3, Z) to thetriangle with vertices {0, e1, e2}.

Let{x1, ..., x4} C Z2be the lattice point vertices of a tetrahedron containing the origin.
Let 1, ..., na € Q give the (uniqueparycentric coordinate of the origin with respect to the
Xi; i.e.,

pm1xy+ -+ paxa =0,
pi+-+pa=1,
m1>0,...,u4>0.
Choosery, . .., A4 € N coprime such that; = A;/h, whereh = A1 + - - - + Ag.
LEMMA 1.2. Foranyk € (2,...,h — 2} wehavethat Y7 {%ix/h} € (1,2, 3}.
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PROOF. SinceY ? ; Aix/h =« € N it follows thatY"# , (Aix/h} € {0, 1, 2, 3}. Sup-
pose for some € {2,...,h — 2}, {Ajx/h} = O0fori = 1, 2,3,4. We have thak | «A; for
eachi, so letp be a prime such that | &, so thath = p"h’ wherep t h’. Thenp” | «k2;.
Suppose thap” 1 k. Thenp | ; for eachi. Hencep | gcd{A1, ..., A4} = 1, a contradiction.
Thusp” | k. By induction on the prime divisors @fwe see thak | «, so in particulan < «,
which is a contradiction. O

For convenience we make the following definition:

DErINITION 1.3. We say a tetrahedronfsno if the vertices lie at lattice points and
the only non-vertex lattice point it contains is the origin, which lies strictly in the interior of
the tetrahedron.

ProPOSITION 1.4. If the tetrahedron associated with the A; is Fano then
() YF (uc/hy=2foralce(2,....,h—2},and

(i) ged{r;, A;} =1fori # j.

PROOF. Let the}; be associated with a Fano tetrahedron. Since the origin is strictly in
the interior thex; are all non-zero. By Lemma 1.2 we only need to consider the cases where
>4 {hik/h) = 1or3. Butify.?_ {xik/h) = 3 for somec, theny"* | (i (h —k)/h}) = 1.

Suppose forsome e {2,...,h — 2}thesumis 1. Lek; = {r;x/h}. Then(x, ..., xa)
is the (unique) barycentric coordinate for some point in the tetrahedron. We shall show that it
is a non-vertex lattice point not equal to the origin.

We have thath‘zlLAiK/thi is a lattice point, call itu € Z3. We also have that
S (hik/h)x; = 0. Thus

4

4 Ak A0 hike
S =Y = | M |x = —ae 2.
i=1

i=1 i=1

By the uniqueness of barycentric coordinates we have-thais a non-vertex point, since
eachy; < 1. Furthermore supposea = 0, so thaty; = A;/h fori = 1,2, 3, 4. For each
i, Mik/h — [ Mik/h] = A;/h, SO we obtain thati;x/h| = 1;(x — 1)/h and hence that
h | Ai(k —1). As in the proof of Lemma 1.2 we find that| « — 1, and so in particular
h+ 1 < k. This contradicts our range far Hence—a must be a non-vertex, non-zero lattice
point in the tetrahedron, contradicting our hypothesis.

Now suppose for a contradiction that ¢&g, 12} # 1. We have

A3 n A4 Al A2
X3 X4 = — X1 —
gcdir1, A2} gcdirg, Az} gcdir, A2} gcdir, A2}
Since the triangle with vertice®, x3, x4} is lattice point free, by Lemma 1.1 there exists an

element ofGL (3, Z) mappingxz — e1 andx4 — e2. Hence it must be that g, A2} | A3
and gcdig, A2} | Ag, thus gediy, ..., Ag} # 1. ]

COROLLARY 1.5. Let(A1,...,As) beassociated with a Fano tetrahedron. Then
(i) Y Thix/h] =« +2forallk € {2,...,h —2},and

xzez?’.
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(i) ged{r;,h}=1fori=1,...,4

PROOF. Proposition 1.4 tells us thg;_; {xik/h}) = 2 forallx € {2,...,h —2}.
Since{A;x/h} < 1it must be that);«/h} = O for at most one value af We shall show that
infact{ir;jk/h} #Qforalli=1,...,4.

Suppose (with possible relabelling of the indices) that:

(1.1) {A%"}zo.

ThenY2 , {xik/h} = 2 and henc& 2, (i;(h — k)/h} = 1. We obtain

4
(1.2) Z{@}:l.

i=1

But equation (1.2) contradicts Proposition 1.4. Hence,

(1.3) {A;l"};eo fori=1,....4.

By hypothesis we havuix/h} + - - - + {rak/h} = 2, and by definitiorhik/h + - - - +
Ak /h = k. Hence we obtainiix/h| + --- + [dax/h] = k — 2. This, combined with
(1.3), tells us thatrjx/h| = [rijk/h] — 1 fori =1, ..., 4. This proves the first part of the
claim. Finally suppose that, for somegcd;, i} # 1. Then takinge = h/gcdAr;, h} €
{2,...,h — 2} we have{r;x/h} = 0. Hence gcfh;, h} = 1. O

Although not required, it is worth observing the similarity between Corollary 1.5 and the
following:

PROPOSITION 1.6 ([Sca85]). Let alattice point tetrahedron containing no non-vertex
lattice points have the vertices of Lemma 2.3with x, y,z > 1. Letd := x + y + z — 1. Then

() Tex/d]+ [ky/d] + [kz/d] =k +2foral« e {1,...,d — 1}, and

(i) gcd{x,d} =gcdy,d} =gcdz,d} = 1.

Leth > 4. By making use of Corollary 1.5 we can construct bounds on.thé/e may
assume without loss of generality that < --- < A4. For eachc € {2,...,h — 2} and each

i let ai('() = [A;k/h]. The following conditions are immediate:
af) < <af,
(14) aik)+...+az(1k):[(+2’

@?,a?, 0P, a?)=(1,1,1,1) .

We have also thatz/k)(a*) — 1) < i; < (h/i)a®’, and so

1 1
h max —(al.(") —1) <xr <h min =a™.

2<n<k n 2<n=<kn '
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Recalling that; /h = u; gives us

1 1
(1.5) ;(al.('() -D<u< ;ai('(),
1 1
(1.6) max —(@™ — 1) < ui < min =a™.
2<n<k n ' 2<n<k n '

This suggests a recursive method of determining an upper bound. fohssume
h > 4 is associated with a Fano tetrahedron. Then it is possible to construct a sequence
{(ai"), . afl"))}zf,cfh,g satisfying the conditions (1.4) and (1.6) foralk {2,..., h — 2}.

Moreover we have that for eaghe {2, ..., h — 3} there exists somee {1, ..., 4} such that
wry e for j#i,
a; = 03 ..
a;’+1 for j=i.

J
LEMMA 1.7. Leta,k €e Nbesuchthata < k. Thena/k > a/(k+ 1) anda/k <
(a+1)/(k+1).

An immediate consequence of Lemma 1.7 is that

1 1 1
(k+1) () ; ()
—a: = — (a: 1) > min —a:
/<+1a’ K+1(a’ thz= 2<n<k na’
and hence, using (1.5) and (1.6), we obtain
i(agk+l) -1 = ia.('() < u; < min Ea(”) = min Ea(”).
Kk+1 " Kk+1"! 2<n<«k+1n * 2<n<kn '
Thus we have the requirement that
1 1
(x) in =,
a.7) s 1% < 22‘2,( i

Conditions (1.4) and (1.7) are independent:pBo by writing a simple recursive func-
tion on a computer it is possible to test these conditions for large valuesigfing all the
sequences obtained forto check whether a sequence existsifor 1. If no such sequence
exists we have found an upper bound ipnamelyh < « + 2.

It is worth observing that this method for finding a bound/Aaeally does do that; when
all possible sequences have terminated it is impossible to proceed any furtharprinwi
guarantee that this search along all possiblgugnces will terminate has been given here.

It is also worth noting that the bound this method gives is not the tightest, but this defi-
ciency is balanced by the fact that it providing a technique which is independant of

This yields a bound fok < 30. Proposition 1.8 now follows from Proposition 1.4 by the
easy task of checking all possibleup to this bound. An alternative proof of Proposition 1.8
can be found in [BB93].

ProrPOSITION 1.8. Let A1 < --- < A4 be associated with a Fano tetrahedron. Then
(M1, ..., Ag) isequal to one of the following:
1,131,131 1,112 (1,1,2,3) (1,235
(1,3,4,5 (2,3,5,7 (3,4,5,7).
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2. Classifyingthetetrahedra: The coordinatesof thevertices. Let{xy,..., x4} C
Z3 be the lattice point vertices of a Fano tetrahedron. Assume that the indices have been
chosensuchthat < --- < A4. We represent this tetrahedron by the 8 matrix (x] . .. x}),
wherex{ denotes the vertex regarded as a column vector.

PrROPOSITION 2.1. Let A1 < --- < A4 be associated with a Fano tetrahedron. Then,
by means of the action of GL (3, Z), we can transform the tetrahedron to the form

1 0 kK'xg—ary —k""A3—br
0 1 Kia—ary —k'dz—Dbio
00 kXg —kAs

wherea,b € Z,a > Oaresuchthat aiz + brs = 1,and k, k’, k” € N are such that
(2.1a) 0<k’"ha—ar < kra,

(2.1b) and 0 <k'dAg—als < kha

with one of these inequalities equal to zero only if A4 = 1.

PrROOF. By virtue of Lemma 1.1 we may assume without loss of generality that our
tetrahedron has verticgs,, ez, x, y} with A1e1 + A2e2 + Azx + A4y = 0. Thus we see that
A3x3 = —A4qy3, and soys = —(A3/A4)x3 € Z. Hencely | A3xs, but gcdis, A4} = 1 and so
it must be that4 | x3. Thus there exists sonmtec Z such that

x3=kAia, y3=—kXr3.

We may takexs positive, and s@& € N.

We also have thaty + A3x2 + Agy2 = 0, so thatizxz + A4y2 = —i2. Now since
gcdiAz, A4} = 1 there existi, b € Z,a > 0 such thatiza + 140 = 1. This gives us that
A3(—A2a) + Agq(—Xi2b) = —A2, SO thathz(x2 + a)2) + A4(y2 + bA2) = 0. Thus there exists
somek’ € Z such that

x2=k'Ag —aky, y2=—k'Az—bArs.
Similarly we obtain that there exists soieée Z such that
x1=k"da—ah, V1= —k" )3 — br1.

By applying

10
01 € GL(@3,2)
0 0

~ X0

for suitably chosem, d € Z, we can arrange matters so that (with possible relabellirig of
andk”)

0<ik'ha—ady <kla,
0<k’"dg—ar <kla.



108 A. KASPRZYK

Now suppose thdtf14—aX2 = 0. Since gcfh2, 14} = 1, there must exist some constant
m € Z such thak’ = miz anda = m\4. In particular, this gives us thak(mis +b) = 1, so

thatis = 1. Similarly, ifK"A4 — ar1 = 0. m]
The exceptional case in Proposition 2.1 occurring whee - - - = A4 = 1 will be dealt
with now.

PROPOSITION 2.2. Using the notation introduced above, the only exceptional caseis
given, up to equivalence, by the tetrahedron with vertices {e1, ez, e3, —e1 — e2 — e3}.

PROOF. Using the notation introduced in the proof of Proposition 2.1, we may take
a = 1,b = 0 and so taking’A4 — arp = 0 implies that’ = 1. Thus we see that our
tetrahedron has the form
1 0 k-1 -k
0 1 0 -1
00 k —k
wherek” andk are to be determined.
The triangle defined by the origin, the first and the third vertices in the above matrix is

lattice point free. Thus
1 -1
det(O X ) = =+1.

This forcesk = 1 and the resulting tetrahedron is equivalent to that given in the statement.

The following two results are taken from¢&35]. A proof is given for the first result
because we need to know explicitly the steps required for the transformation.

LEMMA 2.3 (cf.[Sca85]). Alattice point tetrahedron containing no non-vertex lattice
points can, by means of a tranglation and the action of G L(3, Z), be transformed to the form

1 0 0 «x
0 1 0 y
0 0 1 z

Wherex»%ZEZ,X’yZO,ZZl-

PROOF. By applying a translation if necessary and considering Lemma 1.1, we may
assume without loss of generality that the tetrahedron is in the form

0 1 0 x
0 0 1y
0 0 0 ¢z

wherez > 1, but the conditions om andy remain to be determined.
Letx — x (modz) andy — y (modz). Observe that this is equivalent to the (left)
action of

[eNeN
O O

a
bl eGL(@S,2)
1
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for suitably chosem, b € Z. Thus we can assume thatOx < z and 0< y < z. Suppose
thatz < x 4+ y. Then set
X y 1
mr=1—po—puz—p4, p2:=1——, puz:=1-=, pg:=-.
Z Z Z
Clearly) " u; = 1, anduy, us, na > 0. We have also that; = (x + y —z — 1)/z > 0. But
then

0 1 0 X 1
i {0 +u2|0) +ps|l]l+ualy] =11
0 0 0 z 1

gives us a non-vertex lattice point in the interior of the tetrahedron, a contradiction. Thus it
must be that > x + y.

Finally we apply the unimodular transformatiom> —x — y + z 4+ 1 which yields the
result. O

PROPOSITION 2.4 (cf. [Sca85], Simplification of Howe’s Theorem).et a lattice point
tetrahedron containing no non-vertex lattice points have the vertices of Lemma 2.3 with
x,y,z> 1 Then{x, y, z} N {1} # @.

Let us now consider a Fano tetrahedron presented in the form given in Proposition 2.1.
In addition we shall assume thst we are not looking at the case handled in Proposition 2.2.
The tetrahedron with vertices given B, e1, e2, (x, v, 2)}, where

x:=k"ha—ar1>1, y=kig—alr>1, z:=kig>1,
is lattice point free. By following the proof of Lemma 2.3 we see that it is equivalent to

1 00 X
010 y
0 01 z—x—y+1

and that; > x + y. Proposition 2.4 tells us thét, y,z — x — y + 1} N {1} # @. Thus

either k" =1 +ar)/ra€Z ifandonlyif x=1
or K =(1+ar)/raseZ ifandonlyif y=1
or k—k —k"=—a(A1+r2)/ag€Z ifandonlyif z—x—y+1=1.

The result of applying this to the barycentdeordinates found in Proposition 1.8 is given in
Table 1. Observe that the only cases of ambiguity arélfot, 1, 1) and(1, 1, 1, 2).
PROPOSITION 2.5. Let A < --- < A4 be associated with a Fano tetrahedron pre-
sented in the form given in Proposition 2.1 Then
0<kiz—k""A3 — b1 < k)3
and 0 <kiz—k'A3 — by < ks
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TABLE 1. The values depending an

(o raia) |a| 0 | Atary/ia | Ararp/ia | aGa+i)/ia

(L1111 |1]| 0 2 2
(1112 |1]| 0 1

(1123 |2|-1 1 —
1,235 |2/|-1 — 1 —
(1,3.4,5) |4 -3 1 _ —
(2,357 |3|-2 1 — _
(34,57 |3]-2 — — 3

with one of these inequalities equal to zero only if A3 = 1, in which case the tetrahedron is
equivalent either to that given in Proposition 2.2 or to

1 01 -1
011 -1
0 0 2 -1

PROOF. Sinceals + big = 1 we have that = (1 — br4g)/A3. By substituting this
into equation (2.1a) we obtaiy /A4 < k”A3 + bA1 < kA3 + A1/A4. Splitting this into two
inequalities yields:

ki3 — k/,)»3 —br1 > —A1/Aa4
and ki3 — kA3 — bi1 < klz — A1/Ara.

Recall thati1/A4 € (O, 1]. Hence we have that 8 kAz — kA3 — bA1 < kAs. If instead we
start with equation (2.1b) we derive thatOkAz — k'A3 — by < kAs.

Now suppose thatis — kA3 — ba; = 0. Then we have thak — k”’)A3 = bA1, and
since gcdi1, A3} = 1 there must exist somee Z such thak — k” = cAy andb = ci3. But
thenais + cizrg = 1, which forcesiz = 1 (as required). The only cases whege= 1 are
whena = 1, b = 0. Hencek = k”.

There are two possible choices far. First consider the case whexg = 1. We have
thatk > k7 + k' — 2, andk’ > 2. Thusk’ = 2. Hence we see that our Fano tetrahedron is
equivalent to the form

1 0 -1 O
01 1 -2
0 0 k —k

The triangle with vertices given by the origin, and the second and fourth column of the above
matrix is lattice point free. By Lemma 1.1 it must be that 1, which gives a tetrahedron
equivalent to that derived in Proposition 2.2.
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Finally, consider the case whexg = 2. We have that > k” + k' — 1, andk’ > 1. Thus
k" = 1. Hence we see that our Fano tetrahedron is equivalent to the form

1 0 -1 O
o1 1 -1
0 0 2% —k
As before we see that= 1 and the result follows. ]

We consider a Fano tetrahedron presented in the form given in Proposition 2.1 and as-
sume we are not looking at the case handled in Proposition 2.5. By Proposition 2.4 we have
that

. 1+bA
either k— k" = — M 7
A3
14+ b1
or k—k' = + 2cz
A3
A A
or k—k — k' =piitr2 7
A3

The result of applying this to thbarycentric coordinates found in Proposition 1.8 is presented
in Table 2. The results of Table 1 and Tablednplement each other beautifully, allowing
the relationships amongktk’ andk” shown in Table 3 to be established.

We are now in a position to calculate the vertices of the Fano tetrahedra (up to the action
of GL(3, Z)). We will proceed by taking each barycentric coordinate in turn and combining
the results of Table 3 and Proposition 2.1. The final results are collected together in Table 4.
It is worth comparing this with the results of [Suz02].

Recall that the matriX(x]...x}) is used to represent the tetrahedron with vertices
{x1,...,xa}. In what follows, references to the vertex should be regarded as references
to thei™ column of this matrix.

(i) Firstwe consider the case with barycentric coordirfate, 1, 1). From the results
of Table 3 and Proposition 2.1 we have that our Fano tetrahedron has two possible forms, both

TABLE 2. The values depending én

(i 20g.0) [a ]| b | @rbrp/ag | Arbra)/ag [ b1+ 12)/03

(11,11 |1] 0 1
(1112 |[1] o0 1

(11,23 |2]-1 0 1
(1,235 |2]|-1 0 — -1
(1,345 |4]|-3 — -2 -3
(2,357 |3]|-2 — 1 )
(34,57 |3]|-2 1 _ _
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TABLE 3. The relationships amorig k" andk”.

(A1, 22, A3, Aa) | k | K | K" |
1,111 k|k=2| 2
k| 3 |k-1
1.1,1,2) k|k—1] 1
k|k—1] 2
1,1,2,3 k| &k 1
1] 1 1
1,2,3,5) k| 1 k
(1,3,4,5) k|k—2] 1
k|k+2| 1
2,3,5.7) klk+1| 1
(3.4,5,7) k| 2 |k+1
of which are equivalent to
10 1 -2
01 -3 2
0 0 k —k

We observe thats tells us that gc(B, k} = 1 andx, tells us that gcf2, k} = 1. Furthermore,
takingk = 1 gives us a tetrahedron equivalent to that found in Proposition 2.2. Suppose that
k > 7. Then(4/k)x2 + (2/k)x3 + (1/k)x4 = e3, which contradicts our tetrahedron being
Fano. Thus the only remaining possibility is thkat= 5, which by inspection we see does
indeed give us a Fano tetrahedron.

(i-a) Now we consider the case with barycentric coordinate., 1, 2). By Table 3 and
Proposition 2.1 we see once more that our Fano tetrahedron can take two possible forms. First
we consider the form equivalent to

10 1 -1
01 -3 1
0 0 % —k

If we takek = 1 we obtain a Fano tetrahedron equivalent to that found in Proposition 2.5.
Suppose that = 2. Then(1/2) (1, —3,4) + (1/2) (—1,1, —2) = (0, —1, 1) is a hon-vertex,
non-zero lattice point in the interior of the tetrahedron, and hence it is not Fano. The third
column tells us that gd8, k} = 1. Finally, the tetrahedron is not Fanokif> 4 since then
(2/k)x2 4+ (L/k)x3 + (1/k)xs = e3.

(ii-b) Now we consider the second possibility, which is equivalent to

1 0 3 -2
01 -3 1
0 0 % —k
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Whenk = 1 we obtain a Fano tetrahedron equivalent to the one previously founand
x4 tell us that ge€i3, k} = 1 and gcdi2, k} = 1, respectively, and ik > 7 we have the
non-vertex, non-zero internal lattice point given 8/ k)x1 + (1/k)x3 + (3/k)x4 = —es.
Thus the only remaining possibility is= 5, which contains the lattice poit/5)(1, 0, 0) +
(2/5)3,-3,10 + (1/5(—2,1, -5 = (1, -1, 3).

(iif)  For barycentric coordinatél, 1, 2, 3) the two possibilities are (up to equivalence)

1 0 1 -1 1 0 1 -1
01 -2 1 and 01 1 -1
0 0 X —2k 0 0 3 -2

The third column tells us thdt must be odd, but ik > 3 we have the interior lattice point
(1/k)x2 + (1/k)x3 + (1/k)xa = e3. Thus the only possibility is that = 1, but the resulting
tetrahedron is equivalent to that already found.

(iv) When we have barycentric coordingtk 2, 3, 5) our tetrahedron equivalent to

1 0 -2 1
01 1 -1
0 0 &% -3k

The third column tells us thatis odd, and ik > 3 we have the internal lattice poi¢tt/ k)x1+
(1/k)x3 + (1/k)x4 = 2e3. By inspection we see that the case whieee 1 is Fano.

(v-a) For barycentric coordinatd, 3, 4, 5) we have two possibilities. First we consider
the case where our tetrahedron is equivalent to

10 1 -1
01 -22 17
0 0 5% —4k

x3 tells us thak is odd. Ifk > 7 then it is not Fano, sina®/ k)x2 + (1/k)x3+ (1/k)xq = es.

If k = 5then(1/5)(1, —22, 25) + (1/5)(—1, 17, —20) = (0, —1, 1), and ifk = 3 thenk = 3
then(1/3)e1 + (1/3)e2 + (1/3)(—1,17, —12) = (0, 6, —4). By inspection we see that the
case wheré = 1 is Fano.

TABLE 4. The vertices of the Fano tetrahedra, up to the actiailof3, Z)

(1/4(1,1,11) (1/4(1,1,1 1) (1/9(1.1, 1,2 (1/7)(1,1,2,3)
1 0 0 - 1 0 1 -2 1 0 1 -1 1 0 1 -1
0 1 0 - 0o 1 -3 2 0 1 1 -1 01 -2 1
0o 0 1 - 0O 0 5 - o 0 2 -1 o o0 3 -2
(1/11)(1,2,3,5) (1/13)(1,3,4,5) (1/17(2,3,5,7) (1/19(3,4,5,7)

1 0 -2 1 1 0 1 -
o1 1 -1 o1 -2 1
0o o0 5 - 0o 0 5 -

1 0 1 -1 1 0 -2 1
01 -2 1 o1 2 =2
o o0 7 -5 0o 0 7
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(v-b) The second possibility is the tetrahedron equivalent to

10 1 -1
01 -2 1
0 0 % -4k

We require thak is odd, but ifk > 3 we obtain the pointl/k)x2 + (1/k)x3+ (1/k) x4 = e1,
and wherk = 1 we obtain the tetrahedron found above.
(vi) Continuing in the same vein, for barycentric coordin@&ge3, 5, 7) we have

10 1 -1
01 -2 1
0 0 & -5k

This tells us that is odd, and it > 3 we obtain the internal lattice poi(it/ k)x2+ (1/k)x3+
(1/k)xa = 2e3. Thusk = 1 is the only possibility, and we see by inspection that it is indeed
Fano.

(vii) Finally consider barycentric coordina®, 4, 5, 7).
This gives us

1 0 -2 1
01 2 =2
0 0 7 —5k

Once more we see thatmust be odd, and that if > 3 then it is not Fano since we have
(1/k)x1+ (1/k)x3+ (1/k)xa = 2e3. Whenk = 1 we do indeed get a Fano tetrahedron.

3. Classifying the minimal polytopes. We extend Definition 1.3 to any polytoge

DEFINITION 3.1. We say a lattice point polytop in Z2 is Fano if P is convex and
the only non-vertex lattice point it contains is the origin, which lies strictly in the interior of
the polytope.

Given any Fano polytop® with vertices{x1, ..., xx} we make the following definition:

DEFINITION 3.2. We sayP isminimal if, forall j € {1, ..., k}, the polytopeP’ given
by the verticegxy, ..., x¢} \ {x;} is not Fano.

DEFINITION 3.3. LetM = {pa,..., pi} be afinite set of points ilNg. The convex
hull of M is given by conw! := {(Y_%_y vjp; | v; = 0forall j, 35_; v; = 1} € Na.

Let us consider a minimal Fano polytoge Since 0 e P there exist non-coplanar
verticesxy, ..., x4 of P such that 0= con{xy, ..., x4} =: P’.

Either P is equivalent to one of the tetrahedra in Table 4, or it is not. If it is not, then
minimality gives us that it does not contain a Fano tetrahedron; in parti®iler not Fano.
We assume that this is the case.

SinceP’ is not a Fano tetrahedron it must be that either the origin lies on a faeeaf
on an edge of”’. If the origin lies on a face oP’ then P contains a Fano triangle. Thus there
exist three vertices aP which lie in a plane containing the origin, and the origin lies strictly
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in the interior of the triangle defined by these three points. This possibility will be discussed
in further detail below.

Assume now thaP does not contain a Fano triangle. Then it must be that the origin lies
on one of the edges dt’, say on the edge defined by andx,. Since the origin lies in the
strict interior of P there must exist distinct vertices, . . ., y4 of P not equal tov1 or x» such
that con\{x1, x2, y1, y2} is @ Fano square and cqnmy, x2, y1, y2, y3, y4} is @ Fano octahedron.
Minimality gives thatP is a Fano octahedron, and these will be classified in Lemma 3.4.

We return now to considering in more detail the case wieoentains a Fano triangle,
say that defined b1, x2, x3}. Since the origin lies in the strict interior @f there must exist
verticesy; andy; lying on either side of the plane containing our Fano triangle. Minimality
then gives us thaP is precisely the polygon with verticéss, x2, x3, y1, y2}.

Now consider the line passing through the origin andThis line crosses the polytope
P at pointsy; € Z3 andx not necessarily iZ3. There are three possible locations for

(i) x is equal toyo. Theny, = —y1. These will be classified in Lemma 3.5.

(i) x lies onthe edge with endpointss, y2}. Then conyx1, y1, y2} is a Fano triangle.
We use the fact that the origin has barycentric coordir&f8, 1/3, 1/3) with respect to
{x1, y1, y2}. Thus the line passing through and the origin bisects the line with endpoints
{y1, y2} at a pointx’, say. Now the length of the line joininfx1, O} is twice the length of
the line joining{x’, 0}. Similarly by considering the Fano triangle c§my, x2, x3}, the line
passing throughs and the origin bisects the line with endpoirits, x3} at a pointx”, say,
and we have that the distance framto the origin is twice the length of the line joining the
origintox”. Hence we see thdt», x3, y1, y2} are coplanar and form a parallelogram. These
will be classified in Lemma 3.6.

(i) x’ lies strictly in the interior of the triangle cofwi, x2, y2}. But then
conv{x1, x2, y1, y2} is a Fano tetrahedron, contradicting our assumption.

LEMMA 3.4. Theverticesof theminimal Fano octahedra (up to theaction of GL(3, 2))
are given by

1 0-1 0 0 O 10 -1 0 1 -1
01 0 -1 0 0], 01 0 -1 1 -1
00 0 0 1 -1 00 0O 0 2 -2

ProOF. By making use of Lemma 1.1 and recalling thatdoes not contain a Fano
triangle, we may take the vertices &f to be {e1, —e1, e2, —e2, x1, x2}. We observe that
x1 = —xp, for otherwise we would have thd contains a Fano tetrahedron. So take-

—x2 = x1 = (a, b, c). First we shall show that, without loss of generality, we may take
a, b, ¢ such that
(3.1 O0<ac<b

c
<-.

-2

Trivially we may assume that 8 a < b. Suppose thai > ¢/2. Thenb — ¢ > —¢/2 and so
¢ —b < ¢/2. This process corresponds to the actio@d@f(3, Z) transforming
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1 0 -1 0 a -a 1 0 -1 0 a —a
01 0 -1 b —b to 0 -1 0 1 c¢c—b —(c—-b].
0O 0 O 0 ¢ —c 0 O 0O O c —c

Hence we may assume that the inequality (3.1) holds.

Now consider the pointz. Eitherx = e3 or ez lies outside ofP. The first possibility
gives us the first Fano octahedron. The second possibility tells ugghatst lie on the
opposite side to the origin of the plane defined{by1, —e2, x}. This plane intersects the
z-axis at the point0, 0, ¢/(a + b + 1)). This gives us that < a + b. Combining this with
(3.1) gives us that < a and sab = a. Thisin turn gives us that < 2b and 2 < ¢, and so we
obtain 2« = 2b = ¢. Thus (up to the action af L(3, Z)) we have that = 1, b = 1, ¢ = 2,
which gives us the second Fano octahedron. m|

LEmMA 3.5. If Pisaminimal Fano polytope with vertices {x1, x2, x3, y1, —y1} such
that {x1, x2, x3} are the vertices of a Fano triangle, then P is equal (up to the action of
GL(3,2)) to one of

1 0 -10 O 1 0 -1 1 -1
01 -10 0], 01 -1 2 -2].
0O 0 0 1 -1 0O 0 0 3 -3

PROOF. By making use of Lemma 1.1 we may take the vertice®Pdb be {e1, ez,
—e1 — ez, x,y}. If y £ —x then P would contain a Fano tetrahedron, which contradicts
minimality. Letx = (a, b, ¢). We claim that, without loss of generality, we may take, ¢
suchthatO<a < b < cand

(3.2) a+b<c.

Clearly we can take 6< a < b andc > 0. Suppose that + b > ¢. Then we have that
(c —a) + (¢ — b) < c. By using the fact that = —x and applying the transformation

1 0 —c
0 1 —c)eGL(@3, 2
0 0 —

we see that we may assume that the inequality (3.2) holds.

Now consider the pointz. Eitherx = e3 or ez lies outside ofP. The first case gives us
the first Fano polytope in the statement. The second case tells us that we; i@geon the
opposite side to the origin of the plane definedby —e1 — e2, x}. This plane intersects the
z-axis at the point0, 0, ¢/(2b — a + 1)), and so

(3.3 2b—a>c.

Now consider the point’ = ez + e3. Eitherx’ = x, which gives a Fano polytope
equivalent to the one previously found, drlies outside ofP. If this is the case we have
thatx’ lies on the opposite side to the origin of the plane definefkby—e1 — e2, x}. This
plane intersects the line passing through the origin @né ez at the point(0, k, k) where
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k:=c/(2a—b+c+1). Hence
(3.4) b<2a.

Now suppose boths andx’ lie outside P. Combining the inequalities (3.2) and (3.3)
gives us that 2 < b, and so by (3.4) we obtain thau?= b. Thus (up to the action of
GL(3,2)) we have that: = 1,b = 2,¢ = 3. A quick check confirms that this is indeed
Fano. O

LEMMA 3.6. If P isa minimal Fano polytope with vertices {x1, x2, x3, x4, x5} such
that {x2, x3, x4, x5} are coplanar and give the vertices of a parallelogram, then P is equal
(uptothe action of GL(3, Z)) to

1 0 -11 O
01 -11 O
00 0 1 -1

PROOF. Since P does not contain a Fano tetrahedron it must be that opposite cor-
ners of the parallelogram, along with, give us a Fano triangle. Thus we can (by virtue
of Lemma 1.1) writeP in the form

1 0 -1 a+1 —a
0O 1 -1 b+1 —b
0O 0 O c —c

whereO<a+1<b+1<c.

Consider the point-e3. Eithera = 0,b = 0,¢ = 1, which gives the Fano polytope
in the statement, or-e3 lies outsideP. Thus—e3 lies on the opposite side to the origin
of the plane defined byes, e2, (—a, —b, —c)}. This plane intersects theaxis at the point
(0,0,c¢/(a + b+ 1)). Thus we have thatc > —a — b — 1 and so

(3.5) c<a+b.

Now letx” = e1 + e2 + e3. Eithera = 0, b = 0, ¢ = 1, which gives the Fano polytope in
the statement, o’ lies outsideP. Thusx’ lies on the opposite side to the origin of the plane
defined byes, e2, (a + 1, b + 1, ¢)}. Thus the plane intersects the line through the origin and
x" atthe point(k, k, k), wherek := ¢/(2c —a — b —1). Thus we see that< 2c —a—b—1
and so

(3.6) c>a+b+1.

Now suppose both-e3z andx’ lie outsideP. But then both inequalities (3.5) and (3.6)
must be satisfied, which is impossible. |

Combining the results of Table 4 and Lemmas 3.4-3.6 we obtain Table 5.

4. Classifying all Fano polytopes. Given any Fano polytopeP with vertices
{x1, ..., xx} we make the following definition (cf. Definition 3.2):
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TABLE 5. The vertices of the minimal Fano polytopes, up to the actiafi b3, Z)

Comments Vertices
. 1 0 1 -2
smpical | [0 L -3 2
P 0 0 5 -5
. 1 0 1 -1
smpical | [0 L 2 1
P 00 7 -5
. 1 0 -2 1
smpicar | 01 2 -2
P 00 7 -5
. 1 0 0 -1
smpical | (¢ 1 0 -
P 00 1 -1
. 1 0 1 -1
smpicar | 01 2 1
P 00 5 -4
. 1 0 —2 1
smpical | (01 1 -1
P 0 0 5 -3
. 1 0 1 -1
smpical | (01 1 -1
P 00 2 -1

DEFINITION 4.1. We sayP is maximal if, for all x;11 € Z3\ {x1, ..
tope P’ given by the vertice$xy, . .

We will also make the following non-standard definition:

DEFINITION 4.2.

LetP = conVxy, ..

Comments \ertices
. 1 0 1 -1
Smplical 0 1 -2 1
P 00 3 -2
. 1 0 1 -1 -1
el B LR
P 003 0 -3
. 1 00 -1 0
amplicar | 0 1 0 -1 0
P 001 0 -1
101 -1 0
5 Vertices 0 1 1 -1 0
001 0 -1
. 101 -1 0 -1
e (5910 5
P 002 0 0 -2
. 1 00 -1 0 o0
amplicr | (010 0 -1 0
P 001 0 0 -1

., Xk, Xp+1} is not Fano.

say thatP is theparent of P”, and thatP” is thechild of P.

Clearly a polytopeP is minimal if and only if it has no parents, and is maximal if and

only if it has no children.
Let P be any Fano polytope. Then the following results are immediate:

(i) Any Fano polytope can be obtained from a (not necessarily unique) minimal Fano

polytope by consecutive addition of vertices.

(i) The number of possible vertices that can be addeH to create a Fano polytope
., xp} and the vertex, 1 is to be added. Then
the line throughy,+1 and the origin, extended in the direction away frem 1, crosses P at
some pointx’, not necessarily iZ3. x’ corresponds to either a vertex point Bf lies on an

P’ is finite. For suppos® has verticegxi, ..

edge ofP, or lies on a face.

., x¢}, the poly-

., x;}andP” be Fano polytopes and let,1 €

Z3 be a point such that, up to the action®L.(3, Z), P = conv{xu, . .., Xk, xx+1}. Then we
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TABLE 6. The vertices of the maximal Fano polytopes, up to the acti@niof3, Z)

Comments \ertices
. 1 00 -1 -1 0 -1 3
gi\frlti'g;‘? 010 -1 0 -1 1 -2
P 001 -1 0 -1 2 -1
. 1 00 -1 -1 1 —2 3
2%”;'5;? 0010 -1 0 -1 -1 -2
P 001 -1 0 0 -1 -1
. 1 0 1 2 -1 1 0 o
gi\n/qerlti'ggf 01 -3 2 1 -1 -1 1
P 00 5 -5 —2 2 1 -1
1 00 -1 -1 0 1 -1 —2
9 Vertices 0O 1 0 -1 o -1 1 -2 1
001 -1 0 0 0 -1 -1
1 00 -1 -1 0 0 -1 0 -1
10 Vertices 0O 1 0 -1 0o -1 o0 1 -1 2
001 -1 0 0 -1 0 1 1
1 00 -1 -1 0 0 -1 0 -1
10Vertices | [0 1 0 -1 0 -1 0 1 1 -2
001 -1 0 0 -1 0 -1 -1
1 00 -1 -1 0 0 1 -1 0o 1
11 Vertices 0O 1 0 -1 0o -1 o0 1 1 -1 0
001 -1 0 0 -1 1 0 1 -1
1 00 -1 -1 0 0 1 -1 1 -1 o
12Vertices | [0 1 0 -1 0 -1 0 1 -1 1 0 1
001 -1 0 0 -1 1 0 0 1 -1
1 00 -1 -1 0 0 1 -1 1 -1 10 o0
l4Vertices | [0 1 0 -1 0 -1 0 1 -1 1 0 0 1 -1
001 -1 0 0 -1 1 0 0 -1 1 1 -1

The first possibility gives us that,.1 = —x; for somei € {1, ..., n}. The second pos-
sibility tells us that confx;, x;, x,41} is an Fano triangle for some distingtj € {1, ..., n},
and hence that, 1 = —x; — x;. The final possibility splits naturally into two cases.

The first case corresponds to being able to choose three vertices x; defining the
face such that cony;, x;, x, x,41} is a Fano tetrahedron (whefgj, k are necessarily dis-
tinct,i, j, k € {1,...,n}). Hencel,1x; +Ao2x j+Ao3xk+Aqaxp 1 = O fOr somery, .. ., Asg)
in Proposition 1.8 and some € Sy.

The second case corresponds to such a selection being impossible. In this case the face
containingx” has four vertices which, up to possible renumbering, correspond to the vertices
x1, x2, x3 andxg, andx’ equals the intersection of the lines joining to x3 andxz to x4.

Thus conyx1, x3, x,+1} is a Fano triangle, and sq1 = —x1 — x3 (0or, equivalently, equals
—X2 — X4).
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TABLE 7. The number of Fano polytopesﬁ.

Vertices |4 5 6 7 8 9 10 11 12 13 14

Polytopes| 8 38 95 144 151 107 59 21 8 2 |

Simplicial | 8 35 75 74 35 5 1 0 O

Minimal 8 3 2 0 0 0 0O 0O o o0 O
0 0 O 0 3 1 2 1 1

Maximal

(i) If {x1,...,x,}arethe vertices aP, and the Fano polytope” is created by adding
the vertexx, 1, then

P"\ P C UCOHV{O, Xi, Xj, Xp41) .
L]

Using these results and our list of minimal Fano polytopes, it is a relatively straightfor-
ward task to write a recursive function to allow a computer to calculate all the Fano polytopes
up to the action ofGL (3, Z). In particular, (ii) asserts that the calculation will terminate,
since the list is finite; a stronger finiteness result to incledeg-canonical toric Fano vari-
eties (O< ¢ < 1) can be found in [BB93, Bor00].

The source code for such a function is available on the Internet at

http://ww. mat hs. bat h. ac. uk/ ~mapank/ code/ Pol yt ope_Cl assi fy. c.

Using this code a complete classification was obtained in under 20 minutes on an average
personal computer. This list, along with af&lgiving the parents and children of each Fano
polytope, is available on the Internet at

http://ww. mat hs. bat h. ac. uk/ ~mapank/ pdf / Fano_Li st . pdf (or. ps).

The maximal polytopes are reproduced irblEa6, and a summaries of the results are

given in Theorem 0.1 and in Table 7.
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