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ON A FAST DIFFUSION EQUATION WITH SOURCE
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Abstract. We study in this paper the positive solution of the Cauchy problem for a
fast diffusion equation with source. We derive a secondary critical exponent of the behavior
of the initial value at infinity for the existence of global (in time) and nonglobal solutions of
the Cauchy problem. Furthermore, the large time behaviors of those global solutions are also
studied.

1. Introduction. In this paper, we study the positive solution of the Cauchy problem
for the equation

1.1 =AW +u?, xeR",t>0,
with the initial condition
1.2 u(x,0 =up(x), xeR",

wherem > 0, p > 1, andug is a bounded positive continuous functiorRf.

Form = 1, the equation (1.1) is the standard heat equation with a source term. A solution
is said to blow up in finite time if its sup norm tends to infinity in finite time. In a paper by
Fujita [5], it is shown that there is a critical expongjt = 1 + 2/n such that the solution
of (1.1)—(1.2) blows up in finite time for allp, if 1 < p < p7; and there are global (in time)
solutions and nonglobal (i.e., blowing-up in finite time) solutiong; it p}. This valuep]
is the so-called Fujita exponent. In fact, the Fujita exponent for (1.1)—(1.2) fomany0 is
given byp’ = m + 2/n. For more references on this topic, we refer the readers to two nice
survey papers [11] and [1].

Recently, Mukai, Mochizuki, and Huang [12] have studied the case whemil < p.

It is shown, among other things, that fpr > p* there is a secondary critical exponent
a* = 2/(p — m) such that the solution of (1.1)—(1.2) blows up in finite time for any initial
valueug which behaves likéx|~ at |x| = oo, if a € (0, a*); and there are global solutions
for initial value ug which behaves likéx| ™ at|x| = oo, if a € (a*, n). Motivated by their
work, we shall extend these results to the case when2/n)y <m < 1andp > p}.

We also study the large time behaviors of global solutions of the Cauchy problem (1.1)—
(1.2) forthe case: < 1. The casen > 1 is treated in [12]. For more references on the large
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time behaviors for various problems, we refeg tieaders to the references cited in the paper
[6].

This paper is organized as follows. First, some preliminaries are given in Section 2.
We study the forward self-similar solutions of the equation (1.1) without the source«term
Also, we prove a comparison principle. In Section 3, we derive the secondary exponent which
is given bya* = 2/(p — m). Finally, we study the large time behaviors of global solutions.
Itis shown that ag — oo the solutioru of (1.1)—(1.2) behaves like the self-similar solutions
which are derived in Section 2.

2. Preliminaries. In the sequel, we always assume thit- 2/n);. < m < 1 and
p > m+2/n. Setl = 2/(1— m). Note thatn < [. First, we recall from [9] that for any
a € (0,n) and anyM > O there is a unique positive global solutidhy ,(x, r) to the Cauchy
problem

(2.1 ur =AW, xeR't>0,

(2.2) u(x,0)= M|x|™, xeR'.

Here the initial functionM |x|~¢ is locally integrable inR", sincea € (0,n). Indeed, this
solution is the so-called forward self-similar solution of (2.1) given by

(2.3) Upa(x,t) =174 Ll B = _
. M,a ) - I9m tﬂ ) - 2—(1—}’)1)61’
for some positive functiom,, satisfying the following boundary value problem:
Vi n—1 my/ /
2.4 (g™ +T(g’ ) + Bag+psg =0, £>0,
(2.5) g0 =0, lim ggE) =M.
&£—o00

Note that8 > 0, sincea < n < [.

We remark that the existence and uniquenekthe self-similar solution can also be
derived by the following ordinary differential equation approach (cf. [7]). In this approach,
we can derive more properties of the solutions. We shall outline the main idea as follows.

Given a fixedy > 0. We consider the following initial value problem:

n—1

£

2.7 h'(0) =0, h(0)=n,

(2.6) n + W + Bah? + BE(hY) =0, & > 0,

whereg = 1/m. The existence and uniqueness of local solutiea £, of (2.6)—(2.7) follows
from the standard theory of ordinary differential equations. Define

y
(2.8) p(y) = eXP{ﬁQ/O éh(%’)qldé} :
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Then (2.6) can be rewritten as

§
(2.9) W) = —%/0 " Lp()h(s)ids, &> 0.

Hencenh is decreasing as long ass positive.
We claim thath > O for all ¢ > 0. Suppose for the contradiction that> 0 in [0, R)
andh(R) = 0 for someR > 0. Set

1, he)
H(E) = E[h 61 +,30/0 shds.

SinceH'(§) < 0 for & € [0, R), we obtain thati’(¢) is bounded forf € [0, R). Now,
multiplying the equation (2.6) b§*~1 and integrating it ovef0, y] for y < R, we obtain that

:
2.10 By"h(3)? + Bl —n) /0 £ )dE + Y (y) = 0.

Letting y — R~ and notingh’ < 0 in (0, R), we reach a contradiction, sinee < n.
Therefore, the local solution can be extended to a global solution.

Next, by applying a method used in [7], we can show th@) — 0 asé — oc.
Moreover,

(2.12) Elim ERI(E) =M

for someM = M(n) > 0. It remains to show that there is a one-to-one correspondence
betweenV € (0, co) andn € (0, 0o). Indeed, this can be seen from the relation
1-—-m

2m

hy(§) = nhi(n°€), 0 = > 0.

Hence
(2.12) M(n) = Y@M M (1).

We conclude that for eadd > 0 there is a unique positive solutigy, satisfying (2.4)—(2.5).
We also need a comparison principleialhis similar to Proposition 2.1 in [6].
Let¢ € C°(R") be fixed suchthat & ¢ < 1,¢ = 1for|x| < 1,¢ = 0for|x| > 2,
and

1-m
E(¢)=(/ |A¢|1/<1‘m>¢—m/<l—m>dx) <00,
Rn

For the existence of such functign we refer the readers to [9] or [8, p. 1356].
For this¢ and for anyR > 0, let¢r(x) = ¢(x/R). Notice that

(213 E(¢r) = R™Z"ME(g).
Denote
Lu=u; — A@W™) —u?.
ForanyR > 0, letBg = {x € R" | |x| < R}. We now prove the following comparison
principle.
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PROPOSITION 2.1. Letu,v e C®(R"x (0, T)NCOR"* x [0, T]) and0 < u,v < M
inR" x [0, T] forsome M > 0and T > 0. Supposethat Lu < Lv inR* x (0, T]in the
classical senseand u(x, 0) < v(x, 0) for x € R". Thenu <vinR" x (0, T].

PrROOF Let g be the characteristic function of the §et> v}. It follows from Kato’s
inequality [10] that

(2.1% Al —v"™) 4] = gA@W™ — ™),
wherez, = max(z, 0). SinceLu < Lv and
gu? —vP) < pMp_l(u — V)4,

it follows from (2.14) that

0
(2.15 S =041 < Al = 0™ 4] + pMPHu —v)4 .

Multiplying (2.15) by¢r and integrating it oveR", we get

d
Y [/R" (u — U)+¢Rdxi|

< / U™ —v") ;| Agrldx + PMp_lf (u —v)+prdx
R)‘I R’l
(2.16) < / [((u —v)£]"|Apprldx + PMp*l/ (u —v)+Prdx
Rn Rﬂ
< CR™2tnd=m |:/ (u— U)+¢Rdxi|
R’l

+ pM”*l/ (u —v)1rdx
Rll

forany R > 0, whereC is a universal constant.
Let L = pMP~1and set

h) = [ = vy 0vrcods
Then by (2.16) we have

B(t) — Lh(t) < CR™2HA=mpm )
and so

(e’“h(t))’ < CR*2+”(1*m)e*Lthm(t) < CR72+n(lfm)[ethh(t)]m.
By integrating the above inequality from Otpwe end up with
/R =)y (x, DR(0)dx < C R~/ A=mytn 1/ (A=m) Lt

Hence we obtain that

(2.17) (u — v)4(x, 1)dx < CR™A=mtn 1/A=m) Lt
Bpg
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Since 2(1— m) > n, by lettingR — oo in (2.17), we obtain that

(u—v)y(x,t)dx =0.
Rll

This completes the proof of the proposition. O

We remark here that any positive (classical) solution of (1.1) foe& < T is in
C*®(R" x (0,T]). Indeed, this follows from a bootstrap argument by applying the stan-
dard differentiability theory of parabolic equations (cf. for example [3, p. 74]). Notice that
u > 0 and sa: has a positive lower bound in any compact subdomaiR"0k (0, T']. Fur-
thermore, ifug is continuous, then the solutienof (1.1)—(1.2) is continuous up to= 0, i.e.,

u € CO(R" x [0, T). This can be seen by a regular approximation procedure and the standard
regularity theory of parabolic equation.

3. Secondary critical exponent. Givena > 0, we define

®, = {qﬁ € B(R")

liminf |x|%¢(x) > 0} ,
|x|—00

P = {¢ € B(RY)

limsup|x|®¢(x) < oo},

|x|—00
where B(R") denotes the space of bounded positive continuous functioR8.irLet a* =
2/(p — m). Note thatp > m + 2/n implies that O< a* < n.

First, we derive a blow-up result as follows.

THEOREM 3.1. Supposethat ug € &, for somea € (0, a*). Then the solution u of
the Cauchy problem (1.1)—(1.2)blows up in finite time.

PROOF  Multiplying the equation (1.1) by, (x) = Ae~¢*, wheree > 0 andA =
A(e) = (J/&/(4m))", and integrating it oveR”, we obtain

i/ u(x,t)qbg(x)dx:/ A(u'")(x,t)qbg(x)dx—i—/ uP (x, e (x)dx .
dt Jge R"

Rn
Since

/ Aw™) (x, )pe(x)dx = / u™(x, ) A (x)dx > —2871/ u™(x, e (x)dx ,
R" R"

R

and by Jensen’s inequality

p
/u”(x,t)qba(X)dXZ(/ M(x,t)¢s(X)dX> ,
R" R"

/u’"(x,t)cbs(x)de(/ u(x,t)rbe(X)dx) ,
R’l R)‘I
we derive that

3.1 B () > hP(t) — 2enh™ (@), t > 0,
where

h(t) = / u(x, t)p:(x)dx .
Rn
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If
(3.2 h(0) > (2en)Y/(P=m

then by (3.1): blows up in finite time, sincg > 1. Therefore, the solution blows up in
finite time.

It remains to verify the condition (3.2). Sineg € &, for somea € (0, a*), there are
positive constant8/ andR such thatig(x) > M|x|~ for any|x| > R. We compute that

h(0) =/ Uo(xX) e (x)dx > MA/ x|~ P ax
Rll

[x|=R
- M(¢4n)—"s“/2/ Iy~ P ay.
IyI=Re
Sincea < a*, we may choose > 0 so small that (3.2) holds. Hence the theorem is proved.

O

We shall show that the exponeritgives the secondary critical exponent for the existence
of global and nonglobal solutions of the Cauchy problem (1.1)—(1.2).
Suppose thap € ®¢ for somea € (a*, n). Sincep € &4, there is a positive constait
such that
¢(x) < K@A+|x])"“forallx e R".
ChooseM > K. Consider the self-similar solution

1
Upma(x,t) =t Pgy Ll sy B/
’ th 2—(1—ma

Since
lim £y (&) =M > K,
E—o0
there is a positive constaRt such that
&gy () > K foranyé > R.

Lety = g/ (R). Note thatg,,(R) = min{g,, (&) | € € [0, R]} > 0. Chooser € (0, 1) such
thatt=#4y > |¢]l. Thenitis easy to verify that (x) < Uy 4(x, 7) for all x € R".
Letx > 0. Thenw(x, 1) = AUx.4(x, A1t 4 1) is the solution of the problem

wy =AW, >0xeR",
w(x,0) =AUpq(x,7),x €R".
Letn = g3,(0). Then
(33 lw(-, )lloo = AL 4 7)7P7

Introduce the functiomw(x, r) = A(t)w(x, B(t)), whereA(t) and B(r) are solutions of
the following problems:

(3.4) Aty = nP P IB () + 17RO D AP (1), 1 > 0; A(0) = 1,

(3.5) B'(t) = A" Y(t),t > 0, B(O) = 0.
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PROPOSITION 3.2. There is a positive constant Ao = Ao(¢) such that the problem
(3.4)—(3.5)has a global solution (A(z), B(t)) with A(z) bounded in [0, c0), if A € (0, Ag).

PROOFE Letg = Ba(p — 1) — 1. Note thaty > 0, sincea € (a*,n). Letig be a
positive constant defined by

_ 1— ~ (p=1)/(p—m)
(P ’") <_’"np—ug '"ﬂ) 1.

1-m q
Given a fixed: € (0, Ag), we define

1
D=D0O) = —nP P4,
q

Ao = Acc(A) =[(1— m)D]l/(m—p)’
9x) = () =1—[(p —HDx" 4 x17P x> 1.

Note thatD > 0 andA € (1, c0). Moreover,g is continuous otil, oo) such thaty(1) < O,
g(+00) = —o0, and max>1 g(x) = g(Ax) > 0, since O< A < Ap.
The local existence and uniqueness of solutiaty), B(z)) of (3.4)—(3.5) follows from
the standard theory of initial value problem. We ha/¢) > 0 andA(r) > 1fort > O as
long as the solution exists. Notice that the solution of (3.4)—(3.5) can be continued as long as
A(¢) is finite. Also, B(t) is uniquely defined by

t
B(t) = / A" L(s)ds
0

whenA (1) exists in[O0, ¢].
From (3.4), it follows that

t
1- AP = (p— 1)nP*1)\P*1/ W LB(s) + 717 P Dy
0

Since
N
B(s) = / A" Y(y)dy > A" 1(1)s for anys € [0, 1],
0

we obtain that

1-AYP@) < (p—1DAY™(@).
Henceg(A(?)) < 0 as long asA(¢) exists. By the properties gfandA, A(r) < A as long
asA(r) exists. Otherwise, ifA(r) > A for somer, then there is < ¢ such thatA(s) = A

and sog(A(s)) > 0, a contradiction. Therefore, the solution exists forall 0 andA(z) is
bounded byA .. The proof is completed. O

We are ready to prove the following theorem.

THEOREM 3.3. Suppose that ug = A¢ for some A > Oand ¢ € ¢ for somea €
(a*,n). Then thereis Ao = Xlo(¢p) > 0 such that the solution u of the Cauchy problem
(1.1)—(1.2)existsfor all ¢ > 0O, if A < Ao.
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PROOFE Letig = Ao(¢) be the positive constant in Proposition 3.2. Defirie, 1) =
A@®)w(x, B(t)), where(A(z), B(t)) is the solution of the problem (3.4)—(3.5). Then itis easy
to check thab satisfies

v > AWM +vP, t>0xeR,
v(x,0) = w(x,0 =AUpq(x,7) > 2p(x), xeR".

Hence by Proposition 2.1 the solutianof the Cauchy problem (1.1)—(1.2) withh = 1¢
exists globally andi < vin R" x [0, 00), if A < Ag. O

We remark that by (3.3) there is a positive constarstuch that
(3.6) lu(, Do < Ct P4 foralls >0,
for the solutiorw in Theorem 3.3, sincag"o—lt < B(t) <t.
4. Largetimebehavior. Inthis section, we shall always assume that (¢*, n) and
that
(4.1) lim |x|%@(x)=M

|x|—o00
for someM > 0. Recall from Theorem 3.3 that the solutiemf the Cauchy problem (1.1)—
(1.2) withug = L¢ exists globally in time, if. < Ag, whererg = Ag(¢) > 0. We shall study
the behavior ofi(x, t) ast — oo in this section and obtain the following result. The idea
of the proof is based on the well-known rescaling method of Friedman and Kamin [4]. As
before, letd = 1/[2 — (1 — m)a] > 0.

THEOREM 4.1 Ast — oo, we have
P u(x, 1) — Uspra(x, 1)) = O

uniformly on any compact set {(x, 1) | |x| < Ct#} for all C > 0.

PrROOE Foro > 1, let

ug(x,1) = oP*u(oPx, ot).
Thenu, satisfies
(o)t =AW +o0"ul, t+>0xeR",
ug(x,0) = cPup(cPx) = ugs (x), xeR",

wherev = [(p — m)a — 2]B8 > 0, sincea € (a*, n).

Recall (3.6). We have the estimate

ug(x,t) < CrP4foranyr > 0,x e R* ando > 1.

Hence{o ~"ul | o > 1} is uniformly bounded in any compact subset®f= R" x (0, o).
Using the regularity theory of quasilinear parabolic equations (cf. [2] and [13})} is
equicontinuous on any compact subsetof Then by a diagonal process there is a subse-
quence{uq, } such that

(4.1 Uy, — U uniformly in any compact subset ¢f ask — oo
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for someU e C2(Q). Itis easy to verify that satisfies the equation

(4.2)

U =AU inQ

andU (x,0) = AM|x|™%, x € R". Hence the uniqueness implies that

_ |x]
Ux,t) =Uwpmalx,t) =t ﬁa!)(t—ﬁ) ,

whereg is the solution of (2.4-5) with

JNim £9(6) =AM .

Indeed, (4.1) holds as — oo. In particular, we have

oPiu(oPy, o) = us(y, 1) — g(lyl)

aso — oo uniformly on compact subsets &'. Takeo = r and setr = o#y. Then we
obtain

Pu(x, 1) — Uspr.a(x, 1)] = O
uniformly on any compact sétx, 1) | |x| < Ct#} forall C > 0. O
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