
Tohoku Math. J.
53 (2001), 491–510

HYPERELLIPTIC VARIETIES
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Abstract. A hyperelliptic variety is by definition a complex projective variety, not iso-
morphic to an abelian variety, which admits an abelian variety as a finite étale covering. The
main contribution of this paper is a classification of hyperelliptic threefolds.

Introduction. A hyperelliptic surface (in the sense of [BPV], [GH]) is a compact com-
plex surface, not isomorphic to an abelian surface, which admits a finite étale covering by an
abelian surface. These surfaces were classified by Enriques–Severi and Bagnera-de Franchis
in their fundamental papers, for which they received the Bordin prize of the French Academy
of Sciences in 1907 and 1908, respectively. There are exactly five one-dimensional and two
two-dimensional families of such surfaces. It seems reasonable to define more generally a
hyperelliptic variety of dimension n to be a complex projective variety, not isomorphic to an
abelian variety, but admitting an abelian variety as a finite étale covering. It is the aim of this
paper to classify hyperelliptic threefolds and to give many examples of hyperelliptic varieties
in any dimensions.

The starting point of Enriques-Severi and Bagnera-de Franchis is a theorem saying that
for any hyperelliptic surfaceS there is an abelian surfaceA admitting a finite group of biholo-
morphic mapsΓ acting fixed point freely onA, such thatS is isomorphic to a desingulariza-
tion ofA/Γ . Theorem 1.1 below implies that this result is valid for hyperelliptic varieties in
any dimensionn. Hence in order to classify hyperelliptic varieties it suffices to classify the
pairs(A, Γ ) with an abelian varietyA and a finite groupΓ acting holomorphically and fixed
point freely onA.

In [UY] Uchida and Yoshihara showed with a very elegant group theoretical proof that
in the threefold case any such groupΓ is either cyclic of order 2, 3, 4, 5, 6, 8, 10, 12 or
abelian of type(2,2), (2,4), (2,6), (2,12), (3,3), (3,6), (4,4), (6,6) or the dihedral group
D4 of order 8. Moreover they gave examples for these threefolds.

In this paper it is shown that the dihedral groupD4 does not occur in this list. So, if
we call the finite groupΓ associated to the hyperelliptic variety, we can say that any group
Γ associated to a hyperelliptic threefold is abelian (see Theorem 6.1). For the remaining
groups mentioned above we construct families of hyperelliptic varieties of dimensionn ≥ 3
associated to these groups, which in the threefold case comprise all such families. To be more
precise, any biholomorphic mapf : A → A of an abelian varietyA can be uniquely written
asf = tx ◦ g with an automorphismg and a translationtx of A. The elementsg form a finite
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group of automorphismsG. We may assume that the groupsΓ andG are isomorphic. In the
threefold case we compute the list of all pairs(A,G), A an abelian threefold andG a finite
group of automorphisms for which there exists a finite groupΓ of biholomorphic maps ofA
acting fixed point freely onA and such thatΓ � G under the canonical mapf = tx ◦ g �→ g.
In order to determineΓ one has to write down only the corresponding groups of translations.
This is easy for any pair(A,G), but since there are many groups of such translations, the list
would just be too long. So we omit writing downΓ .

The contents of the paper is as follows: In Section 1 we generalize the above mentioned
theorem of Enriques-Severi and Bagnera-de Franchis to arbitrary dimensions. Section 2 gives
some preliminary properties of hyperelliptic varieties. Sections 3 and 4 classify cyclic and
abelian hyperelliptic varieties. In Section 5 all hyperelliptic varieties of type (2, 2) are con-
structed, and finally in Section 6 we complete classification of hyperelliptic threefolds.

Notation: If g is an endomorphism of an abelian varietyA = V/∆, ρa(g) : V → V

denotes the analytic representation ofg. If K denotes an algebraic subgroup ofA,K0 denotes
its connected component of 0, which is an abelian subvariety ofA. FinallyA(n) denotes the
group ofn-division points ofA for any integern ≥ 2.

I am grateful to the Mathematical Institute of Tohoku University for its hospitality during
the preparation of this paper.

1. The Theorem of Enriques-Severi-Bagnera-de Franchis. In [ES] Enriques and
Severi and in [BdF] Bagnera and de Franchis proved independently the following theorem:
Let S be a smooth complex projective surfaceS, not rational and not an elliptic surface,
admitting an abelian surfaceA as a finite cover. Then there exists a groupΓ of biholomorphic
maps ofA ontoA such thatS is a desingularization ofA/Γ . In this section this theorem will
be generalized to varieties of arbitrary dimension in the following form:

THEOREM 1.1. Let X be a compact normal complex space such that there exists a
complex torus T and finite holomorphic map π : T → X of degree d ramified at most in
codimension ≥ 2. Then there is a finite group Γ of biholomorphic maps of T onto T such that

X � T/Γ .

REMARK 1.2. Bagnera and de Franchis show that if the surfaceS is not rational and
not elliptic, the mapπ : A → S is automatically ramified at most in finitely many points. So
Theorem 1.1 may be considered as a direct generalization of the Theorem of Enriques-Severi-
Bagnera-de Franchis.

For the proof we need some preliminaries. First of all, without loss of generality we may
assume thatπ : T → X does not factorize via an isogenyf : T → T ′ of complex tori.
Let T = V/Λ with a complex vector spaceV of dimensionn and a latticeΛ ⊆ V . Fix a
point x1 ∈ X which is not a ramification point ofπ , let t1, . . . , td be its preimages inT and
consider representativesv1, . . . , vd of ti in V . Choose open neighbourhoodsX1 of x1 in X,
disjoint open neighbourhoodsTi of ti andVi of vi in V , such that
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(i) π |Ti → X1 is biholomorphic, and
(ii) p|Vi → Ti is biholomorphic for alli.

For any open setU ⊂ V let qU denote the composite

qU := π ◦ p|U : U → X .

We mostly consider open setsU such thatqU is biholomorphic onto its image such that its
inverseq−1

U : qU(U) → U is well-defined. For abbreviation we writeqi = qVi andq = qV .

LEMMA 1.3. The map q−1
i ◦ q1 : V1 → Vi extends to a biholomorphic map ϕi : V →

V .

PROOF. Let B ⊂ X be the ramification locus ofπ andA = q−1(B), such thatq :
V − A → X − B is étale. Let� be a path inV − A starting atv1 andU0, . . . , Ut any chain
of overlapping open sets with the following properties:

(i) U0, . . . , Ut are balls centered at�.
(ii) U0 ⊂ V1 with center atv1, Ut is centered at the endpoint of�.
(iii) Let Xi := Im(qi). ThenqVi∪Vi+1 : Vi ∪ Vi+1 → Xi ∪Xi+1 is biholomorphic.

LetW0 := q−1
i (Xi) ⊆ Vi . Inductively one sees forj = 1, . . . , t that there is a unique open

setWj in V such that
(i) Wj ∩Wj+1 �= ∅, and
(ii) qWi : Wj → Xj is biholomorphic for j = 1, . . . , t.

Then we can define the holomorphic extensionϕi of q−1
i q1 : V1 → Vi to V1 ∪ (⋃t

j=1Uj ) to
be the composite

Uj
qUj−→ Xj

q−1
Wj−→ Wj

onUj . So we have the following picture:

Uj Uj+1©© −→
ϕi

Wj Wj+1©©
qUj∪Uj+1 ↘ ↗ (qWj∪Wj+1 )

−1

©©
Xj Xj+1

Doing this for every path inV − A starting atv1 and noting thatV − A is simply connected,
sinceA is of codimension≥ 2 in V , we see thatq−1

i ◦ q1 extends to a holomorphic mapϕi :
V − A → V . By Riemann’s extension theoremϕi extends holomorphically toϕi : V → V .

In the same way one shows that there is a holomorphic mapψi : V → V extending
q−1

1 ◦qi : Vi → V1. Sinceψiϕi andϕiψi are holomorphic extensions of the identity map onV1

andVi respectively, they are both the identity map onV . This implies thatϕi is biholomorphic.
�
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The mapϕi depends of course on the choice of the representativevi of ti . In particular,
the mapsϕ1, . . . , ϕd do not necessarily form a group of biholomorphic mapsV → V . In
order to obtain a group we consider all translations by lattice points of all mapsϕi . Define for
i = 1, . . . , d and allλ ∈ Λ the biholomorphic map

ϕλi : V → V by ϕλi (v) = ϕi(v)+ λ ,

i.e.,ϕλi = tλ ◦ ϕi , wheretλ denotes the translation byλ.

LEMMA 1.4. The maps ϕλi , i = 1, . . . , d, λ ∈ Λ, form a group Γ0 of biholomorphic
maps V → V .

PROOF. Consider the setq−1(x1) = {vi + λ| i = 1, . . . , d, λ ∈ Λ}. Any biholomor-
phic mapϕλi induces a permutation of the setq−1(x1). Moreover, by construction the mapϕλi
is uniquely determined by the image ofv1 under this permutation and for everyṽ ∈ q−1(x1)

there is exactly one biholomorphic mapϕλi such thatϕλi (v1) = ṽ. Hence, ifϕλ1
i andϕλ2

j are

two such biholomorphic maps, and ifϕλ2
j ◦ ϕλ1

i (v1) = vk + λ3, then we have

ϕ
λ2
j ◦ ϕλ1

i = ϕ
λ3
k .

Similarly, givenϕλ1
i , if vk + λ0 is the element ofq−1(x1) with ϕλ1

i (vk + λ0) = v1, then(
ϕ
λ1
i

)−1 = ϕ
λ0
k .

This implies the assertion. �
The mapsϕλi do not necessarily descend to biholomorphic mapsT → T . A necessary

and sufficient condition for this is thatϕλi (v1 + Λ) ⊆ vi +Λ. But this need not be the case.
However we have

LEMMA 1.5. There is a positive integer m such that ϕλi descends to a biholomorphic
map

ϕi
λ : V/mΛ → V/mΛ

for i = 1, . . . , d and all λ ∈ Λ.

PROOF. It suffices to show that for everyi = 1, . . . , d there is a positive integermi
such that

(1.1) ϕi(v1 +miΛ) ⊆ vi +miΛ .

For everyλ ∈ Λ the mapϕi induces a permutationσλi of the setπ−1(x1) = {t1, . . . , td }
defined bypϕi(vj + λ) = tσλi (j)

for j = 1, . . . , d. If Sd denote the symmetric group on the

setπ−1(x1), we obtain a permutation representationσi : Λ → Sd . Since Imσi is finite, there
is a positive integermi such that

miΛ ⊆ kerσi .

By constructionmi satisfies (1.1). �
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PROOF OF THETHEOREM. The mapΓ0 → Bihol (V /mΛ,V/mΛ), ϕλi �→ ϕi
λ, is a

homomorphism of groups. LetΓ denote its image. By constructionΓ is a group of biholo-
morphic maps onT = V/mΛ. Since moreoverX = V/Γ0, we obtainX = T/Γ . �

2. Hyperelliptic varieties. A hyperelliptic surface is a complex projective surface,
not isomorphic to an abelian surface, but admitting an abelian surface as an étale covering
(see [GH], [BPV]). More generally, ahyperelliptic variety of dimension n is defined to be
a complex projective variety, not isomorphic to an abelian variety, but admitting an abelian
variety of dimensionn as an étale covering. In this section some preliminaries on hyperelliptic
varieties shall be given.

REMARK 2.1. (i) More generally ahyperelliptic manifold is defined to be a compact
complex manifold, not isomorphic to a complex torus, but admitting a complex torus as an
étale covering. There are no non-algebraic hyperelliptic surfaces. So, for dimension two both
definitions coincide. However, for dimension three we will see examples of non-algebraic
hyperelliptic manifolds in Remark 3.9. Since the classification of hyperelliptic threefolds
given below only works in the algebraic case,we mainly stick to hyperelliptic varieties.

(ii) The notion of hyperelliptic varieties is not a generalization of the usual notion of a
hyperelliptic curve. According to the genus formula of Riemann-Hurwitz there are no hyper-
elliptic varieties of dimension one in the above sense.

Let X be a hyperelliptic variety of dimensionn. According to Theorem 1.1 there is an
abelian varietyA of dimensionn and a finite groupΓ acting holomorphically and fixed point
freely onA such thatX � A/Γ . For everyγ ∈ Γ there is a unique decomposition

(2.1) γ = ta ◦ g

with translationta, a ∈ A and an automorphismg ofA. This gives a mapΓ → Aut(A), γ �→
g, which is easily seen to be a homomorphism. LetG denote its image in Aut(A). Then there
is an exact sequence

0 → T → Γ → G → 0 ,

whereT denotes a finite group of translations. Passing to the quotient abelian varietyA′ =
A/T , we may assume thatT = 0, i.e., the mapΓ → G, γ �→ g, is an isomorphism. We
callG thegroup associated to the hyperelliptic variety X.

For any abelian varietyA there is a canonical exact sequence

(2.2) 0 → A
i→ Bihol(A)

p→ Aut(A) → 0 ,

where Bihol(A) denotes the group of biholomorphic maps ofA ontoA, the mapi is defined
by a �→ ta andp is the canonical map derived from (2.1). Obviously (2.2) is a split exact
sequence, i.e., Bihol(A) = A � Aut(A). For any subgroupG ⊆ Aut(A), the sequence (2.2)
induces by pullback a split exact sequence

(2.3) 0 → A → Γ̃
p→ G → 0 .

Together with the above remarks this proves
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PROPOSITION 2.2. For any hyperelliptic variety X there is an abelian variety A, a
finite group of automorphisms G of A and a section σ : G → Γ̃ of (2.3) such that the group
Γ = σ(Γ̃ ) acts fixed point freely on A and X � A/Γ .

It is well-known and easy to see that the set of sectionsσ : G → Γ̃ of (2.3) is canonically
in bijection to the set of cocyclesZ1(G,A). The following proposition gives a criterion for
the cocycle to yield a fixed point free action onA.

PROPOSITION 2.3. Let σ : G ∼→ Γ ⊆ Γ̃ be a section of (2.3) with corresponding
cocycle ϕ ∈ Z1(G,A). The following conditions are equivalent:

(i) Γ acts fixed point freely on A.
(ii) The restriction of the cohomology class ϕ̄ ∈ H 1(G,A) of ϕ to every nontrivial

cyclic subgroup ofG is nonzero.

PROOF. Γ does not act fixed point freely if and only if there is ag ∈ G, g �= 1 and an
a ∈ A such thatσ(g)(a) = a. Sinceσ(g) = tϕ(g) ◦ g, this means that there is ag ∈ G, g �= 1
and ana ∈ A such thatg(a)+ ϕ(g) = a or equivalentlyϕ(g) = (1 − g)(a). This means that
ϕ restricted to the cyclic subgroup generated byg is a coboundary. �

3. Cyclic hyperelliptic varieties. A hyperelliptic variety is calledcyclic if the group
G associated to it is a cyclic group. In this section we prove a theorem classifying cyclic
hyperelliptic varieties and use it to determine all such varieties in low dimensions.

So, letX denote a cyclic hyperelliptic variety. We may assume that the cyclic covering
π : A → X is minimal, that is, does not factor via an isogenyA → A′ of abelian varieties.
According to Proposition 2.2 there is a biholomorphic mapf : A → A of orderd = degπ
such that

(i) f ν admits no fixed point and is not a translation for 1≤ ν < d, and
(ii) X = A/〈f 〉, where〈f 〉 denotes the group generated byf .

There is a unique decomposition

(3.1) f = tx ◦ g

with a translationtx andg ∈ Aut(A). This implies

(3.2) f ν = tx+g(x)+···+gν−1(x) ◦ gν

for all ν. In particular,g is an automorphism of orderd of A and

(3.3)
d−1∑
ν=0

gν(x) = 0 .

To be more precise,d − 1 is the smallest integerN such that
∑N
ν=0 gν(x) = 0, otherwise a

power off would not act fixed point freely.
(3.2) immediately implies

LEMMA 3.1. The following conditions are equivalent:
(i) The group 〈f 〉 acts fixed point freely on A.
(ii)

∑ν−1
i=0 gi (x) �∈ Im(1 − gν) for all ν = 1, . . . , d − 1.
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We need the following lemma which is well-known and easy to see.

LEMMA 3.2. (a) For any endomorphism α of A the addition map µ : (Ker(α))0 ×
Im(α) → A is an isogeny.

(b) α|Im(α) : Im(α) → Im(α) is an isogeny.

Consider
B1 := Ker(1 − g)0 and B2 := Im(1 − g) .

According to Lemma 3.2 the addition mapµ : B1 × B2 → A is an isogeny. Moreover we
have

LEMMA 3.3. (a) B1 and B2 are abelian subvarieties of A of positive dimension.
(b) f |B1 : B1 → txB1 is a translation.
(c) g |B1 = 1B1.
(d) g |B2 is an automorphism of B2 with finitely many fixed points.
(e) B1 ∩ B2 ⊆ Fix(g|B2) which is a finite set.
(f) (1 − g)|B2 is an isogeny of B2.

PROOF. (a) If 1 − g is an isogeny, thenf always admits fixed points according to
Lemma 3.1. Hence dimB1 > 0. On the other hand, 1− g �= 0, otherwisef would be a
translation. Hence dimB2 > 0. (b) and (c) are obvious.

(d) and (e). Supposex ∈ B2. There is ay ∈ A with x = y − g(y) implying g(x) =
(1 − g)(g(y)) ∈ Im(1 − g) = B2. Sog |B2 is an automorphism ofB2, sinceg is injective
as an automorphism ofA. The fixed points ofg |B2 are just the points of the intersection
Ker(1 − g) ∩ B2, which is finite. (f) is a consequence of Lemma 3.2 (b). �

Choose a decompositionx = x1 + x2 with x1 ∈ B1 andx2 ∈ B2, and define

(3.4) f̃ := t(x1,x2) ◦ (1 × g) .

Then the following diagram is commutative

B1 × B2
f̃−→ B1 × B2

µ

� � µ
A

f−→ A

LEMMA 3.4. Let T denote the group of translations t(y,−y) ofB1×B2 with y ∈ B1∩B2

andG := 〈f̃ 〉 ⊕ T . Then
X � B1 × B2/G .

PROOF. It suffices to show thatt(y,−y) andf̃ commute for anyy ∈ B1 ∩ B2, which is
an immediate computation usingy ∈ Fix(g |B2). �

The decomposition (3.4) depends of course on the choice of the group structure, i.e.,
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on the choice of the zero point ofB1 × B2. The following lemma uses this fact in order to
normalize the decomposition.

LEMMA 3.5. Choosing a suitable zero point of B1 × B2, we may assume that

f̃ = t(x1,0) ◦ (1 × g)

with x1 ∈ B1 as above and g ∈ Aut(B2).

PROOF. Let f̃ = t(x1,x2) ◦ (1 × g) = (fij )i,j=1,2 : B1 × B2 → B1 × B2 be as in (3.4).
Thenf22 : B2 → B2 is given byf22(z) = g(z) + x2. Let y0 ∈ B2 with (1 − g)(y0) = x2.
Then

f22(y0) = g(y0)+ x2 = y0 .

Choose(0, y0) as the new zero point ofB1 × B2 and letf̃ = t(x ′
1,x

′
2)

◦ (1 × g̃ ) be the decom-

position off̃ with respect to(0, y0). We have to compute(x ′
1, x

′
2). But g̃ = ty0 ◦ g ◦ t−y0 and

hence
t(x1,0)(1 × g̃ )(z1, z2)= (z1 + x1, g(z2)− g(y0)+ y0)

= (z1 + x1, g(z2)+ x2)

= f̃ (z1, z2) .

�
The elements ofG = 〈f̃ 〉 ⊕ T are of the formt(x1,x2) ◦ (1 × g i ) with 0 ≤ i < d and

x1 ∈ B1, x2 ∈ B2 torsion points. To be more precise,x2 = 0 if i > 0 andx2 = −x1 ∈ B1∩B2

if i = 0. In particular, we have a well-defined map

ϕ : G → B1, t(x1,x2) ◦ (1 × g i ) �→ x1 .

LEMMA 3.6. ϕ : G → B1 is an injective homomorphism of groups.

PROOF. t(x1,x2)(1×gj )◦ t(y1,y2)(1×g i ) = t(x1+y1,x2+g i (y2))
(1×g i+j ), and henceϕ is a

homomorphism of groups. Any element of Ker(ϕ) is of the formt(0,x2)(1×g i ). If 0 < i < d,
then this element has fixed points, and hence is not contained inG. �

COROLLARY 3.7. The group of translations T is a finite abelian group with ≤
2 dimB1 − 1 generators.

This follows from the fact that any finite torsion subgroups ofB1 is generated by≤
2 dimB1 elements. �

According to Lemma 3.6 we may considerG as a subgroup ofB1. Moreover the map

ρ : G → Bihol(B2), x1 �→ tx2g
i ,

if ϕ−1(x1) = t(x1,x2)(1 × g i ), is a faithful representation. Combining everything we have:

THEOREM3.8. For a varietyX of dimension n the following statements are equivalent:
(i) X is a cyclic hyperelliptic variety.
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(ii) There are abelian varieties B1 of dimension 0 < n1 < n, B2 of dimension n2 =
n−n1, a finite subgroupG = 〈x1〉⊕T ofB1, and a faithful representation ρ : G → Bihol(B2)

such that
(a) g = ρ(x1) is an automorphism of B2 of order d ≥ 2 with Fix(g) finite, and
(b) ρ(T ) is a group of translations of B2 by elements of Fix(g).
If an action of G on B1 × B2 is defined by (x, (z1, z2)) → (tx(z1), ρ(x)z2), then X �

B1 × B2/G.

PROOF. It remains to show that under condition (ii) the groupG acts fixed point freely
on B1 × B2. Let f̃ : B1 × B2 → B1 × B2 be defined byf̃ = t(x1,0) ◦ (1 × g), and
T̃ = {(x, ρ(x)(0)) ∈ B1 ×B2|x ∈ T } considered as a group of translations ofB1 ×B2. Then
any element of〈f̃ 〉 ⊕ T̃ � G is of the form

f̃ i ◦ t(x,ρ(x)(0))
with 0 ≤ i ≤ d − 1 andx ∈ T , and we have

f̃ i ◦ t(x,ρ(x)(0))(z1, z2) = (z1 + x + ix1, gi (z2)+ ρ(x)(0)) .

To see this one has to use thatρ(x)(0) ⊆ Fix(g). Now suppose(b1, b2) ∈ B1 × B2 is a fixed
point of f̃ i ◦ t(x,ρ(x)(0)). This impliesb1 +x+ ix1 = b1 and thusx = −ix1 �= 0 contradicting
the fact that〈x1〉 ⊕ T is a direct sum inB1. �

Since all automorphisms of finite order of abelian varieties of dimension≤ 3 are well-
known, one can use Theorem 3.8 to give a list of all cyclic hyperelliptic varieties with
dim(B2) = r ≤ 3. For this one has only to give a list of all automorphisms of finite or-
der of abelian varieties of dimensionr together with their fixed point sets Fix(g). In order to
define a hyperelliptic variety one has to give only an abelian varietyB1 an elementx1 ∈ B1 of
orderd = ord(g), a finite subgroupT ⊂ B1 not intersecting the group〈x1〉 and an embedding
T ↪→ Fix(g). Tables 1 and 2 below give the triples(B2, g,Fix(g)) for all cyclic hyperelliptic
varieties dim(B2) = 1 and 2. From this it is easy to work out the other data. The notation will
be explained after the tables.

TABLE 1. dim(B2) = 1.

d B2 g Fix(g)

2 E −1 E(2)

3 Eρ ρ { ν3 (2 + ρ)|ν = 0,1,2}
4 Ei i { ν2 (1 + i)|ν = 0,1}
6 Eρ −ρ {0}
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TABLE 2. dim(B2) = 2.

d B2 g Fix(g)

2 S −1 S(2)

3 C2/Π1Z4 ( 0 −1
1 −1

) {( x−x
)∣∣∣3( x−x

) ∈ Π1Z
}

3 Eρ × Eρ
( ρ 0

0 ρj
)
j = 1,2 Fix(ρ)× Fix(ρ)

4 C2/Π2Z4 ( 0 −1
1 0

) {( x−x
)∣∣∣2( x−x

) ∈ Π2Z
}

4 Ei × Ei
( i 0

0 ij
)
j = 1,3 Fix(i)× Fix(i)

4 E × Ei
( −1 0

0 i

)
E(2)× Fix(i)

5 S5
( ξ5 0

0 ξ3
5

) {
1
5 (1+ 2ξν5 + 3ξ2ν

5 + 4ξ3ν
5 )|ν = 0, . . . ,4

}
6 C2/Π1Z4 ( 0 1−1 1

) {0}

6 Eρ × Eρ
( −ρ 0

0 −ρj
)
j = 1,2 {0}

6 Eρ × Eρ
( ρ 0

0 −ρ
)

Fix(ρ)× {0}

6 Eρ × Eρ
( ρ 0

±ρ −ρ
) {0}

6 Eρ × E
( −ρ 0

0 −1

) {0} ×E(2)

6 Eρ × E
( ρ 0

0 −1

)
Fix(ρ)×E(2)

8 Ei × Ei
( 0 i

1 0

) {(x, x)|x ∈ Fix(i)}

8 E√−2 × E√−2

( √−2 −1
−1 0

) { i2 ,0}

10 S5
( ξ10 0

0 ξ3
10

) {0}

12 Ei × Ei
( 0 i−i −i

) {0}

12 Eρ × Eρ
( 0 ρ

−ρ 0

) {0}

12 Ei × Eρ
(
i 0
0 ρ

)
Fix(i)× Fix(ρ)

12 Ei × Eρ
( i 0

0 −ρ
)

Fix(i)× {0}

HereE (resp.S) is an arbitrary elliptic curve (resp. abelian surface),Eτ = C/(1, τ )Z
for anyτ in the upper half plane,ξd denotes a primitived-th root of unity, and we abbreviate
i = ξ4, ρ = ξ3. Moreover,S5 denotes the abelian surface ofCM-type(Q(ξ5), (ξ5, ξ2

5 )), and
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Π1 andΠ2 the period matrices

Π1 =
(

1 0 x y

0 1 −y x + y

)
; Π2 =

(
1 0 x y

0 1 −y x

)

with (x, y) ∈ C2 − R2, defining abelian varieties.
Table 2 uses heavily Fujiki’s list of automorphisms of abelian surfaces [F].

REMARK 3.9. (a) The quotientC2/ΠiZ4 is a complex torus for every(x, y) ∈ C2−
R2, but not always an abelian surface. In the cases where it is not, the quotientX = B1×B2/Γ

is a non algebraic hyperelliptic surface. Since the existence of non algebraic hyperelliptic
varieties contradicts Theorem II of [J], we give an explicit example: The complex torusB2 =
C2/ΠZ4 with

Π =
(

1 i 0 α

0 0 1 i

)
fits into an exact sequence 0→ Ei → B2 → Ei → 0. If α �∈ Q(i), thenEi is the only
nontrivial complex subtorus ofS (see [BL] Section 1.6). In particular,B2 is a non algebraic
complex torus. Its automorphism group is isomorphic toZ/4Z and generated byg = (

i −α
0 −i

)
and Fix(g) = {0, (x, y)} with x = −(i/2)α, y = (1 − i)/2. Choosing an elliptic curveB1

and a 4-division pointx1 ∈ B1, the groupG acts onB1 × B2 by tx1 ◦ (1 × g) and its quotient
is a non algebraic hyperelliptic threefold.

(b) The automorphism of 3-dimensional abelian varieties were classified in [BGL].
Therefore one could also write a table of cyclic hyperelliptic varieties of order 3. This will be
omitted, since the table would be too long.

4. Abelian hyperelliptic varieties. A hyperelliptic variety is calledabelian if its as-
sociated groupG is an abelian group. In this section we prove a theorem describing such
varieties for abelian groups with two generators, which allows to construct abelian hyperel-
liptic varieties in any dimensions and will be applied in Section 6 to give a list of all abelian
hyperelliptic threefolds.

LetA be an abelian variety of dimensionn(≥ 3) andG a group of automorphisms ofA
isomorphic toZ/d1Z ⊕ Z/d2Z with d1|d2. SupposeΓ is a group of biholomorphic maps of
A, isomorphic toG and acting fixed point freely onA. Then

X := A/Γ

is an abelian hyperelliptic variety associated to the groupG. We call itof type (d1, d2). Letg1
andg2 be automorphisms ofA of orderd1 andd2 generatingG, andf1, f2 the corresponding
generators ofΓ

f1 = tx ◦ g1 and f2 = tx ′ ◦ g2 .

Define abelian subvarietiesAi by

A1 = (Ker(1 − g1) ∩ Ker(1 − g2))
0 , A2 = (Ker(1 − g1) ∩ Im(1 − g2))

0 ,

A3 = (Im(1 − g1) ∩ Ker(1 − g2))
0 , A4 = (Im(1 − g1) ∩ Im(1 − g2))

0 .
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Applying Lemma 3.2 twice, we concludethat the addition map induces an isogenyA1×A2×
A3×A4 → A. In this section we assume thatB1 := A1 is positive dimensional. IfB2 denotes
the image of the induced mapA2 × A3 × A4 → A, we obtain that the addition map induces
an isogeny

µ : B1 × B2 → A .

The mapsg1 andg2 restrict to the identity onB1 and to automorphisms ofB2, which we also
denote byg1 andg2.

LEMMA 4.1. B1 ∩ B2 ⊂ Fix(g1|B2) ∩ Fix(g2|B2) which is finite.

PROOF. The only nontrivial assertion is that Fix(g1|B2)∩Fix(g2|B2) is a finite set. But

Fix(g1|B2) ⊂ (Ker(1 − g1) ∩ Im(1 − g1)) ∪ (Ker(1 − g1) ∩ Im(1 − g2)) .

The first set is finite by Lemma 3.2(a) and the second is a union of finitely many translates of
A2. Similarly,

Fix(g2|B2) ⊂ (Ker(1 − g2) ∩ Im(1 − g2)) ∪ (Ker(1 − g2) ∩ Im(1 − g1)) .

Again the first set is finite by Lemma 3.2(a) and the second is a union of finitely many trans-
lates ofA3. Hence the assertion follows from the fact thatA2 ∩ A3 is finite. �

Consider decompositions

x = x1 + x2 , x ′ = x ′
1 + x ′

2

with x1, x
′
1 ∈ B1 andx2, x

′
2 ∈ B2.

LEMMA 4.2. (a) d1x1 = −∑d1−1
ν=0 gν1(x2) ∈ B1 ∩ B2.

(b) d2x
′
1 = −∑d2−1

ν=0 gν2(x
′
2) ∈ B1 ∩ B2.

PROOF. According to Equation (3.3),
∑d1−1
ν=0 gν1(x) = 0. This implies (a), since

g1(x1) = x1. The proof of (b) is the same. �
Define biholomorphic maps̃f1 andf̃2 : B1 × B2 → B1 × B2 by

f̃1 := t(x1,x2) ◦ (1 × g1) and f̃2 := t(x ′
1,x

′
2)

◦ (1 × g2) .

For i = 1 and 2 the following diagram is commutative

B1 × B2
f̃i−→ B1 × B2

µ

� � µ
A

fi−→ A

LEMMA 4.3. (a) f̃
d1
1 = t

(d1x1,
∑d1−1
ν=0 gν1(x2))

, f̃
d2
2 = t

(d2x
′
1,

∑d2−1
ν=0 gν2(x

′
2))

.

(b) (1 − g1)(x
′
2) = (1 − g2)(x2).
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PROOF. (a) is a consequence off dii = 1 for i = 1,2. For (b) note thatf1f2 = f2f1

impliesg1(x
′) + x = g2(x) + x ′. This gives the assertion sinceg1(x

′
1) = x ′

1 andg2(x1) =
x1. �

LEMMA 4.4. Let T denote the group of translations t(b,−b) of B1 ×B2 with b ∈ B1 ∩
B2. Then the subgroup Γ̃ of Bihol(B1 × B2) generated by f̃1, f̃2 and T is a finite abelian
group with

X � B1 × B2/Γ̃ .

PROOF. It suffices to show that̃f1, f̃2 andT commute. But this is an immediate com-
putation using Lemma 4.3 andg1(b) = g2(b) = b. �

Combining everything we have proved part of the following theorem.

THEOREM 4.5. For a variety X of dimension n(≥ 3) and positive integers d1, d2 with
d1|d2 the following statements are equivalent:

(i) X is an abelian hyperelliptic variety of type (d1, d2).
(ii) There are

• abelian varieties B1 and B2 with dimB1 + dimB2 = n,
• commuting automorphisms gi of B2 of order di for i = 1,2 with Fix(g1) ∩ Fix(g2)

finite,
• points (x1, x2) and (x ′

1, x
′
2) ∈ B1 × B2 with (1 − g1)(x

′
2) = (1 − g2)(x2),

• a subgroup τ of Fix(g1) ∩ Fix(g2) containing
∑d1−1
ν=0 gν1(x2) and

∑d2−1
ν=0 gν2(x

′
2) and

an injective homomorphism ι : τ → B1 with ι
(∑d1−1

ν=0 gν1(x2)
)

= −d1x1 and

ι
(∑d2−1

ν=0 gν2(x
′
2)

)
= −d2x

′
1,

such that
(a) X � B1 × B2/Γ , where Γ is the subgroup of Bihol(B1 × B2) generated by f1 =

t(x1,x2) ◦ (1 × g1), f2 = t(x ′
1,x

′
2)

◦ (1 × g2) and T = {t(ι(y),y)|y ∈ τ }, and
(b) for all i = 1, . . . , d1 − 1, j = 1, . . . , d2 − 1 and y ∈ τ we have

jx ′
1 + ix1 + ι(y) �= 0 or

i−1∑
ν=0

gν1(x2)+
j−1∑
ν=0

g i1g
ν
2(x

′
2) �∈ Im(g i1g

j

2 ) .

PROOF. Note first thatΓ is a finite abelian subgroup of Bihol(B1 × B2). This follows
from the assumptions with the same computations as in the proof of Lemma 4.4. It remains
to show thatΓ acts fixed point freely onB1 ×B2 if and only if Condition (b) is satisfied. But
this follows immediately from the fact that the elements ofΓ are just

t(ι(y),y) ◦ f i1 ◦ f j2 = t
(ix1+jx ′

1+ι(y)),
∑ i−1
ν=0 gν1(x2)+∑j−1

ν=0 g i1g
ν
2(x

′
2)+y)

◦ (1 × g i1g
j
2 )

with 1 ≤ i ≤ d1 − 1, 1 ≤ j ≤ d2 − 1 andy ∈ τ . �
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The easiest way to construct abelian hyperelliptic varieties is given by the following
corollary.

COROLLARY 4.6. Suppose we are given abelian varieties B1 of dimension n1 > 0
and B2 of dimension n− n1 > 0, a finite subgroup Γ = 〈x1〉 ⊕ 〈x ′

1〉 ⊕ T of B1 and a faithful
representation ρ : Γ → Bihol(B2) such that

(a) ρ(〈x1〉 ⊕ 〈x ′
1〉) is a group of automorphisms of B2 isomorphic to Z/d1Z ⊕ Z/d2Z

with Fix(ρ(x1)) ∩ Fix(ρ(x ′
1)) finite.

(b) ρ(T ) is a group of translations of B2 by elements of Fix(ρ(x1)) ∩ Fix(ρ(x ′
1)). If G

acts on B1 × B2 by (x, (b1, b2)) �→ (tx(b1), ρ(x)b2), then

X � B1 × B2/Γ

is an abelian hyperelliptic variety of dimension n of type (d1, d2).

PROOF. Choosex2 = x ′
2 = 0. Let τ denote the subgroupτ = {ρ(t)(0)|t ∈ T } of B2

andι : τ → T the obvious isomorphism. Then all the conditions of (ii) of Theorem 4.5 are
satisfied. �

REMARK 4.7. (a) One can also easily prove Corollary 4.6 directly without using
Theorem 4.5. Moreover, it seems obvious how to generalize the corollary to construct abelian
hyperelliptic varieties of arbitrary type(d1, . . . , dν). We will omit this, since it will not be
used in the sequel.

(b) Theorem 4.5 is trivially valid also for dimB1 = 0. In fact, in this case Condition
(ii) reduces to the definition of a hyperelliptic variety associated to the groupG.

(c) One might try to obtain a better description of abelian hyperelliptic varieties of type
(d1, d2) using the isogenyµ : A1 × A2 × A3 × A4 → A of the beginning of this section. In
fact,f1 andf2 lift to biholomorphic maps ofA1×· · ·×A4, and so this can be done. However,
there are some difficulties to the effect that the result seems not easier to apply than Theorem
4.5: First of all, the kernel ofµ seems complicated. Moreover, the liftings off1 andf2 do not
commute in general. These difficulties vanish in the special case(d1, d2) = (2,2) as we shall
see in the next section.

5. Abelian hyperelliptic varieties of type (2,2). For a hyperelliptic varietyX asso-
ciated to a groupG � Z/2Z × Z/2Z one can use the isogenyA1 × A2 × A3 × A4 → X of
the last section to obtain a better description ofX.

Let the notation be as at the beginning of the last section withd1 = d2 = 2. So,Γ is a
group of biholomorphic maps, isomorphic toZ/2Z ⊕ Z/2Z, generated byf1 = tx ◦ g1 and
f2 = tx ′ ◦ g2 and acting fixed point freely on an abelian varietyA of dimensionn(≥ 3) such
thatX � A/Γ . Moreover

µ : A1 × A2 ×A3 ×A4 → A

is an isogeny, whereA1, . . . , A4 are abelian subvarieties ofA defined as above. Here we have

g1|A1 ×A2 = 1 , g1|A3 ×A4 = −1 ,

g2|A1 ×A3 = 1 , g2|A2 ×A4 = −1 ,
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and moreoverK = Ker(µ) consists of 2-division points. Consider decompositions

x = x1 + x2 + x3 + x4 and x ′ = x ′
1 + x ′

2 + x ′
3 + x ′

4

with xi, x ′
i ∈ Ai .

LEMMA 5.1. (a) f1 and f2 generate a group � Z/2Z×Z/2Z if and only if x1, x2, x
′
1,

x ′
3 and x4 − x ′

4 are 2-division points.
(b) Γ = 〈f1, f2〉 acts fixed point freely on A if and only if
(i) x1 + x2 �∈ A3 + A4,

(ii) x1 + x3 �∈ A2 + A4, and
(iii) g1(y)+ x �∈ A2 + A3.

PROOF. Assertion (a) is obvious. For (b)(i) note thatf1 acts fixed point freely if and
only if x �∈ Im(1 − g1) = A3 + A4. (ii) and (iii) mean thatf2 andf1f2 act fixed point
freely. �

Define biholomorphic maps̃f1 andf̃2 onA1 ×A2 × A3 × A4 by

f̃1 = t(x1,x2,x3,x4) ◦ (1 × 1 × (−1)× (−1)) ,

f̃2 = t(x ′
1,x

′
2,x

′
3,x

′
4)

◦ (1 × (−1)× 1 × (−1)) .

For i = 1,2 the following diagram commutes

A1 ×A2 ×A3 × A4
f̃i−→ A1 × A2 × A3 ×A4

µ
� � µ
A

fi−→ A

Using Lemma 5.1 (a) one easily checks thatf̃1 andf̃2 generate a group isomorphic toZ/2Z⊕
Z/2Z. Moreover, ifT denotes the group of translations ofA1 × · · · × A4 by elements of
Ker(µ), then the sum〈f1〉 + 〈f2〉 + T is direct and

Γ̃ = 〈f̃1〉 ⊕ 〈f̃2〉 ⊕ T

acts fixed point freely onA1 × · · · ×A4. Hence we have

LEMMA 5.2. X � A1 ×A2 × A3 × A4/Γ̃ .

LEMMA 5.3. Choosing suitable zero points of A2, A3 and A4, we may assume that

f̃1 = t(x1,x2,0,0) ◦ g1 and f̃2 = t(x ′
1,0,x

′
3,x

′
4)

◦ g2

with 2-division points x1, x2, x
′
1, x

′
3, x

′
4, g1 = 1 × 1 × (−1) × (−1) and g2 = 1 × (−1) ×

1 × (−1).

PROOF. Let z3 ∈ A3 with 2z3 = x3. Then

f̃1(z3) = −z3 + x3 = z3 .



506 H. LANGE

Choosez3 as the new zero point ofA3 and letg̃i = tz3 ◦gi ◦ t−z3 for i = 1,2 the corresponding
automorphisms onA3. Then for alla3 ∈ A3:

g̃1(a3)= −a3 + 2z3 = f̃1(a3) , and

tx ′
3
◦ g̃2(a3)= a3 + x ′

3 = f̃2(a3) .

Hence we may assume thatx3 = 0. The proof that we may assumex ′
2 = 0 is the same.

Finally, letz4 ∈ A4 with 2z4 = x4. Then

f̃1(z4) = −z4 + x4 = z4 .

Choosez4 as the new zero point ofA4 and letg̃i = tz4 ◦gi ◦ t−z4 for i = 1,2 the corresponding
automorphism onA4. Then for alla4 ∈ A4 :

g̃1(a4) = g1(a4)− g1(z4)+ z4 = −a4 + 2z4 = f̃1(a4) .

According to Lemma 5.1 (a),x ′
4 = x4 + p4 with a 2-division pointp4 of A4. Thus

tp4 ◦ g̃2(a4) = g2(a4)− g2(z4)+ z4 + p4 = −a4 + x ′
4 = f̃2(a4) .

Hence we may assume thatx4 = 0 andx ′
4 = p4 is a 2-division point. �

LEMMA 5.4. Ker(µ) ∩ 〈(x1, x2,0,0), (x ′
1,0, x

′
3, x

′
4)〉 = {0}.

PROOF. OtherwiseΓ̃ contains one of the automorphismsg1, g2 or g1g2 and thus admits
fixed points onA1 × · · · ×A4. �

Combining everything we have proved most of the following theorem, the remaining
assertions being easy to check.

THEOREM 5.5. For a variety X of dimension n (≥ 3) the following statements are
equivalent:

(i) X is an abelian hyperelliptic variety of type (2,2).
(ii) There are

• abelian varieties Ai of dimension ni ≥ 0 for i = 1, . . . ,4 with
∑4
i=1 ni = n,

• 2-division points x = (x1, x2,0,0) �= 0 and x ′ = (x ′
1,0, x

′
3, x

′
4) �= 0 of A1 × · · · ×

A4 with (x1 + x ′
1, x

′
4) �= (0,0),

• A subgroup τ of 2-division points of A1 × · · · ×A4 with τ ∩ 〈x, x ′〉 = {0},
such that if f1 = tx ◦ (1 × 1 × (−1) × (−1)) and f2 = tx ′ ◦ (1 × (−1) × 1 × (−1)) on
A1 × · · · ×A4 and T denotes the group of translations by elements of τ , then

X � A1 × · · · ×A4/Γ

with Γ = 〈f1〉 ⊕ 〈f2〉 ⊕ T .

Note that Theorem 5.5 can be easily applied to construct all abelian hyperelliptic varieties
of type(2,2).

6. Hyperelliptic threefolds. The first aim of this section is the proof of the following
theorem. Finally, we complete the classification of all hyperelliptic threefolds.

THEOREM 6.1. Any hyperelliptic threefold is abelian.
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For the proof, assume thatX is a hyperelliptic threefold associated to a non abelian
group. According to [UY] this group is necessarily the dihedral groupD4 of order 8. Hence
there is an abelian threefoldA and a groupΓ ⊂ Bihol(A) acting fixed point freely onA and
isomorphic toD4 such thatX = A/Γ . Let Γ be generated byf1 andf2 with f 4

1 = f 2
2 =

1, f2f1f2 = f−1
1 . Then

f1 = tx ◦ g1 and f2 = ty ◦ g2

with g1, g2 ∈ Aut(A) with g4
1 = g2

2 = 1, g2g1g2 = g−1
1 andx, y ∈ A. Comparing the

relations forf1, f2 with the relations forg1, g2, we obtain

LEMMA 6.2. (a) g3
1(x)+ g2

1(x)+ g1(x)+ x = 0.
(b) g2(y)+ y = 0.
(c) (1 + g1g2)(x) = −(g1 + g2)(y).

LEMMA 6.3. Let B1 := Ker(1 − g1)
0 and B2 := Im(1 − g1). Then dimB1 =

1, dimB2 = 2 and the addition map µ : B1 × B2 → A is an isogeny. Moreover, the
groupG = 〈g1, g2〉 acts on B1 and B2.

PROOF. The groupG acts on the tangent spaceT0A = C3. This representation ofG
must contain the two-dimensional representation ofG, since otherwise the action ofG onA
would be commutative. The eigenvalues ofg1 of the two-dimensional representation are±i.
Hence the one-dimensional representation has to be trivial ong1. SoB1 is one-dimensional
andB2 is two-dimensional. Certainly, alsog2 acts onB1 andB2. �

B2 is an abelian surface with automorphism groupD4. These surfaces have been clas-
sified by Fujiki. In fact, according to Table 8 of [F], we know thatB2 is isomorphic to
E × E with an arbitrary elliptic curveE or the quotient ofE × E by a groupH � Z/2Z or
� Z/2Z × Z/2Z of diagonal 2-division points, andD4 acts onE × E by

g1 =
(

0 1
−1 0

)
and g2 =

(
0 1
1 0

)
,

and on the quotients by the corresponding quotient actions. In any case, we write the elements
of B2 as pairs(b, b′), b, b′ ∈ E. In the case of the quotientsE × E/H we have to identify
pairs which differ by a diagonal 2-division point ofH . According to Lemma 3.3 (e),

B1 ∩ B2 ⊆ ∆(2) � Z/2Z × Z/2Z,

where∆ denotes the image of the diagonal ofE × E in E × E/H . Hence we may write the
elementsb of A � B1 × B2/B1 ∩ B2 as

b = b1 + (b2, b
′
2)

with b1 ∈ B1 and(b2, b
′
2) ∈ B2. Again two such representations ofb ∈ A differ at most by

2-division points.
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Only two of the four one-dimensional representations ofD4 can occur sinceg1|B1 has
to be the identity. Hence there are two cases

Case 1 : g1|B1 = 1 , g2|B1 = 1 .

Case 2 : g1|B1 = 1 , g2|B1 = −1 .

In both cases choose decompositions

x = x1 + (x2, x
′
2) and y = y1 + (y2, y

′
2)

for the translation pointsx andy of f1 andf2. Then the proof of Theorem 6.1 is completed if
we show that in both cases the action ofΓ onA is not fixed point free.

Case 1: According to Lemma 6.2,g2(y) = −y. Hencey is contained in the eigenspace
of −1 of g2, which is the antidiagonal̃∆ := {(b,−b) ∈ B2} of E×E or its imageE×E/H .
Hence we may assumey = (y2,−y2). On the other hand, Im(1 − g2) is just the antidiagonal
∆̃ of B2, i.e.,y ∈ Im(1 − g2). According to Lemma 3.1 this implies the assertion.

Case 2: Again we haveg2(y) = −y, which in this case is equivalent toy ′
2 = −y2. Hence

y = y1 + (y2,−y2) ∈ B1 + ∆̃. Now Im(1 − g2) = B1 + ∆̃, i.e., y ∈ Im(1 − g2). Again
Lemma 3.1 implies the assertion. �

Hence we may assume thatX is a hyperelliptic threefold associated to an abelian group
G acting on an abelian threefoldA. If G is cyclic, thenX is necessarily of the type already
described in Section 3. Hence we may assume thatG is not cyclic. Under these assumptions
we have

LEMMA 6.4. The groupG is generated by two elements.

PROOF. SupposeG is non cyclic and cannot be generated by two elements. ThenG

admits a subgroup isomorphic to(Z/pZ)3 with a primep. Its generators,g1, g2 andg3 say,
cannot have a common eigenspace of the eigenvalue 1, since there is no such automorphism
group of an abelian surface (see [F]). But then it is easy to see that a suitable product ofg1, g2
andg3 does not admit an eigenvalue 1. �

Hence we may assume thatG � Z/d1Z × Z/d2Z with d1|d2 and is generated bygi of
orderdi for i = 1,2. Then we have

LEMMA 6.5. There are two possibilities: Either
(i) The eigenspaces of 1 of g1 and g2 have a nontrivial intersection, or
(ii) G � Z/2Z × Z/2Z.

PROOF. Suppose the contrary, i.e.,G is not of type (i) or (ii). We may choose the
coordinates ofC3 in such a way thatg1 = diag(1, α2, α3) andg2 = (β1, β2,1) with α3 �=
1 �= β1. The elementg1g2 has to admit an eigenvalue 1, implyingα2 = β−1

2 . Henceg1g2
2 =

diag(β2
1, β2, α3). Sinceβ2 �= 1 (otherwiseα2 = β2 = 1), this impliesβ1 = −1. But then

g2
1g2 = diag(−1, β−1

2 , α2
3) givesα3 = −1. Thus we haveg1 = diag(1, β−1

2 ,−1), g2 = diag
(−1, β2,1) with β2 �= ±1. But nowg1g3

2 = diag (−1, β2
2,−1) admits no eigenvalue 1, a

contradiction. �
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Applying Theorem 5.5, it is easy to construct all hyperelliptic threefolds of type(2,2).
So we are left with the case thatX is of type(d1, d2) with d2 > 2 such thatg1 andg2 ad-
mit a common eigenspace of 1. Since an elliptic curve admits only cyclic automorphism
groups, Theorem 4.5 gives us an elliptic curveB1 and an abelian surfaceB2 admitting com-
muting automorphismsg1 andg2 of orderd1 andd2 with Fix(g1)∩ Fix(g2) finite, and points
(x1, x2), (x

′
1, x

′
2) ∈ B1 × B2 and a group of translationT of B1 × B2 with some additional

properties such that

X = B1 × B2/〈f1〉 ⊕ 〈f2〉 ⊕ T

with f1 = t(x1,x2) ◦ (1 × g1) andf2 = t(x ′
1,x

′
2)

◦ (1 × g2). Table 3 below gives all quadruples

TABLE 3.

(d1, d2) B2 g1 g2 Fix(g1) ∩ Fix(g2)

(2,4) E × Ei
( −1 0

0 1

) ( 1 0
0 i

)
E(2)× Fix(i)

(2,4) Ei × Ei
( 1 0

0 −1

) (
i 0
0 i

)
Fix(i)× Fix(i)

(2,4) Ei × Ei
( 1 0

1+i −1
) (

i 0
0 i

)
Fix(i)× Fix(i)

(2,4) Ei × Ei
( 1 0

1 −1

) (
i 0
0 i

) {0} × Fix(i)

(2,6) E × Eρ
( −1 0

0 1

) ( 1 0
0 −ρ

)
E(2)× {0}

(2,6) Eρ × Eρ
( −1 0

0 1

) ( −ρ 0
0 −ρ

) {0}

(2,6) Eρ × Eρ
( 1 0

1 −1

) ( −ρ 0
0 −ρ

) {0}

(2,6) Eρ × Eρ
( −1 0

0 1

) ( −ρ 0
0 ρ2

) {0} × Fix(ρ)

(2,12) Ei × Eρ
( −1 0

0 −1

) (
i 0
0 −ρ

)
Fix(i)× {0}

(3,3) Eρ × Eρ
( ρ 0

0 ρ2
) ( ρ 0

0 ρ

)
Fix(ρ)× Fix(ρ)

(3,3) Eρ × Eρ
( 0 1−1 −1

) ( ρ 0
0 ρ

)
Fix(ρ|∆)

(3,6) Eρ × Eρ
( ρ 0

0 ρ2
) ( −ρ 0

0 −ρ
) {0}

(3,6) Eρ × Eρ
( 0 1−1 −1

) ( −ρ 0
0 −ρ

) {0}

(3,6) Eρ × Eρ
(
ρ 0
0 1

) ( 1 0
0 −ρ

)
Fix(ρ)× {0}

(4,4) Ei × Ei
(
i 0
0 1

) ( 1 0
0 i

)
Fix(i)× Fix(i)

(4,4) Ei × Ei
(
i 0
i 1

) ( 1 0−i i
) {0} × Fix(i)

(6,6) Eρ × Eρ
( −ρ 0

0 1

) ( 1 0
0 −ρ

) {0}
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(B2, g1, g2, Fix(g1)∩ Fix (g2)) with d2 > 2 which yield hyperelliptic threefolds in this way.
For the proof Fujiki’s paper [F] is heavily used. According to [F], there are also some

other abelian surfaces admitting a group of automorphisms of type(d1, d2), but these are
quotients ofB2 of table 3. Hence in order to constructthe corresponding hyperelliptic three-
fold we may start withB2 out of table 3. Applying Corollary 4.6, it is now easy to con-
struct many hyperelliptic threefolds for any of the triples(B2, g1, g2) of the table: Choose
a pair of (d1, d2)-division points(x1, x2) of an elliptic curveB1, a subgroupT of B1 and
an embeddingι : T ↪→ Fix (g1)∩ Fix (g2) such thatΓ = 〈x1〉 + 〈x2〉 + T is a direct
sum. IfΓ acts by(x1, (b1, b2)) �→ (tx1(b1), g1(b2)), (x2, (b1, b2)) �→ (tx2(b1), g2(b2)) and
(x, (b1, b2)) → (tx(b1), tι(x)(b2)) for anyx ∈ T , thenX = B1 × B2/Γ is a hyperelliptic
threefold. One can apply Theorem 4.5 in order to construct all hyperelliptic threefolds of this
type. This is a bit more complicated, but can bedone separately in every case. However, there
are too many cases, so this will be omitted.
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