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Abstract. We consider permanence of an SIR epidemic model with distributed time
delays. Based on some known techniques on limit sets of differential dynamical systems, we
show that, for any time delay, the SIR epidemic model is permanent if and only if an endemic
equilibrium exits.

1. Introduction. In this paper, we shall consider the following SIR epidemic model
with distributed time delays,

(1.1)




Ṡ(t) = −βS(t)

∫ h

0
I (t − s)dη(s) − µ1S(t) + b ,

İ (t) = βS(t)

∫ h

0
I (t − s)dη(s) − µ2I (t) − λI (t) ,

Ṙ(t) = λI (t) − µ3R(t) .

In model(1.1), S(t)+ I (t)+R(t) ≡ N(t) denotes the number of a population at timet ; S(t),
I (t) andR(t) denote the numbers of the population susceptible to the disease, of infective
members and of members who have been removed from the possibility of infection through
full immunity, respectively. It is assumed that all newborns are susceptible. The positive
constantsµ1, µ2 andµ3 represent the death rates of susceptibles, infectives and recovered,
respectively. It is biologically natural to assume that

µ1 ≤ min{µ2, µ3} .

The positive constantsb andλ represent the birth rate of the population and the recovery
rate of infectives, respectively. The positive constantβ is the average number of contacts per
infective per day. The nonnegative constanth is the time delay. The functionη(s) : [0, h] →
R = (−∞,+∞) is nondecreasing and has bounded variation such that

∫ h

0
dη(s) = η(h) − η(0) = 1 .
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The termβS(t)
∫ h

0 I (t − s)dη(s) can be considered as the force of infection at timet . For the
detailed biological meanings, we refer to [1–4], [6] and [11].

The initial condition of(1.1) is given as

(1.2) S(θ) = ϕ1(θ) , I (θ) = ϕ2(θ) , R(θ) = ϕ3(θ) , −h ≤ θ ≤ 0 ,

whereϕ = (ϕ1, ϕ2, ϕ3)
T ∈ C such thatϕi(θ) = ϕi(0) ≥ 0 (−h ≤ θ ≤ 0, i = 1, 3),

ϕ2(θ) ≥ 0 (−h ≤ θ ≤ 0), andC denotes the Banach spaceC([−h, 0],R3) of continuous
functions mapping the interval[−h, 0] into R3. By a biological meaning, we further assume
thatϕi(0) > 0 for i = 1, 2, 3.

From Lemma 1 in the following section, the solution(S(t), I (t), R(t)) of (1.1) with the
initial condition(1.2) exists for allt ≥ 0 and is unique. Furthermore,S(t) > 0, I (t) > 0 and
R(t) > 0 for all t ≥ 0. Note that there are no time delay in the state variablesS(t) andR(t)

of (1.1). In the phase spaceC, the solution(S(t), I (t), R(t)) can also be denoted in the form
of (St , It , Rt ) for t ≥ 0. HereSt = S(t + θ), It = I (t + θ) andRt = R(t + θ) for t ≥ 0 and
−h ≤ θ ≤ 0.

For any parametersh, β, b, λ, andµi (i = 1, 2, 3), (1.1) always has a disease free
equilibrium (i.e., boundary equilibrium)E0 = (S0, 0, 0), whereS0 = b/µ1. Furthermore, if

(1.3)
b

µ1
> S∗ ≡ µ2 + λ

β
,

then (1.1) also has an endemic equilibrium (i.e., interior equilibrium)E+ = (S∗, I∗, R∗),
where

S∗ = µ2 + λ

β
, I∗ = b − µ1S

∗

βS∗ , R∗ = λ(b − µ1S
∗)

µ3βS∗ .

The model(1.1) is a natural generalization of the following well-known SIR model with-
out time delay, which was first proposed and studied in [1] and [11],

(1.4)




Ṡ(t) = −βS(t)I (t) − µS(t) + µ ,

İ (t) = βS(t)I (t) − µI (t) − λI (t) ,

Ṙ(t) = λI (t) − µR(t) ,

whereβ, µ andλ are positive constants. In(1.4), it is assumed that the total number of
populationN(t) is constant (i.e.,N(t) = 1 for all t ≥ 0) and that the birth and the death rates
of population are the same. It is shown in [1] and [11] that the condition

δ ≡ β

λ + µ
> 1

is the threshold of(1.4) for an epidemic to occur.δ was called the average number of contacts
in [1] and [11]. In biology and mathematics, the results given in [1] and [11] say that, if
δ ≤ 1, the disease will eventually disappear and all population will become susceptibles (i.e.,
the disease free equilibriumE0 = (1, 0, 0) of (1.4) is globally asymptotically stable), and if
δ > 1, the disease always remains endemic and the numbers of the susceptibles, infectives
and removed will eventually tend to some positive constants, respectively (i.e., the endemic
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equilibrium

E+ =
(

1

δ
,

µ(δ − 1)

β
,

λ(δ − 1)

β

)

of (1.4) is globally asymptotically stable).
Recently, in [3], [4] and [13], it is tried to show such threshold phenomenon as for(1.4)

still remains true for the model(1.1) with time delayh, i.e., the following conjecture may be
true.

CONJECTURE. For any time delay h, (1.3) is the threshold of (1.1) for an epidemic to
occur .

It is shown in [4] that, ifb/µ1 < S∗ (or b/µ1 = S∗), the disease free equilibriumE0

is globally asymptotically stable (or globally attractive, respectively) for any time delayh. If
b/µ1 > S∗ (i.e., (1.3) is valid), the disease free equilibriumE0 becomes unstable and the
endemic equilibriumE+ is locally asymptotically stable for any time delayh. In [4], it is
also shown that the endemic equilibriumE+ is also globally asymptotically stable for some
small time delayh. For a class of simpler model than(1.1), [13] studied the global asymptotic
stability of the endemic equilibriumE+ under somestronger conditions than (1.3). It is not
difficult to see that the results given in [13] still remain true for the model(1.1).

The purpose of the present paper is to give a complete answer to the conjecture in a cer-
tain sense. Indeed, we shall show that, for any time delayh, (1.3) is necessary and sufficient
for the permanence of(1.1). In biology, our result says that(1.3) is the threshold for an en-
demic to occur for any time delayh. To prove our result, some analytic techniques on limit
sets of differential dynamical systems developed in [5], [7] and [9] have been used.

We would like to thank the referee for his many valuable suggestions that improved the
proof of Lemma 4.

2. Main result.

DEFINITION ([12]). (1.1) is said to bepermanent if there are positive constantsνi and
Mi (i = 1, 2, 3) such that

ν1 ≤ lim inf
t→+∞ S(t) ≤ lim sup

t→+∞
S(t) ≤ M1 ,

ν2 ≤ lim inf
t→+∞ I (t) ≤ lim sup

t→+∞
I (t) ≤ M2 ,

ν3 ≤ lim inf
t→+∞ R(t) ≤ lim sup

t→+∞
R(t) ≤ M3

hold for any solution of(1.1) with the initial condition(1.2). Hereνi andMi (i = 1, 2, 3) are
independent of(1.2).

The following is our main result of the paper.

THEOREM. For any time delay h, (1.3) is necessary and sufficient for the permanence
of (1.1).
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Note that the disease free equilibriumE0 of (1.1) is globally asymptotically stable or
globally attractive if(1.3) is not valid. We only need to prove the sufficiency. Let us first
show the following Lemmas 1–4.

LEMMA 1. The solution (S(t), R(t), I (t)) of (1.1) with (1.2) exists and is positive for
t ≥ 0. Further,

(2.1) lim sup
t→+∞

N(t) ≤ b

µ1
.

PROOF. Note that the right hand side of(1.1) is completely continuous and locally
Lipschitzian onC. It follows from [9] and [12] that the solution(S(t), I (t), R(t)) of (1.1)
exists and is unique on[0, α) for someα > 0. It is easy to see thatS(t) > 0 for all t ∈ [0, α).
Indeed, this follows from thaṫS(t) = b > 0 for anyt ∈ [0, α) whenS(t) = 0. Let us show
thatI (t) > 0 for all t ∈ [0, α). In fact, assume that there exists somet1 ∈ (0, α) such that
I (t1) = 0 andI (t) > 0 for t ∈ [0, t1). Integrating the second equation of(1.1) from 0 to t1,
we see that

I (t1) = I (0)e−(µ2+λ)t1 + β

∫ t1

0

(
S(u)

∫ h

0
I (u − s)dη(s)

)
e−(µ2+λ)(t1−u)du > 0 ,

which contradictsI (t1) = 0. From(1.1), we also have thatR(t) > 0 for all t ∈ [0, α). Thus,
for t ∈ [0, α),

(2.2) Ṅ(t) ≤ −µ1N(t) + b ,

which implies that(S(t), I (t), R(t)) is uniformly bounded on[0, α). It follows from [9] and
[12] that (S(t), I (t), R(t)) exists and is unique and positive fort ≥ 0. From(2.2), we also
have(2.1). This completes the proof of Lemma 1.

REMARK 1. For any nonnegative initial functionϕ ∈ C, by a similar method as that
used in Lemma 1, we can show that the following (i), (ii) and (iii) are true.

(i) The solution(S(t), I (t), R(t)) of (1.1) exists andS(t) > 0 (t > 0), I (t) ≥ 0 and
R(t) ≥ 0 (t ≥ 0).

(ii) If ϕ1(0) > 0 andϕ2(0)+∫ h

0 ϕ2(−s)dη(s) > 0, then the solution(S(t), I (t), R(t))

of (1.1) exists andS(t) > 0 (t ≥ 0), I (t) > 0 andR(t) > 0 (t > 0).
(iii) If ϕ2(θ) = ϕ3(0) = 0 for anyθ ∈ [−h, 0], then the solution(S(t), I (t), R(t)) of

(1.1) exists andS(t) > 0 (t > 0) andI (t) = R(t) = 0 (t ≥ 0).

In fact, let the solution(S(t), I (t), R(t)) exist and be unique on[0, α) for someα > 0.
It is easy to show thatS(t) > 0 for t ∈ (0, α). From the proof of Lemma 1 and the continuity
of the solution(S(t), I (t), R(t)) of (1.1) with respect to the initial functionϕ, we easily show
thatI (t) ≥ 0 andR(t) ≥ 0 for t ∈ (0, α). Thus, (i) of Remark 1 holds.

If ϕ2(0) + ∫ h

0 ϕ2(−s)dη(s) > 0, then from(1.1), we have thaṫI(0) > 0. This implies
thatI (t) > 0 for smallt > 0, from which we can further show thatI (t) > 0 for all t ∈ (0, α).
Furthermore, from(1.1), we also have thatR(t) > 0 for t ∈ (0, α). This shows that (ii) of
Remark 1 holds.
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If ϕ2(θ) = ϕ3(0) = 0 for all θ ∈ [−h, 0], it is clear that

S(t) =
(
ϕ1(0) − b

µ1

)
e−µ1t + b

µ1
> 0 ,

andI (t) = R(t) = 0 for all t ≥ 0. This shows that (iii) of Remark 1 holds.

LEMMA 2. The solution (S(t), R(t), I (t)) of (1.1) with (1.2) satisfies

(2.3) lim inf
t→+∞ S(t) ≥ µ1b

bβ + µ2
1

≡ ν1 .

PROOF. For any sufficiently small positive constantε, it follows from Lemma 1 that
there is some sufficiently larget1 > 0 such that fort ≥ t1, I (t) ≤ b/µ1 + ε. Thus, from(1.1)
we have that fort ≥ t1 + h,

Ṡ(t) ≥ −
[
β

(
b

µ1
+ ε

)
+ µ1

]
S(t) + b ,

which implies that

lim inf
t→+∞ S(t) ≥ bµ1

β(b + µ1ε) + µ2
1

.

Note thatε may be arbitrarily small so that(2.3) holds. This proves Lemma 2.

LEMMA 3. The set Q is positively invariant for (1.1) and attracts all solutions of (1.1).
Here Q is the set of ϕ = (ϕ1, ϕ2, ϕ3) ∈ C satisfying

b

µ0
≤ ϕ1(θ) + ϕ2(θ) + ϕ3(θ) ≤ b

µ1
, ν1 ≤ ϕ1(θ) ≤ b

µ1
,

ϕ2(θ) ≥ 0 , ϕ3(θ) ≥ 0 , −h ≤ θ ≤ 0 ,

and µ0 = max{µ1, µ2, µ3}.
PROOF. By Lemmas 1 and 2 and the fact thatṄ(t) ≥ b−µ0N(t), it is enough to show

thatQ is positively invariant for(1.1).
For any initial functionϕ = (ϕ1, ϕ2, ϕ3) ∈ Q, let (S(t), I (t), R(t)) be the solution of

(1.1). From Remark 1, we have that(S(t), I (t), R(t)) is nonnegative for allt ≥ 0.
Now, let us show thatS(t) ≤ b/µ1 for all t ≥ 0. If not, there exists somet1 > 0 such

thatS(t1) > b/µ1 andṠ(t1) > 0 by the mean value theorem. Thus, it follows from(1.1) that

Ṡ(t1) = −βS(t1)

∫ h

0
I (t1 − s)dη(s) − µ1S(t1) + b < 0 ,

which is a contradiction. Moreover, note that for anyt ≥ 0,

−µ0N(t) + b ≤ Ṅ(t) ≤ −µ1N(t) + b .

Hence we see thatb/µ0 ≤ N(t) ≤ b/µ1 for anyt ≥ 0.
Let us show thatS(t) ≥ ν1 for all t ≥ 0. If not, we can find somet2 ≥ 0 such that

S(t2) = ν1, S(t) ≥ ν1 for all −h ≤ t ≤ t2 andṠ(t2) ≤ 0. On the other hand, it follows from
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(1.1) that

Ṡ(t2) = −βS(t2)

∫ h

0
I (t2 − s)dη(s) − µ1S(t2) + b

≥ −βν1

(
b

µ1
− ν1

)
− µ1ν1 + b

= βν2
1 > 0 .

Note that the first inequality of the above is true since we haveI (t) ≤ b/µ1 − ν1 for t − h <

t < t2 because ofN(t) ≤ b/µ1, S(t) ≥ ν1 andI (t) ≤ N(t) − S(t) for t − h < t < t2. Thus,
we again have a contradiction. These shows thatQ is positively invariant for(1.1). The proof
of Lemma 3 is completed.

LEMMA 4. If (1.3) holds, then the solution (S(t), I (t), R(t)) of (1.1) with (1.2) satis-
fies

lim inf
t→+∞ I (t) > 0 .

PROOF. From Lemma 3, we see that it is enough to consider the solution(S(t), I (t),

R(t)) (t ≥ 0) with the initial functionϕ ∈ Q. From Lemma 1, we see that the omega limit
setω(ϕ) of (S(t), I (t), R(t)) (t ≥ 0) is nonempty, compact, invariant andω(ϕ) ⊂ Q ([8],
[9] and [14]).

If lim inf t→+∞ I (t) = 0, we shall show that there is a contradiction.
Indeed, from lim inft→+∞ I (t) = 0, we see that there exists a positive time sequence

{tn}: tn → +∞ (n → +∞) such that

lim
n→+∞ I (tn) = 0 , İ (tn) ≤ 0 , I (t) ≥ I (tn) (tn − h ≤ t ≤ tn) .

Note that the solution(S(t), I (t), R(t)) is bounded on[0,+∞) by Lemma 1. It follows
from (1.1) that(S(t), I (t), R(t)) is uniformly continuous on[0,+∞). Hence, it follows from
Ascoli’s theorem that there is a subsequence of{tn}, still denoted by{tn}, such that

lim
n→+∞(S(t + tn), I (t + tn), R(t + tn)) = (S̃(t), Ĩ (t), R̃(t))

holds uniformly onR in the wider sense. From Lemma 3, we have that

(S̃t , Ĩt , R̃t ) ∈ Q

for any t ∈ R, and that for anyτ ∈ R, the function(S̃(t + τ ), Ĩ (t + τ ), R̃(t + τ )) of t is
the solution of(1.1) with the initial function(S̃τ , Ĩτ , R̃τ ). Here we note that̃I (0) = 0 and
ν1 ≤ S̃(t) ≤ b/µ1 for anyt ∈ R.

We claim that(S̃(t), Ĩ (t), R̃(t)) = (b/µ1, 0, 0) for anyt ∈ R.
From Ĩ (0) = 0 and (ii) of Remark 1, we have that

∫ h

0 Ĩ (t − s)dη(s) + Ĩ (t) = 0 for all
t < 0, from which we further have that̃I(t) = 0 for anyt < 0. Thus, it follows from(1.1)
that Ĩ (t) ≡ 0 for anyt ∈ R, and that

d

dt
S̃(t) = −µ1S̃(t) + b
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for anyt ≥ τ . Hence

S̃(t) = e−µ1t S̃(0) + b

µ1
(1 − e−µ1t )

for anyt ≥ τ . Note that from the arbitrariness ofτ , we have that

S̃(t) = b

µ1
+

(
S̃(0) − b

µ1

)
e−µ1t

for any t ∈ R. Since S̃(t) is bounded fort ∈ R, we must have that̃S(0) = b/µ1,
which implies thatS̃(t) = b/µ1 for any t ∈ R. It follows from (1.1) and Lemma 1 that
(S̃(t), Ĩ (t), R̃(t)) = (b/µ1, 0, 0) for anyt ∈ R. This shows that the above claim holds.

Specially, we have that

lim
t→+∞ S(tn) = S̃(0) = b

µ1
.

For sufficiently largen, we have thatS(tn) > (µ2 + λ)/β by (1.3). Hence

İ (tn) = βS(tn)

∫ h

0
I (tn − s)dη(s) − µ2I (tn) − λI (tn)

≥ [βS(tn) − (µ2 + λ)]I (tn) > 0 ,

which is a contradiction tȯI(tn) ≤ 0. This completes the proof of Lemma 4.

PROOF OFTHEOREM. We first show that the solution(S(t), I (t), R(t)) of (1.1) with
(1.2) satisfies

(2.4) lim inf
t→+∞ I (t) ≥ ν2 .

Hereν2 is some positive constant which does not depend on the initial functionϕ.
For any initial functions sequence{ϕn} = {(ϕ(n)

1 , ϕ
(n)
2 , ϕ

(n)
3 )} ⊂ Q, let (S(n)(t), I (n)(t),

R(n)(t)) be the solution of(1.1) with the initial functionϕn. Letωn(ϕn) be the omega limit set
of (S(n)(t), I (n)(t), R(n)(t)). By a completely similar argument as that used in [5] and [10], we
have that there exits some compact and invariant setω∗ ⊂ Q such that dist(ωn(ϕn), ω

∗) → 0
asn → +∞. Here, dist(ωn(ϕn), ω

∗) means Hausdorff distance.
If (2.4) does not hold, for some initial function sequence{ϕn} = {(ϕ(n)

1 , ϕ
(n)
2 , ϕ

(n)
3 )} ⊂ Q

such thatϕ(n)
2 (0) > 0 andϕ

(n)
3 (0) > 0, we have that there is someϕ̄ = (ϕ̄1, ϕ̄2, ϕ̄3) ∈ ω∗ such

that ϕ̄2(θ0) = 0 for some−h ≤ θ0 ≤ 0. Now, let(S̄(t), Ī (t), R̄(t)) be the solution of(1.1)
with the initial functionϕ̄. Then, by the invariance ofω∗, we have that(S̄t , Īt , R̄t ) ∈ ω∗ for all
t ∈ R. Note that Remark 1 and̄ϕ2(θ0) = 0, we easily have that

∫ h

0 Ī (t − s)dη(s) + Ī (t) = 0
for all t ≤ θ0. Hence, it follows from(1.1) that I (t) = 0 for all t ≤ 0. This imples that
ϕ̄2(θ) = 0 for all −h ≤ θ ≤ 0. It follows from Remark 1 and(1.1) that S̄(t) = ḡ 1(t),
Ī (t) = 0 andR̄(t) = ḡ 2(t) for all t ∈ R, where

ḡ 1(t) = b

µ1
−

(
b

µ1
− ϕ̄1(0)

)
e−µ1t , ḡ 2(t) = ϕ̄3(0)e−µ3t .

If ϕ̄1(0) < b/µ1 or ϕ̄3(0) > 0 , we see that the negative semi-orbit(S̄(t), Ī (t), R̄(t)) (t ≤ 0)

is unbounded. This is a contradiction.
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If ϕ̄1(0) = b/µ1, we have that̄ϕ2(0) = ϕ̄3(0) = 0. Hence,S̄(t) = b/µ1 and Ī (t) =
R̄(t) = 0 for all t ∈ R. This shows that̄ϕ = (b/µ1, 0, 0) = E0 ∈ ω∗.

Let us show thatE0 is factually isolated (see [5] or [10]). That is, there exists some
neighborhoodU of E0 in Q such thatE0 is the largest invariant set inU .

In fact, let us choose

U = {ϕ | ϕ = (ϕ1, ϕ2, ϕ3) ∈ Q̄, ‖ϕ − E0‖ < ε}
for some sufficiently small positive constantε. We shall show thatE0 is the largest invariant
set inU for someε.

If not, for any sufficiently smallε, there exists some invariant setW (W ⊂ U ) such that
W\E0 is not empty. Letϕ = (ϕ1, ϕ2, ϕ3) ∈ W\E0 and(St , It , Rt ) be the solution of(1.1)
with the initial functionϕ. Then,(St , It , Rt ) ∈ W for all t ∈ R.

If ϕ2(0) + ∫ h

0 ϕ2(−s)dη(s) = 0, by the invariance ofW and Remark 1, we also have the
contradiction thatϕ = E0 or that the negative semi-orbit(St , It , Rt ) (t < 0) of (1.1) through
ϕ is unbounded.

If ϕ2(0)+∫ h

0 ϕ2(−s)dη(s) > 0, from Remark 1 we see thatI (t) > 0 for all t ≥ 0. Now,
let us consider the continuous function

P(t) = I (t) + ρ

∫ h

0

∫ t

t−τ

I (u)dudη(τ)

for some constantρ > 0. We see that fort ≥ 0, the time derivative ofP(t) along the solution
(S(t), I (t), R(t)) satisfies

Ṗ (t) = İ (t) + ρ

(
I (t) −

∫ h

0
I (t − τ )dη(τ )

)

= [ρ − (µ2 + λ)]I (t) + [βS(t) − ρ]
∫ h

0
I (t − τ )dη(τ )

≥ [ρ − (µ2 + λ)]I (t) +
[
β

(
b

µ1
− ε

)
− ρ

] ∫ h

0
I (t − τ )dη(τ )

=
[
βb

µ1
− (µ2 + λ) − βε

]
I (t) ,

(2.5)

for t ≥ 0. Here, we chooseρ = β(b/µ1 − ε) > 0 and used the inequalityS(t) ≥ b/µ1 − ε

for all t ∈ R. From Lemma 4, we have thatI (t) ≥ η > 0 for some constantη and all large
t ≥ t1 > 0. Hence, it follows from(2.5) and(1.3), that for some sufficiently smallε,

Ṗ (t) ≥ η

[
βb

µ1
− (µ2 + λ) − βε

]
> 0

for all t ≥ t1. Thus,P(t) → +∞ ast → +∞. This contradicts Lemma 1, and shows that
E0 is isolated.

We easily see that the semigroup defined by the solution of(1.1) satisfies the conditions
of Lemma 4.3 in [10] withM = E0. Thus, by Lemma 4.3 in [10], we have that there is some
ξ = (ξ1, ξ2, ξ3) such thatξ ∈ ω∗ ∩ (Ws(E0)\E0). Here,Ws(E0) denotes the stable set ofE0.
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If ξ2(0) + ∫ h

0 ξ2(−s)dη(s) = 0, again by the invariance ofW and Remark 1, we also

have the contradiction thatξ = E0 or that the negative semi-orbit(Ŝt , Ît , R̂t ) (t < 0) of (1.1)
throughξ is unbounded.

If ξ2(0) + ∫ h

0 ξ2(−s)dη(s) > 0, from Remark 1, we see thatŜ(t) > 0, Î (t) > 0 and

R̂(t) > 0 for all t > 0. It follows fromξ ∈ ω∗ ∩ (Ws(E0)\E0) that

lim
t→+∞ Ŝ(t) = b

µ1
, lim

t→+∞ Î (t) = lim
t→+∞ R̂(t) = 0 ,

which contradicts Lemma 4. This shows that(2.4) holds. From(1.1) and(2.4) we easily
have that

lim inf
t→+∞ R(t) ≥ λν2

µ3
≡ ν3 > 0 .

Thus,(1.1) is permanent by Lemmas 1 and 2. This proves our theorem.

3. Conclusion. In this paper, we considered permanence of(1.1). In biology, our
theorem together with results in [3, 4] and [13] show that, for any time delayh, the condition
(1.3) is the threshold of(1.1) for an endemic to occur. On the other hand, the simulations
for (1.1) given below suggest that the condition(1.3) maybe also necessary and sufficient for
the global asymptotic stability of the endemic equilibrium E+ of (1.1) for any time delay h.
Unfortunately, we cannot give a complete proof to the problem. We can only show that the
endemic equilibriumE+ of (1.1) is globally asymptotically stable forsmall time delay h [4].

EXAMPLE. Note that the first two equations of(1.1) are independent of the state vari-
ableR(t) and that the third equation of(1.1) is linear with respect toI (t) andR(t). We
consider the following sub-systems(3.1) and(3.2) with discrete and distributed time delays,
respectively.

(3.1)

{
Ṡ(t) = −0.1S(t)I (t − h) − 0.1S(t) + 0.5 ,

İ (t) = 0.1S(t)I (t − h) − αI (t) ,




Ṡ(t) = −0.1S(t)

∫ h

0

(
e−s

1 − e−h

)
I (t − s)ds − 0.1S(t) + 0.5 ,

İ (t) = 0.1S(t)

∫ h

0

(
e−s

1 − e−h

)
I (t − s)ds − αI (t) ,

(3.2)

whereα > 0 andh > 0. It is clear that the condition(1.3) is reduced to

(3.3) 0 < α <
1

2
.

There exists the disease free equilibriumE0 = (5, 0) for (3.1) and(3.2). If (3.3) holds, there
also exists the endemic equilibriumE+ = (10α, (0.5 − α)/α) for (3.1) and(3.2).

Figures 1 and 2 illustrate our theorem and further suggest that,for large time delay h,

the endemic equilibrium E+ of (1.1) is also globally asymptotically stable if and only if (1.3)
holds.
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FIGURE 1. The graph of the trajectory of(3.1) with α = 0.49, h = 30 and the initial
functionϕ1(θ) = 0.1θ + 3 andϕ2(θ) = 1.1 − cos(0.05πθ) for θ ∈ [−h, 0].

FIGURE 2. The graph of the trajectory of(3.2) with α = 0.49, h = 30 and the initial
functionϕ1(θ) = 0.1θ + 3 andϕ2(θ) = 2 − sin(θ) for θ ∈ [−h, 0].
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