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Abstract. We consider permanence of an SIR epidemic model with distributed time
delays. Based on some known techniques on limit sets of differential dynamical systems, we
show that, for any time delay, the SIR epidemic model is permanent if and only if an endemic
equilibrium exits.

1. Introduction. In this paper, we shall consider the following SIR epidemic model
with distributed time delays,

h
Sty =—pS(@) fo 1(t —s)dn(s) — p1S@t) + b,

(1.1) . h
I(t) = ,BS(I)/O I(t —s)dn(s) — pu2l (t) — A1),

R(1) = M (t) — u3R(@).

In model(1.1), S(t) + () + R(t) = N(t) denotes the number of a population at tim&(z),

I(r) and R(r) denote the numbers of the population susceptible to the disease, of infective
members and of members who have been removed from the possibility of infection through
full immunity, respectively. It is assumed that all newborns are susceptible. The positive
constantsus, up andus represent the death rates of sugit®es, infectives and recovered,
respectively. It is biologically natural to assume that

pa1 < min{ua, pus}.

The positive constants and 1 represent the birth rate of the population and the recovery
rate of infectives, respectively. The positive consiaid the average number of contacts per
infective per day. The nonnegative constaiis the time delay. The function(s) : [0, k] —

R = (—o0, +00) is nondecreasing and has bounded variation such that

h
/o dn(s) =n(h) —n(0) =1.
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The termBS(z) [g’ I(r —s)dn(s) can be considered as the force of infection at titrieor the
detailed biological meanings, we refer to [1-4], [6] and [11].
The initial condition of(1.1) is given as

(1.2) SO =¢@10), 10)=¢20), R@O)=¢306), —-h=6=0,

whereg = (@1, 92, 93)7 € C such thatp;(#) = ¢;(0) > 0(—=h <6 <0, i = 1,3),
¢2(0) > 0 (—h < 6 < 0), andC denotes the Banach spa€é[—#, 0], R3) of continuous
functions mapping the intervg-h, 0] into R3. By a biological meaning, we further assume
thaty;(0) > Ofori = 1,2, 3.

From Lemma 1 in the following section, the soluties$(z), 7(¢), R(t)) of (1.1) with the
initial condition (1.2) exists for all > 0 and is unique. Furthermor&(s) > 0, 1(zr) > 0 and
R() > Oforallr > 0. Note that there are no time delay in the state variab{gsand R (¢)
of (1.1). In the phase spaag, the solution(S(z), 1 (¢), R(¢)) can also be denoted in the form
of (S, I;, R;) fort > 0. HereS, = S(t +0), I, = I(t + 0) andR; = R(¢t + 0) fort > 0 and
—-h<6<0.

For any parameters, 8, b, A, andu; (i = 1,2, 3), (1.1) always has a disease free
equilibrium (i.e., boundary equilibriumyg = (Sp, 0, 0), whereSo = b/u1. Furthermore, if
b gt
251 B
then (1.1) also has an endemic equilibrium (i.e., interior equilibriumy) = (S*, I*, R*),
where

(1.3

_ p2tA I*_b—mS* « _ Mb—paS")
B - BSt © paps*

The model1.1) is a natural generalization of the following well-known SIR model with-
out time delay, which was first proposed and studied in [1] and [11],

$(t) = =BSWOI (1) — St + 1.
(1.4) I(t)=BSOI(®) =l () = M (1),
R(@®) = 1I(1) = uR().

S*

where, u anda are positive constants. I(1.4), it is assumed that the total number of
populationh (¢) is constant (i.e.N(t) = 1 for all¢ > 0) and that the birth and the death rates
of population are the same. It is shown in [1] and [11] that the condition

B
A+p
is the threshold of1.4) for an epidemic to occus was called the average number of contacts
in [1] and [11]. In biology and mathematics, the results given in [1] and [11] say that, if
§ < 1, the disease will eventually disappear and all population will become susceptibles (i.e.,
the disease free equilibriuip = (1, 0, 0) of (1.4) is globally asymptotically stable), and if
8 > 1, the disease always remains endemic aednimbers of the susceptibles, infectives
and removed will eventually tend to some positive constants, respectively (i.e., the endemic

>1
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equilibrium

<1 w@d =1 A6 — 1))
E+ =\ =< )
8 B B
of (1.4) is globally asymptotically stable).

Recently, in [3], [4] and [13], it is tried to show such threshold phenomenon a&.#r
still remains true for the modé€L.1) with time delayn, i.e., the following conjecture may be
true.

CONJECTURE For anytimedelay 4, (1.3) isthethreshold of (1.1) for an epidemic to
occur .

It is shown in [4] that, ifb/ju1 < S* (or b/u1 = S*), the disease free equilibriutg
is globally asymptotically stable (or globally attractive, respectively) for any time deléy
b/u1 > S* (i.e., (1.3) is valid), the disease free equilibriufty becomes unstable and the
endemic equilibriumE . is locally asymptotically stable for any time delay In [4], it is
also shown that the endemic equilibriuly. is also globally asymptotically stable for some
small time delay:. For a class of simpler model th&h 1), [13] studied the global asymptotic
stability of the endemic equilibriunf . under somestronger conditions than (1.3). It is not
difficult to see that the results given in [13] still remain true for the mgddl).

The purpose of the present paper is to give a complete answer to the conjecture in a cer-
tain sense. Indeed, we shall show that, for any time die)ag.3) is necessary and sufficient
for the permanence @fl.1). In biology, our result says th&1.3) is the threshold for an en-
demic to occur for any time delay. To prove our result, some analytic techniques on limit
sets of differential dynamical systems developed in [5], [7] and [9] have been used.

We would like to thank the referee for his many valuable suggestions that improved the
proof of Lemma 4.

2. Mainresult.
DEFINITION ([12]). (1.1) is said to begpermanent if there are positive constants and
M; (i =1, 2, 3) such that

v1 < liminf S(¢) < limsupS(¢) < My,
1—>+00 t—>+00

v2 < liminf I(t) <limsupl(z) < M2,
I—+00 1—+00

vz < liminf R(¢t) < limsupR(¢t) < M3
t——+00 t—+00
hold for any solution of1.1) with the initial condition(1.2). Herev; andM; (i = 1, 2, 3) are
independent of1.2).

The following is our main result of the paper.

THEOREM. For anytimedelay &, (1.3) is necessary and sufficient for the permanence
of (1.2).
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Note that the disease free equilibriufiy of (1.1) is globally asymptotically stable or
globally attractive if(1.3) is not valid. We only need to prove the sufficiency. Let us first
show the following Lemmas 1-4.

LEMMA 1. Thesolution (S(z), R(¢), I (z)) of (1.1) with (1.2) exists and is positive for
t > 0. Further,

(2.1 limsupN(t) < i
t—+00 Mn1

PrROOFE Note that the right hand side ¢1.1) is completely continuous and locally
Lipschitzian onC. It follows from [9] and [12] that the solutionS(¢), I(¢), R(t)) of (1.1)
exists and is unique d, «) for somex > 0. Itis easy to see thak(r) > Oforallz € [0, «).
Indeed, this follows from thaf(r) = b > 0 for anyr € [0, @) whenS(r) = 0. Let us show
thatl(r) > O forallt € [0, ). In fact, assume that there exists some& (0, @) such that
I(r1) = 0andI(t) > Oforz € [0, t1). Integrating the second equation(@fl) from 0 tory,
we see that

11 h
[(t7) = [(Q)e~W2tPi 1 g / (S(u) / I(u— s)dn(s))e_(“z"')‘)(’l_“)du >0,
0 0

which contradictd (1) = 0. From(1.1), we also have thak(¢) > O forall¢ € [0, o). Thus,
fort € [0, @),

(2.2) N(t) < —paN(t) + b,

which implies that(S(z), I (z), R(z)) is uniformly bounded o0, ). It follows from [9] and
[12] that (S(r), I (r), R(¢)) exists and is unique and positive foe= 0. From(2.2), we also
have(2.1). This completes the proof of Lemma 1.

REMARK 1. For any nonnegative initial functiop € C, by a similar method as that
used in Lemma 1, we can show that the following (i), (ii) and (iii) are true.

() The solution(S(z), 1(t), R(¢)) of (1.1) exists andS(zr) > 0 (r > 0),1(¢+) > 0 and
R@)=0( = 0).

(i) If 1(0) >0 and<p2(0)+fé’ @2(—s)dn(s) > 0, then the solutioS(z), 1(t), R(t))
of (1.1) exists andS(t) > 0 (¢t > 0), I(¢) > O andR(¢) > 0 (t > 0).

(i) If @2(0) = ¢3(0) = 0 for any® < [—h, 0], then the solutioriS(z), 1(t), R(¢)) of
(1.1) existsandS(z) > 0(r > 0)and/(r) = R(t) =0 ( > 0).

In fact, let the solution(S(¢), 1(¢), R(t)) exist and be unique oj, «) for somex > 0.
Itis easy to show thaf(r) > 0 for¢ € (0, «). From the proof of Lemma 1 and the continuity
of the solution(S(z), 1(¢), R(t)) of (1.1) with respect to the initial function, we easily show
that/ () > 0 andR(¢) > O forr € (O, ). Thus, (i) of Remark 1 holds.

If p2(0) + fé’ @2(—s)dn(s) > 0, then from(1.1), we have that (0) > 0. This implies
that/ () > 0 for smallr > 0, from which we can further show thafr) > 0 forallr € (0, ).
Furthermore, from(1.1), we also have thak(z) > 0 fort € (0, o). This shows that (ii) of
Remark 1 holds.
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If p2(6) = ¢3(0) = 0 forallé € [—h, 0], itis clear that
b b
S(t) = ((pl(O) - —)e—ﬂlf +-— >0,
75 H“1
andI(r) = R(#) = Oforallr > 0. This shows that (iii) of Remark 1 holds.
LEMMA 2. Thesolution (S(¢), R(¢), I1(¢)) of (1.1) with (1.2) satisfies

. u1b
2. I f =
(2.3 t'LnJlrgo S() > B + P«% V1

PrRooF For any sufficiently small positive constantit follows from Lemma 1 that
there is some sufficiently large > 0 such that for > 71, I (#) < b/u1+ €. Thus, from(1.1)
we have that for > 1 + h,

S@r) > —[ﬂ(% +s) +u1:|S(t)+b,

which implies that
bpa
B+ pae) + u?’
Note thats may be arbitrarily small so th&P.3) holds. This proves Lemma 2.

liminf S(t) >
t—400

LEMMA 3. Theset Q ispositivelyinvariant for (1.1) and attractsall solutionsof (1.1).
Here Q isthe set of ¢ = (¢1, @2, 3) € C satisfying

b b b
— = ¢1(0) +92(0) + 93(0) =< —, vi=¢1(0) = —,
Mo Mm1 M1

200) 20, ¢3(0) >0, —-h=<6=<0,
and o = max{j1, pu2, ua).
PROOF By Lemmas 1 and 2 and the fact thétr) > b — uoN(¢), itis enough to show
that Q is positively invariant for(1.1).
For any initial functionp = (@1, @2, ¢3) € O, let (S(¢), I(¢), R(t)) be the solution of
(1.1). From Remark 1, we have théf(r), 1(¢), R()) is nonnegative for all > 0.

Now, let us show thas(¢) < b/u forallz > 0. If not, there exists somg > 0 such
thatS(r1) > b/u1 andS(r1) > 0 by the mean value theorem. Thus, it follows fréinl) that

h
S(n) = —ﬂS(tl)/O I(t1 — s)dn(s) — p1S(1) +b <0,
which is a contradiction. Moreover, note that for any O,

—uoN(®) +b < N(t) < —puiN() +b.

Hence we see thal/ ;.o < N(r) < b/u4 for anyr > 0.
Let us show thatS(z) > v1 for all + > 0. If not, we can find some > 0 such that
S(t2) = v1, S(t) > vy forall —h <t < 1» andS(#2) < 0. On the other hand, it follows from
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(1.1) that

h
S(12) = —,BS(tz)/O I(t2 = s)dn(s) — u1S(12) +b

> —,31/1(i - v1> — puav1+b
ni
= ,31)% > 0.
Note that the first inequality of the above is true since we Have< b/u1 —vifort —h <
t < tpbecause oN(¢) < b/u1, S(t) > viandI(t) < N(t) — S(t) fort —h <t < 1. Thus,
we again have a contradiction. These shows ¢hat positively invariant for(1.1). The proof
of Lemma 3 is completed.

LEMMA 4. If (1.3) holds, then the solution (S(¢), I(t), R(¢)) of (1.1) with (1.2) satis-
fies
liminf () > 0.

t——+00

PrROOE From Lemma 3, we see that it is enough to consider the solasian, 1(z),
R()) (r > 0) with the initial functionp € Q. From Lemma 1, we see that the omega limit
setw(p) of (S(t), I(r), R(¥)) (¢t > 0) is nonempty, compact, invariant andye) C Q ([8],

[9] and [14]).

If liminf;_ 1o I(t) = 0, we shall show that there is a contradiction.

Indeed, from liminf_, ;I (#) = 0, we see that there exists a positive time sequence
{tn}: t, = 400 (n — 400) such that

lim 1) =0, [(t) <0, I0)=1t) (tn—h=t=t).
n—+00
Note that the solutior{S(z), 1 (), R(t)) is bounded or{0, +c0) by Lemma 1. It follows

from (1.1) that(S(¢), 1(¢), R(¢)) is uniformly continuous of0, +00). Hence, it follows from
Ascoli’'s theorem that there is a subsequencg,df still denoted by{z,}, such that

im (S 4 1), 1+ 0), R(+ 1)) = @), 1), R(1))
holds uniformly ornR in the wider sense. From Lemma 3, we have that
(3[7 ila Rt) € Q

for anys € R, and that for anyt € R, the function(S(t + 1), I(t + 1), R(t + 7)) of t is
the solution of(1.1) with the initial function(S;, I;, R;). Here we note thai(0) = 0 and
v1 < 8(t) < b/uy foranyr e R.

We claim that(S(r), 1 (1), R(t)) = (b/u1, 0, 0) for anyr € R.

From(0) = 0 and (ii) of Remark 1, we have th;ﬁf [(t — s)dn(s) + I(r) = Oforall
t < 0, from which we further have thdtr) = 0 for anyt < 0. Thus, it follows from(1.1)
that/(r) = O for anyr € R, and that

d - ~
2750 =—mS@) +b
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forany: > . Hence
- ~ b
S@t) = e MIS0) + — (1 — e 11t
M1

for anyr > . Note that from the arbitrariness of we have that

S@t) = > + (5(0) - i)e_w
m1 n1
for anys € R. SinceS(r) is bounded forr € R, we must have thas(0) = b/u1,
which implies thatS(r) = b/u1 for anys € R. It follows from (1.1) and Lemma 1 that
(S, I(t), R(t)) = (b/u1, 0, 0) for anyr € R. This shows that the above claim holds.
Specially, we have that

. ~ b
lim S(,) =S0)=—.
t—>400 JZ50
For sufficiently large:, we have thaS(s,) > (u2 + 1)/ by (1.3). Hence

h
[(ty) = ,BS(tn)/O I(ty — s)dn(s) — 2l (ta) — A1 (tn)

> [BS(tn) — (2 + M) () > 0,
which is a contradiction td(z,) < 0. This completes the proof of Lemma 4.

PrRoOF OFTHEOREM. We first show that the solutiot$(¢), I (¢), R(¢)) of (1.1) with
(1.2) satisfies

(2.9 liminf 1(t) > vo.
t——+00

Herev; is some positive constant which does not depend on the initial fungtion

For any initial functions sequende,} = {(<p§"), goén), <p§"))} C 0O, let(S™ @), I™ @),
R™ (1)) be the solution of1.1) with the initial functiong,. Letw, (¢,) be the omega limit set
of (S (1), I™ (1), R™(r)). By a completely similar argument as that used in [5] and [10], we
have that there exits some compact and invarianb$et Q such that distw, (¢,), ®*) — 0
asn — +oo. Here, distw, (¢,,), ©*) means Hausdorff distance.

If (2.4) does not hold, for some initial function sequefgg} = {(cpi”), <p§"), (pé"))} co
such thatpg’)(O) >0 andgoé") (0) > 0, we have that there is somae= (@1, @2, ¢3) € w* such
that@,(6g) = O for some—h < 6y < 0. Now, let(S(r), I(r), R(¢)) be the solution of1.1)
with the initial functiong. Then, by the invariance of*, we have thatS;, I;, R;) € o* for all
t € R. Note that Remark 1 angb(fg) = 0, we easily have thayﬁ1 I[(t —s)dn(s)+1(t) =0
forall t < 6p. Hence, it follows from(1.1) that7(z) = O for allt < 0. This imples that
@2(0) = Oforall—h < 6 < 0. It follows from Remark 1 andl.1) that S(r) = §4(7),
1(t) = 0andR(t) = go(t) forall t € R, where

Gy = 2 - (i - @1(0>)e—“1’ 320 = GaOe
p1 o\ 1
If $1(0) < b/u1 or @3(0) > 0, we see that the negative semi-oitditr), 1(r), R(1)) (t < 0)
is unbounded. This is a contradiction.
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If $1(0) = b/u1, we have thaip,(0) = 3(0) = 0. Hence,S(r) = b/uy andI(t) =
R(1) = Oforallr € R. This shows thap = (b/u1, 0, 0) = Eg € w*.

Let us show thatEg is factually isolated (see [5] or [10]). That is, there exists some
neighborhood’ of Eg in Q such thatEg is the largest invariant set iti.

In fact, let us choose

U={p|le=(p1, g2, p3) € O, llg — Eoll < &}

for some sulfficiently small positive constantWe shall show thakEyg is the largest invariant
setinU for somes.

If not, for any sufficiently smalk, there exists some invariant 3&t (W c U) such that
W\Ep is not empty. Lety = (¢1, 92, ¢3) € W\Eo and(S;, I;, R;) be the solution of1.1)
with the initial functiong. Then,(S;, I;, R;) € W forall r € R.

If 92(0) + [é’ @2(—s)dn(s) = 0, by the invariance o and Remark 1, we also have the
contradiction thap = Eg or that the negative semi-orlis;, I;, R;) (t < 0) of (1.1) through
@ is unbounded.

If ¢2(0) +f0h @2(—s)dn(s) > 0, from Remark 1 we see thafr) > 0 forallr > 0. Now,
let us consider the continuous function

h pt
Pt)=1@)+ p/ / I (u)dudn(t)
0 Jr—1

for some constant > 0. We see that far > 0, the time derivative oP (r) along the solution
(S(), I(1), R(2)) satisfies

h
PH)=1@0)+ ,o(l(t) — / I(t — t)dn(t))
0

h
=[p—(u2+M @) +[BSE) — p]/ I(t —7)dn(7)
(2.5) 0

b h
>[p— (u2+M)]I() + [ﬁ(— - 8) - p}/ I(t —7)dn(z)
n1 0

= [@ —(u2+2) —ﬁ8}1(t),
mi
fort > 0. Here, we choosg = B(b/u1 — ¢) > 0 and used the inequality(t) > b/u1 — ¢
forall + € R. From Lemma 4, we have thatr) > n > 0 for some constant and all large
t > 11 > 0. Hence, it follows from(2.5) and(1.3), that for some sufficiently smadl,

P(t) > n[% — (U2 +2) —ﬂe} >0

forallt > r1. Thus,P(r) — +oo ast — +oo. This contradicts Lemma 1, and shows that
Egisisolated.

We easily see that the semigroup defined by the solutigh.df satisfies the conditions
of Lemma 4.3 in [10] withM = Eg. Thus, by Lemma 4.3 in [10], we have that there is some
& = (&1, &, &3) such that € w* N (W*(Eg)\ Eo). Here,W*(Ep) denotes the stable set B§.
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If £&(0) + fé’ &2(—s)dn(s) = 0, again by the invariance ¢¥ and Remark 1, we also
have the contradiction thgt= Eg or that the negative semi-orlis;, /,, R;) (+ < 0) of (1.1)
throughé is unbounded.

If £(0) + Jo &2(—s)dn(s) > O, from Remark 1, we see thdtr) > 0, /(1) > 0 and
R(t) > Oforallt > 0. It follows fromé& € w* N (W*(Eg)\ Eo) that

. A b . A . A
t—llq-]oo S = E ’ t—llToo [@) = t—llToo R® =0,
which contradicts Lemma 4. This shows tt{dt4) holds. From(1.1) and(2.4) we easily
have that

L AV
liminf R(¢) > 222 _ vz > 0.
M3

t——+00

Thus,(1.1) is permanent by Lemmas 1 and 2. This proves our theorem.

3. Conclusion. In this paper, we considered permanencéglot). In biology, our
theorem together with results in [3, 4] and [13] show that, for any time del#tye condition
(1.3) is the threshold of1.1) for an endemic to occur. On the other hand, the simulations
for (1.1) given below suggest that the conditih3) maybe also necessary and sufficient for
the global asymptotic stability of the endemic equilibrium E . of (1.1) for any time delay 4.
Unfortunately, we cannot give a complete proof to the problem. We can only show that the
endemic equilibriumE ;. of (1.1) is globally asymptotically stable famall time delay & [4].

ExaMPLE. Note that the first two equations @.1) are independent of the state vari-
able R(¢) and that the third equation @f..1) is linear with respect td (¢) and R(z). We
consider the following sub-systeni3 1) and(3.2) with discrete and distributed time delays,
respectively.

S(r) = —0.18(1)I(t —h) — 0.15(r) + 0.5,

(3.1) {j(,) =018 It —h) —al(1),

h —s
NOE —O.lS(t)/ <1 < _h>1(t — 5)ds — 0.18(t) + 0.5,
(3.2) 0 \:t—¢€

h -5
i) = O.lS(t)/ < ¢ )m —$)ds —al (D),
0

1—eh
wherea > 0 andh > 0. Itis clear that the conditio(l.3) is reduced to

1
(3.3 O<oc<§.

There exists the disease free equilibrii;= (5, 0) for (3.1) and(3.2). If (3.3) holds, there
also exists the endemic equilibriufy, = (10w, (0.5 — o) /) for (3.1) and(3.2).

Figures 1 and 2 illustrate our theorem and further suggestfthvatarge time delay 4,
the endemic equilibrium E . of (1.1) is also globally asymptatically stable if and only if (1.3)
holds.
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0 ‘ ‘ 5

FIGURE 1. The graph of the trajectory @B.1) with « = 0.49, h = 30 and the initial
functiong (6) = 0.16 + 3 andgo () = 1.1 — c090.0576) for 6 € [—h, O].

0

FIGURE 2. The graph of the trajectory @B.2) with « = 0.49, h = 30 and the initial
functiongq (6) = 0.16 + 3 andgo(9) = 2 — sin(0) for 6 € [—h, 0].
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