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Abstract. Let k be a number field and̃k a fixed quadratic extension ofk. In this paper
and its companions, we find the mean value of the product of class numbers and regulators of
two quadratic extensionsF,F ∗ �= k̃ contained in the biquadratic extensions ofk containingk̃.

1. Introduction. This is the first part of a series of three papers. Part III deals with
uniquely dyadic phenomena, and so is naturally a unit. We had originally intended to publish
Parts I and II together, but reconsidered on account of their combined length.

If k is a number field, then let∆k, hk andRk be the absolute discriminant (which is
an integer), the class number and the regulator, respectively. We fix a number fieldk and
a quadratic extensioñk of k. If F �= k̃ is another quadratic extension ofk, let F̃ be the
composite ofF andk̃. ThenF̃ is a biquadratic extension ofk, and so contains precisely three
quadratic extensions,k̃, F and, say,F ∗ of k. We say thatF andF ∗ arepaired. In this paper
and its companions [17], [18], we shall find the mean value ofhF RF hF ∗RF ∗ or, equivalently,
the mean value ofhF̃ RF̃ with respect to|∆F |.

Our main results are Theorem 7.12 and Corollaries 7.17 and 7.18 in whichk is an ar-
bitrary number field andF runs through quadratic extensions with given local behaviors at a
fixed finite number of places. However, for the sake of simplicity, we state our results here
assuming thatk = Q and thatF runs through either real or imaginary quadratic extensions of
Q without any further local conditions.

Let k̃ = Q(
√

d0), whered0 �= 1 is a square free integer. Suppose|∆Q(
√

d0)
| = ∏

p pδ̃p(d0)

is the prime decomposition. Note thatδ̃p(d0) > 0 if and only if p is ramified inQ(
√

d0).
Moreover, ifp �= 2 is ramified inQ(

√
d0), thenδ̃p(d0) = 1, and ifp = 2, thenδ̃p(d0) = 2

whend0 ≡ 3 (4), andδ̃p(d0) = 3 whend0 is an even number. Note that ifd0 ≡ 1, 5 (8), then
the prime 2 is split or inert inQ(

√
d0), respectively.
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For any prime numberp, we put

E′
p(d0) =


1 − 3p−3 + 2p−4 + p−5 − p−6 if p is split in k̃ ,

(1 + p−2)(1 − p−2 − p−3 + p−4) if p is inert in k̃ ,

(1 − p−1)(1 + p−2 − p−3 + p−2δ̃p(d0)−2�δ̃p(d0)/2�−1) if p is ramified in k̃ ,

where�δ̃p(d0)/2� is the largest integer less than or equal toδ̃p(d0)/2.
We define

c+(d0) =
16 d0 > 0 ,

8π d0 < 0 ,
c−(d0) =

4π2 d0 > 0 ,

8π d0 < 0 ,

M(d0) = |∆Q(
√

d0)
|1/2ζQ(

√
d0)

(2)
∏
p

E′
p(d0) .

The following theoremsare special cases of Corollaries 7.17 and 7.18.

THEOREM 1.1. With either choice of sign we have

lim
X→∞ X−2

∑
[F :Q]=2,

0<±∆F <X

hF RF hF ∗RF ∗ = c±(d0)
−1M(d0) .

THEOREM 1.2. With either choice of sign we have

lim
X→∞ X−2

∑
[F :Q]=2,

0<±∆F <X

hF(
√

d0)
RF(

√
d0)

= c±(d0)
−1hQ(

√
d0)

RQ(
√

d0)
M(d0) .

Note that in Theorem 1.1 ifd0 > 0 and∆F < 0, then bothF andF ∗ are imaginary
quadratic fields, and so Theorem 1.1 states that

lim
X→∞ X−2

∑
[F :Q]=2,

0<−∆F <X

hF hF ∗ = 1

4π2
M(d0) ,

which reflects the titles of this series of papers.
Theorems of this kind are calleddensity theorems. Many density theorems are known in

number theory including, for example, the prime number theorem, the theorem of Davenport-
Heilbronn [6], [7] on the density of the number of cubic fields and the theorem of Goldfeld-
Hoffstein [9] on the density of class number times regulator of quadratic fields.

Among the three density theorems we quoted above, the prime number theorem, which
is probably the best known density theorem, is of a more multiplicative nature than the other
two theorems, and our result has more similarities to these. We would like to point out that the
Euler factor 1−p−2 −p−3 +p−4, which appears inE′

p(d0) in our result whenp is inert, also
occurred in the Goldfeld-Hoffstein theorem at every odd prime. We do not as yet understand
the significance ofthis coincidence.

The original proof of the Davenport-Heilbronn theorem used the “fundamental domain
method” and the original proof of the Goldfeld-Hoffstein theorem used Eisenstein series of
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half-integral weight. However, we can also prove these two theorems by using the zeta func-
tion theory of prehomogeneous vector spaces. The Davenport-Heilbronn theorem corresponds
to the space of binary cubic forms and the Goldfeld-Hoffstein theorem corresponds to the
space of binary quadratic forms. The global theory of these two cases was investigated exten-
sively by Shintani in [22], [23]. The local theory and the proof of the density theorem, which
use the global theory carried out by Shintani, were done by Datskovsky and Wright [4], [5] in
the first case and by Datskovsky [3] in the second (also correcting a minor error in the constant
appearing in the Goldfeld-Hoffstein theorem). This zeta function theory of prehomogeneous
vector spaces is the approach we take to prove Theorems 1.1 and 1.2.

We now recall the definition of prehomogeneous vector spaces. LetG be a reductive
group andV a representation ofG both of which are defined over an arbitrary fieldk of
characteristic zero. For simplicity, we assume thatV is an irreducible representation ofG.

DEFINITION 1.3. The pair(G, V ) is called aprehomogeneous vector space if
(1) there exists a Zariski openG-orbit in V and
(2) there exists a non-constant polynomialP(x) ∈ k[V ] and a rational characterχ(g )

of G such thatP(g x) = χ(g )P (x) for all g ∈ G andx ∈ V .

Any polynomialP(x) in the above definition is called a relative invariant polynomial.
It is known that ifP(x) is the relative invariant polynomial of the lowest degree, then any
other relative invariant polynomial is a constant multiple of a power ofP(x). So, if we put
V ss = {x ∈ V | P(x) �= 0}, then this definition does not depend on the choice ofP(x).

The notion of prehomogeneous vector spaceswas introduced by Mikio Sato in the early
1960’s. The principal parts of global zeta functions for some prehomogeneous vector spaces
have been determined by Shintani [22], [23], and the second author [28], [29]. Roughly
speaking, the global zeta function is a counting function for the unnormalized Tamagawa
numbers of the stabilizers of points inV ss

k . This interpretation of expected density theorems
for prehomogeneous vector spaces is discussed in the introduction to [26] and in Section 5
of [16], p. 342, in some cases including those we will consider in this paper. Unfortunately,
the global zeta function is not exactly this counting function, and Datskovsky and Wright
formulated in [5] what we call the filtering process to deal with this difficulty.

To explain the need for the filtering process we consider the space of binary quadratic
forms. Gauss made a conjecture in [8] on the density of class number times regulator of orders
in quadratic fields. This conjecture was proved by Lipschutz [20] in the case of imaginary
quadratic fields and by Siegel [24] in the case of real quadratic fields, and much work has
been done on the error term estimate also (see Shintani [23], pp. 44, 45 and Chamizo-Iwaniec
[2], for example). However, each quadratic field has infinitely many orders, and so we must
filter out this repetition in order to obtain the density of class number times regulator for
quadratic fields.

In order to apply the filtering process it is necessary to carry out at least the following
steps:

(1) Find the principal part of the global zeta function at its rightmost pole.
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(2) Find a uniform estimate for the standard local zeta functions.
(3) Find the local densities.

Note that, despite Tauberian theory, (1) is necessary even to show the existence of the density.
The standard local zeta functions will be defined in Section 6. If we apply the filtering process
the constant in the density theorem will have an Euler product and we call the Euler factor
thelocal density. Also, we must point out that the present formulation of the filtering process
does not allow us to use the poles of the global zeta function other than the rightmost pole, as
can be done in the case of integral equivalence classes. It is an important problem in the future
to improve the filtering process so that we can get error term estimates. However, although it
does not, in its current form, yield an error term, our approach does appear to be the only one
presently available that allows the fieldk to be a general number field rather than justQ.

Let Aff n ben-dimensional affine space regarded as a variety over the ground fieldk. Let
k̃ be a fixed quadratic extension ofk, W the space of binarỹk-Hermitian forms and M(2, 2)

the space of 2× 2 matrices. We regard GL(2)k̃ as a group overk. In this series of papers, we
consider the following two prehomogeneous vector spaces:

(1) G = GL(2) × GL(2) × GL(2), V = M(2, 2) ⊗ Aff 2,
(2) G = GL(2)k̃ × GL(2), V = W ⊗ Aff 2.
Case (2) is ak-form of case (1). We gave an interpretation for the expected density

theorem for Case (2) in Section 5 of [16]. Letk be a number field and̃G the image ofG in
GL(V ). Forx ∈ V ss

k , let G̃◦
x be the identity component of the stabilizer. In Case (2), the orbit

spaceGk\V ss
k corresponds bijectively with quadratic extensions ofk and, if x corresponds

to fields other thank andk̃, the weighting factor in the density theorem is the unnormalized
Tamagawa number of̃G◦

x , which is more or lesshF RF hF ∗RF ∗ or hF̃ RF̃ . The principal part
at the rightmost pole of the global zeta function for this case was obtained in [27], Corollary
8.16. Therefore it remains to carry out Steps (2) and (3) of the filtering process.

In order to carry out the filtering process, we first have to express the global zeta function
as a Dirichlet series with appropriate weighting factors. This requires an extensive preparation
including the task of defining a measure on the stabilizer of each point. The main purpose of
this part is to carry out the necessary preparation to use the filtering process, to deduce the
final form of the density theorem assuming properties of the Dirichlet series in question, and
to prove a uniform estimate for the standard local zeta functions. We shall compute the local
densities in Parts II and III.

Let v be a finite place of a number fieldk andkv its completion atv. The local zeta
functions we consider are certain integrals overGkv -orbits in V ss

kv
. The analogous integral

over the setV ss
kv

is called theIgusa zeta function. Igusa has made significant contributions to
the computation of this type of integral (see [10], [11], [12] [13], [14], [15]), and the explicit
form of the Igusa zeta function is known in many cases. However, we need information on
integrals over orbits and we cannot deduce a uniform estimate from the present knowledge
of Igusa zeta functions. Datskovsky and Wright [4] and Datskovsky [3] accomplished the
uniform estimate for the standard local zeta functions by explicitly computing them at all
finite places. However, as the rank of the group grows, it becomes increasingly difficult to
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compute the explicit forms of the standardlocal zeta functions, especially at special places
such as dyadic places, and we have to be abstemious with our labor. So we shall only prove a
uniform estimate for the standard local zeta functions at all but finitely many places, without
finding their explicit forms.

We follow Datskovsky’s approach in [3] (which can also be seen implicitly in [7]) to
find the local densities. We must consider biquadratic extensions and consequently the dyadic
places ofk are difficult and technical to handle, given the possible appearance of wild rami-
fication. We devote Part III [18] to consideration of biquadratic extensions generated by two
ramified quadratic extensions over a dyadic field. However, the reader should be able to find
all the main ingredients for proving Theorems 1.1 and 1.2 in this part and Part II [17].

For the rest of this introduction we discuss the organization of this paper. Throughout,
except in Section 3,k is a fixed number field and̃k is a fixed quadratic extension ofk. In
Section 3,k is an arbitrary field of characteristic zero andk̃ is a quadratic extension of it. In
Section 2 we describe notation we use throughout the paper. In Section 3 we review from [16]
the interpretation of the orbit spaceGk\V ss

k for the prehomogeneous vector spaces (1) and (2)
above and fix parametrizations of the stabilizers of certain points inV ss

k . In Section 4 we fix
various normalizations regarding the invariant measure on GL(2) both locally and globally. In
Section 5 we define a measure on the stabilizer of each point inV ss, both locally and globally,
that is in some sense canonical and prove that the volume ofG̃◦

x A/G̃◦
x k is the unnormalized

Tamagawa number of̃G◦
x . As we mentioned above, this volume is the weighting factor in

the density theorem. We also introduce the local zeta functions. In Section 6 we first define
and review the analytic properties of the global zeta function. Then we define the standard
local zeta functions and express the global zeta function in terms of them, thus making it more
or less a counting function forhF RF hF ∗RF ∗ . The final and most important purpose of this
section is to review the filtering process and to identify the conditions under which it works.
Assuming these conditions, we then deduce a preliminary density theorem involving certain
as yet unevaluated constants. In Section 7 we list the values of those constants from later parts
and state the final form of the density theorem. Therefore, Sections 6 and 7 are the heart of
this series of papers. After finishing these sections, the reader should understand the outline
of the proof of our result. Later sections and Parts II and III are devoted to verifying the
conditions mentioned above and to evaluating the constants involved. In Section 8 we define
the notion of omega sets, and prove that the omega sets exist for most orbits at finite places.
In Section 9 we prove a uniform estimate for the standard local zeta functions.

2. Notation. This section is confined to establishing our basic notational conventions.
Additional notation required throughout the paper will be introduced and explained in the next
three sections. More specialized notation will be introduced in the section where it is required.

If X is a finite set, then #X will denote its cardinality. The standard symbolsQ, R, C
andZ will denote respectively the set of rational, real and complex numbers and the rational
integers. Ifa ∈ R, then the largest integerz such thatz ≤ a is denoted�a� and the smallest
integerz such thatz ≥ a by �a�. The set of positive real numbers is denotedR+. If R is any
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ring, thenR× is the set of invertible elements ofR and if V is a variety defined overR, then
VR denotes itsR-points. IfG is an algebraic group, thenG◦ denotes its identity component.

Both k andk̃ are number fields, and so each number-theoretic object we introduce fork

has its counterpart for̃k. Generally the notation for thẽk object will be derived from that of
thek object by adding a tilde. LetM, M∞, Mf , Mdy, MR andMC denote respectively the
set of all places ofk, all infinite places, all finite places, all dyadic places (those dividing the
place ofQ at 2), all real places and all complex places. (Correspondingly we haveM̃ and so
on.) LetMrm, Min andMsp be the sets of places ofk which are respectively ramified, inert
and split on extension tõk. Recall that a real place ofk which lies under a complex place of
k̃ is regarded as ramified.

Let O be the ring of integers ofk. If v ∈ M, thenkv denotes the completion ofk at v
and| |v denotes the normalized absolute value onkv. If v ∈ Mf , thenOv denotes the ring of
integers ofkv, πv a uniformizer inOv , pv the maximal ideal ofOv andqv the cardinality of
Ov/pv. If a ∈ kv and(a) = pi

v, then we write ordkv (a) = i. If i is a fractional ideal inkv and
a − b ∈ i, then we writea ≡ b (i) or a ≡ b (c) if c generatesi.

If k1/k2 is a finite extension either of local fields or of number fields, then we shall write
∆k1/k2 for the relative discriminant of the extension; it is an ideal in the ring of integers ofk2.
The symbol∆k1 will stand for∆k1/Qp

or ∆k1/Q according as the situation is local or global.
To ease the notational burden we shall use the same symbol,∆k1, for the classical absolute
discriminant ofk1 overQ. Since this number generates the ideal∆k1, the resulting notational
identification is harmless. Ifi is a fractional ideal in the number fieldk1 andv is a finite place
of k1, then we writeiv for the closure ofi in k1,v. It is a fractional ideal ink1,v. If i is integral,
then we putN (i) = #(Ok1/i). Note thatN (i) = ∏

v Nv(iv), where the product is over all
finite places ofk1 andNv(p

a
v) = qa

v for a ∈ Z. This formula serves to extend the domain of
N to all fractional ideals ink1. We shall use the notation Trk1/k2 and Nk1/k2 for the trace and
the norm in the extensionk1/k2.

Returning tok, we letr1, r2, hk, Rk andek be, respectively, the number of real places, the
number of complex places, the class number, the regulator and the number of roots of unity
contained ink. It will be convenient to set

(2.1) Ck = 2r1(2π)r2hkRke
−1
k .

We assume that the reader is familiar with the basic definitions and facts concerning
adèles and idèles. These may be found in [25].The ring of adèles, the group of idèles and
the adèlic absolute value ofk are denoted byA, A× and| |, respectively. When we have to
show the number field or the local field on which we consider the absolute value, we may
use notation such as| |F . There is a natural inclusionA → Ã, under which an adèle(av)v

corresponds to the adèle(bw)w such thatbw = av if w|v. Let A1 = {t ∈ A× | | t| = 1}.
Using the identificatioñk ⊗k A ∼= Ã , the norm map Ñk/k can be extended to a map from̃A to

A. It is known (see [25], p. 139) that| Nk̃/k
(t)| = | t|Ã for t ∈ Ã. Suppose[k : Q] = n. Then

[k̃ : Q] = 2n. Forλ ∈ R+, λ ∈ A× is the idèle whose component at any infinite place isλ1/n

and whose component at any finite place is 1. Alsoλ̃ ∈ Ã
×

is the idèle whose component



MEAN VALUE THEOREM 519

at any infinite place isλ1/2n and whose component at any finite place is 1. Clearlyλ = λ̃2.
Since|λ| = λ and|λ̃|Ã = λ we conclude that|λ|Ã = λ2. When we have to show the number
field on which we considerλ, we use the notation such asλF .

If V is a vector space overk we letVA be its adèlization andV∞ andVf its infinite and
finite parts. LetS(VA), S(V∞), S(Vf) andS(Vkv ) be the spaces of Schwartz-Bruhat functions
on each of the indicated domains.

We choose a Haar measuredx on A so that
∫

A/k dx = 1. For anyv ∈ Mf , we choose a

Haar measuredxv onkv so that
∫
Ov

dxv = 1. We use the ordinary Lebesgue measuredxv for

v real, anddxv ∧ dx̄v for v imaginary. Thendx = |∆k|−1/2∏
v dxv (see [25], p. 91).

We define a Haar measured×t1 on A1 so that
∫

A1/k× d×t1 = 1. Using this measure, we

choose a Haar measured×t on A× so that∫
A×

f (t)d×t =
∫ ∞

0

∫
A1

f (λt1)d×λd×t1 ,

whered×λ = λ−1dλ. For anyv ∈ Mf , we choose a Haar measured×tv on k×
v so that∫

O×
v

d×tv = 1. Letd×tv(x) = |x|−1
v dxv if v is real, andd×tv(x) = |x|−1

v dxv ∧ dx̄v if v is

imaginary. Thend×t = C−1
k

∏
v d×tv (see [25], p. 95). We later have to compare the global

measure and the product of local measures, and for that purpose it is convenient to denote the
product of local measures onA, A× as follows:

(2.2) dprx =
∏
v

dxv , d×
prt =

∏
v

d×tv .

Let ζk(s) be the Dedekind zeta function ofk. We define

(2.3) Zk(s) = |∆k|s/2
(
π−s/2Γ

( s

2

))r1
((2π)1−sΓ (s))r2ζk(s) .

This definition differs from that in [25], p. 129 by the inclusion of the|∆k|s/2 factor and from
that in [28] by a factor of(2π)r2. It is adopted here as the most convenient for our purposes.
We note that it was the quotientZk(s)/Zk(s + 1) rather thanZk(s) itself which played a
significant role in [28] and this quotient is unchanged here. It is known ([25], p. 129) that

(2.4) Ress=1 ζk(s) = |∆k|−1/2Ck , and so Ress=1 Zk(s) = Ck .

Finally, we introduce the following notation:

(2.5) a(t1, t2) =
(

t1 0
0 t2

)
, n(u) =

(
1 0
u 1

)
.

3. A review of the orbit space. This section is devoted to defining the prehomo-
geneous vector spaces which are at the heart of this work and reviewing their fundamental
properties. Arithmetic plays no role here, so in this sectionk may be any field of characteris-
tic zero andk̃ any quadratic extension ofk. We denote the non-identity element of Gal(k̃/k)

by σ .
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A matrix x ∈ M(2, 2)k̃ is said to beHermitian if tx = xσ . The set of all Hermitian
matrices in M(2, 2)k̃ forms ak-vector space which we shall denote byW . The elements ofW
are also referred to as binary Hermitian forms.

We define and discuss the two spaces we require in parallel as far as possible; they will
be distinguished as Cases(1) and(2). Let

(3.1) V =
{

M(2, 2) ⊗ Aff 2 in Case (1) ,

W ⊗ Aff 2 in Case (2) ,

where Affn is then-dimensional affine space regarded as a variety overk. Let

(3.2) G =
{

GL(2) × GL(2) × GL(2) in Case (1) ,

GL(2)
k̃
× GL(2) in Case (2) ,

where GL(2)k̃ is regarded as an algebraic group overk by restriction of scalars. Ifg ∈ G,
then we shall writeg = (g 1, g 2, g 3) in Case (1) andg = (g 1, g 2) in Case (2). It will be
convenient to identifyx = (x1, x2) ∈ V with the 2× 2-matrixMx(v) = v1x1 + v2x2 of linear
forms in the variablesv1 andv2, which we collect into the row vectorv = (v1, v2). With this
identification, we define a rational action ofG onV via

(3.3) Mg x(v) =
{

g 1Mx(vg 3)
tg 2 in Case (1) ,

g 1Mx(vg 2)
tg σ

1 in Case (2) .

In both cases we defineFx(v) = − detMx(v). Then

(3.4) Fg x(v) =
{

detg 1 detg 2Fx(vg 3) in Case (1) ,

Nk̃/k(detg 1)Fx(vg 2) in Case (2) .

We letP(x) be the discriminant of the binary quadratic formFx(v). ThenP(x) ∈ k[V ] and
P(g x) = χ(g )P (x), where

(3.5) χ(g ) =
{

(detg 1 detg 2 detg 3)
2 in Case (1) ,

(Nk̃/k
(detg 1) detg 3)

2 in Case (2) .

A calculation shows thatP(x) is not identically zero, and so it is a relatively invariant polyno-
mial for (G, V ) in each case. We letV ss denote the complement of the hypersurface defined
by P(x) = 0 in V .

We defineT̃ = ker(G → GL(V )); in Case (1)

(3.6) T̃ = {(t1I2, t2I2, t3I2) | t1, t2, t3 ∈ GL(1), t1t2t3 = 1}
and in Case (2)

(3.7) T̃ = {(t1I2, t2I2) | t1 ∈ GL(1)k̃, t2 ∈ GL(1), Nk̃/k
(t1)t2 = 1} .

It will be convenient to introduce standard coordinates onG andV . Elements ofG have the
form g = (g 1, g 2, g 3) or g = (g 1, g 2). In either case we shall write

(3.8) g i =
(
g i11 g i12
g i21 g i22

)



MEAN VALUE THEOREM 521

for eachi. Elements ofV are vectorsx = (x1, x2). We shall put

(3.9) xi =
(

xi11 xi12
xi21 xi22

)
in Case (1) and

(3.10) xi =
(

xi0 xi1
xσ
i1 xi2

)
in Case (2).

In the language of Galois descent, Case (2) is ak-form of Case (1); they become isomor-
phic on extension of scalars fromk to k̃. Indeed, it is well known that, as̃k-varieties,

(3.11) G × k̃ ∼= GL(2) × GL(2) × GL(2)

and

(3.12) W × k̃ ∼= M(2, 2)

so that

(3.13) V × k̃ ∼= M(2, 2) ⊗ Aff 2,

and a calculation shows that the induced action ofG×k̃ onV ×k̃ is that of Case (1). The Galois
automorphismσ induces ak-automorphism of thek-varietiesG andV which we denote by
i(σ ). If (g 1, g 2, g 3) ∈ Gk̃, then i(σ )(g 1, g 2, g 3) = (g σ

2 , g σ
1 , g σ

3 ) and if x ∈ Wk̃ , then
i(σ )x = txσ , whereσ as a superscript denotes the entry-by-entry action ofσ . In particular,
Gk is embedded inGk̃

∼= (G × k̃)k̃ via the map(g 1, g 2) �→ (g 1, g σ
1 , g 2).

We are now ready to recall the description of the space of non-singular orbits inVk.

DEFINITION 3.14. LetEx2 be the set of isomorphism classes of extensions ofk of
degree at most two.

It is proved in [26], pp. 305–310 and [16], p. 324 thatGk\V ss
k corresponds bijectively

with Ex2. Moreover, if x ∈ V , then the corresponding field is generated by the roots of
Fx(v) = 0. We denote this field byk(x).

Suppose thatp(z) = z2 + a1z + a2 ∈ k[z] has distinct rootsα1 andα2. We collect these
into a setα = {α1, α2} since the numbering is arbitrary. Definewp ∈ Vk by

(3.15) wp =
((

0 1
1 a1

)
,

(
1 a1

a1 a2
1 − a2

))
;

a computation shows thatFwp(z, 1) = p(z), and sowp ∈ V ss
k andk(wp) = k(α) is the

splitting field ofp. Let

(3.16) w =
((

1 0
0 0

)
,

(
0 0
0 1

))
,

(3.17) hα =
(

1 −1
−α1 α2

)
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and then defineg p ∈ Gk(wp) by

(3.18) g p =
{

(hα, hα, (α2 − α1)
−1hα) in Case (1) or whenk(wp) = k̃ ,

(hα, (α2 − α1)
−1hα) otherwise .

With these definitions it is easy to check thatwp = g pw.
We close this section with a detailed description of thek-rational points of the stabilizer

Gwp . Similar descriptions were derived in [16] and [26] and, although we are using different
orbital representatives here, the arguments are so similar that they will only be sketched. The
method is as follows: We begin with a description ofGw as ak-variety; this is given in Section
3 of [26] for Case (1) and in Section 2 of [16] for Case (2). Then we find, by direct calculation,
thek-rational points ing pGw k(wp)g −1

p and this gives usGwp k.
If we let

(3.19) t =
{

(a(t11, t12), a(t21, t22), a(t31, t32)) in Case (1) ,

(a(t11, t12), a(t21, t22)) in Case (2) ,

then

(3.20) G◦
w k =

{{t | tij ∈ k×, t1j t2j t3j = 1 for all i, j } in Case (1) ,

{t | t1j ∈ k̃×, t2j ∈ k×, N
k̃/k

(t1j )t2j = 1 for all j } in Case (2) ,

and soG◦
w k

∼= GL(1)4
k in Case (1) andG◦

w k
∼= GL(1)2

k̃
in Case (2). If we let

(3.21) τ =
(

0 1
1 0

)
,

then the class of(τ, τ, τ ) in Case (1) or of(τ, τ ) in Case (2) generatesGw k/G◦
w k.

Now let

(3.22) t =
{

(a(t11, t12), a(t21, t22)) in Case (2) whenk(wp) �= k̃ ,

(a(t11, t12), a(t21, t22), a(t31, t32)) otherwise .

We assume thatk(wp)/k is quadratic, since ifk(wp) = k, thenGwp k is conjugate toGw k

overk. Let ν be the non-trivial element of Gal(k(wp)/k), which may also be thought of as
an element of Gal(k̃(wp)/k̃) whenk(wp) �= k̃. Herek̃(wp) denotes the composite ofk̃ and
k(wp).

In Case (1),G◦
wp k is

(3.23) {g ptg −1
p | tij ∈ k(wp)×, ti1 = tνi2, t1j t2j t3j = 1 for all i, j } ,

and soG◦
wp k

∼= GL(1)k(wp) × GL(1)k(wp). In Case (2) whenk(wp) = k̃, G◦
wp k is

(3.24) {g ptg −1
p | tij ∈ k̃×, tσ12 = t21, t

σ
11 = t22, t1j t2j t3j = 1 for all i, j } ,

and soG◦
wp k

∼= GL(1)k̃ × GL(1)k̃. In Case (2) whenk(wp) �= k̃, G◦
wp k is

{g ptg −1
p | t1j ∈ k̃(wp)×, t2j ∈ k(wp)×, tν11 = t12,

Nk̃(wp)/k(wp)
(t1j )t2j = 1 for all j } ,

(3.25)
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and soG◦
wp k

∼= GL(1)k̃(wp). In every instance,Gwp k/G◦
wp k is generated byg p(τ, τ, τ )g −1

p

or g p(τ, τ )g −1
p as the case may be.

It will be convenient to have an explicit description of howGwp k is embedded inGk in
each case. To this end, define

(3.26) Ap(c, d) =
(

c −d

a2d c − a1d

)
and τp =

(−1 0
−a1 1

)
.

It is easy to check that any matrix which has botht (1 − α1) andt (1 − α2) as eigenvectors
must equalAp(c, d) for somec andd. Consequently, the set of all such matrices is closed
under multiplication, any two such matrices commute and if such a matrix is invertible, then
its inverse lies in the same set.

LEMMA 3.27. In Case (1), G◦
wp k consists of elements of Gk of the form

(3.28) (Ap(c1, d1), Ap(c2, d2), Ap(c3, d3)) ,

where ci, di ∈ k, det(Ap(ci, di)) �= 0 for i = 1, 2 and (c3, d3) is related to (c1, d1, c2, d2) by
the equation

(3.29) Ap(c3, d3) = Ap(c1, d1)
−1Ap(c2, d2)

−1 .

Moreover [Gwp k : G◦
wp k] = 2 and Gwp k/G◦

wp k is generated by the class of (τp, τp, τp).

PROOF. Suppose first thatk(wp) = k. ThenG◦
wp k = g pG◦

w kg
−1
p and, by (3.20),

the elements ofG◦
w k may be characterized as those(g 1, g 2, g 3) ∈ Gk such thatt (1 0) and

t (0 − 1) are both eigenvectors for eachg i andg 1g 2g 3 = I2. Sincehα
t (1 0) = t (1 − α1)

andhα
t (0 − 1) = t (1 − α2), the first claim follows. Ifk(wp) �= k, then calculation gives

hαa(t, tν)h−1
α = Ap(c, d) wheret = c + dα1 ∈ k(wp). With this observation, the first

claim follows in this case from (3.23). Finally,hατh−1
α = τp and the second claim is

established. �

LEMMA 3.30. In Case (2), G◦
wp k consists of elements of Gk of the form

(3.31) (Ap(c1, d1), Ap(c2, d2)) ,

where c1, d1 ∈ k̃, c2, d2 ∈ k, det(Ap(c1, d1)) �= 0 and (c2, d2) is related to (c1, d1) by the
equation

(3.32) Ap(c2, d2) = Ap(c1, d1)
−1Ap(cσ

1 , dσ
1 )−1 .

Moreover, [Gwp k : G◦
wp k] = 2 and Gwp k/G◦

wp k is generated by the class of (τp, τp).

PROOF. If k(wp) = k, then, by (3.20),G◦
w k may be characterized as the set of(g 1, g 2)

in Gk such thatt (1 0) andt (0 −1) are eigenvectors ofg 1 andg 1g σ
1g 2 = I2. SinceG◦

wp k =
g pG◦

w kg
−1
p andhσ

α = hα , the claim follows. Ifk(wp) �= k, k̃, thenhσ
α = hα and a similar

argument works on settingAp(c1, d1) = hαa(t11, t
ν
11)h

−1
α in the notation of (3.25).

This leaves the case wherek(wp) = k̃. We use the notation of (3.24). If we setg 1 =
hαa(t11, t12)h

−1
α = Ap(c1, d1) for somec1, d1 ∈ k̃, then, using the equationhσ

α = −hατ , we
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haveg σ
1 = hαa(tσ12, t

σ
11)h

−1
α , and sog 2 = g −1

1 g −σ
1 is hαa((t11t

σ
12)

−1, (tσ11t12)
−1)h−1

α . Thus
(g 1, g 2) ∈ G◦

wp k. Finally, we haveτp = hατh−1
α and the last claim follows from this. �

4. An invariant measure on GL(2). Assume now thatk is a number field. In this
section we choose an invariant measure on GL(2) in both the local and adèlic situations.

LetT ⊆ GL(2) be the set of diagonal matrices andN ⊆ GL(2) the set of lower triangular
matrices whose diagonal entries are 1. ThenB = T N is a Borel subgroup of GL(2). Let
T+ = {λ = a(λ1, λ2) | λ1, λ2 ∈ R+} andK = ∏

v∈�Kv , whereKv = O(2) if v ∈ MR,
Kv = U(2) if v ∈ MC andKv = GL(2)Ov

if v ∈ Mf . The group GL(2)A has the Iwasawa
decomposition GL(2)A = KTANA, and so any elementg ∈ GL(2)A can be expressed as
g = κ(g )t (g )n(u(g )), whereκ(g ) ∈ K, t (g ) = a(t1(g ), t2(g )) andu(g ) ∈ A.

The measuredu on A defined in Section 2 induces an invariant measure onNA. Since
K is compact we can choose an invariant measuredκ on it so that the total volume ofK is 1.
OnTA we putd×t = d×t1 d×t2 for t = a(t1, t2), whered×tj is the measure onA× defined in
Section 2. Thendb = |t1t−1

2 |−1 d×t du defines an invariant measure onBA anddg = dκ db

defines an invariant measure on GL(2)A.
We make parallel definitions of invariant measures on GL(2)kv

, Kv, Bkv , Nkv andTkv ,
which we denote bydg v, dκv, dbv, duv andd×tv, respectively. As in Section 2, we denote
the product of local measures onGA as

(4.1) dprg =
∏
v

dg v .

Then (see Section 2) we have

(4.2) du = |∆k|−1/2
∏
v

duv, d×t = C−2
k

∏
v

d×tv and so dg = |∆k|−1/2C−2
k dprg .

Let GL(2)0
A = {g ∈ GL(2)A | | det(g )| = 1}. If, for λ ∈ R+, we definec(λ) = a(λ, λ),

then any element of GL(2)A may be written uniquely asg = c(λ)g 0 with g 0 ∈ GL(2)0
A. We

choose a Haar measure on GL(2)0
A so thatdg = 2d×λ dg 0. It is well-known that the volume

of GL(2)0
A/GL(2)k with respect todg 0 is

(4.3) Vk = 1/ Ress=1(Zk(s)/Zk(s + 1)) = C−1
k Zk(2) .

As in Section 2, we note that all these definitions apply equally well to the number field
k̃ and yield a measure on GL(2)Ã and so on. Having chosen an invariant measure on GL(2)

both locally and adèlically, we also getlocal and adèlic invariant measures onG by taking the
relevant product measures in each case.

5. The canonical measure on the stabilizer. In this section we shall define a mea-
sure onG◦

x A for x ∈ V ss
k which is canonical (in a sense made precise by Proposition 5.16) and

compute the volume ofG◦
x A/T̃AG◦

x k under this measure. We also make a canonical choice
of measure on the stabilizer quotientGA/G◦

x A and define constantsbx,v which will play an
essential role in what follows.



MEAN VALUE THEOREM 525

Let v ∈ M andx ∈ V ss
kv

. If v /∈ Msp, thenv extends uniquely to a place ofk̃ which we

also denote byv. In this casẽkv
∼= kv ⊗k k̃. We denote bỹkv(x) the composite of̃kv and

kv(x).
Before we begin this task it will be convenient for bookkeeping purposes to attach to

each orbit inV ss
kv

, wherev ∈ M, an index which records the arithmetic properties ofv and of
the extension ofkv corresponding to the orbit. The orbit corresponding tokv itself will have
index (sp), (in) or (rm) according asv is in Msp, Min or Mrm. The orbit corresponding to the
unique unramified quadratic extension ofkv will have index (sp ur), (in ur) and (rm ur) for
v ∈ Msp, v ∈ Min andv ∈ Mrm, respectively. An orbit corresponding to a ramified quadratic
extension ofkv will have index (sp rm) ifv ∈ Msp and (in rm) ifv ∈ Min. If v ∈ Mrm, then
the orbits corresponding to ramified quadratic extensions ofkv are subdivided into three types;
the one corresponding tõkv has index (rm rm)*, those corresponding to quadratic extensions
kv(x)/kv such thatkv(x) �= k̃v and k̃v(x)/k̃v is unramified have index (rm rm ur) and those
corresponding to quadratic extensionskv(x)/kv such thatkv(x) �= k̃v andk̃v(x)/k̃v is ramified
have index (rm rm rm). This last index can occur only ifv ∈ Mdy.

From Section 3 we know that the groupG◦
x kv

may be determined up to isomorphism
solely from the index of the orbit ofx. In fact, if we define

(5.1) Hx kv =


(k×

v )4 (sp) ,

(kv(x)×)2 (sp ur), (sp rm) ,

(k̃×
v )2 (in), (rm), (in ur), (rm rm)* ,

k̃v(x)× otherwise ,

for each of the various indices, thenG◦
x kv

∼= Hx kv in all cases. We may regardHx kv as the
kv-points of an algebraic groupHx defined overOv and we shall do so below.

As in Section 3, ifkv(x)/kv is quadratic, then we shall writeν for the generator of
Gal(kv(x)/kv). If k̃v(x) �= k̃v, thenν may also be regarded as the generator of Gal(k̃v(x)/k̃v).
Also thetype of x ∈ V ss

kv
will be the index attached to the orbitGkvx.

We wish to introduce parameterizations for the elements of the stabilizer in the various
cases. Ifx is a point of type (sp), we write

(5.2) sx(tx) = (a(t11, t12), a(t21, t22), a((t11t21)
−1, (t12t22)

−1)) ,

wheretx = (t11, . . . , t22) ∈ (k×
v )4. Let sx1(tx), sx2(tx), sx3(tx) be the three components of

sx(tx). If x is a point of type (sp ur) or (sp rm), we write

(5.3) sx(tx) = (a(t11, t
ν
11), a(t21, t

ν
21), a((t11t21)

−1, (tν11t
ν
21)

−1)) ,

wheretx = (t11, t21) ∈ (k(x)×v )2. We use the notationsx1(tx) et cetera in this case also. Ifx

is a point of type (in) or (rm), then we write

(5.4) sx(tx) = (a(t11, t12), a(Nk̃v/kv
(t−1

11 ), Nk̃v/kv
(t−1

12 )) ,
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wheretx = (t11, t12) ∈ (k̃×
v )2. We use the notationsx1(tx) et cetera in this case also. Ifx is a

point of type (in ur) or (rm rm)*, then we write

(5.5) sx(tx) = (a(t11, t12), a(tσ12, t
σ
11), a((t11t

σ
12)

−1, (tσ11t12)
−1)) ,

wheretx = (t11, t12) ∈ (k̃×
v )2. We use the notationsx1(tx) et cetera in this case also. Finally,

if x is a point of type (in rm), (rm ur), (rm rm ur) or (rm rm rm), then we write

(5.6) sx(tx) = (a(t11, t
ν
11), a(Nk̃v (x)/kv(x)(t

−1
11 ), Nk̃v(x)/kv(x)(t

−1
11 )ν)) ,

wheretx = t11 ∈ k̃v(x)×. We use the notationsx1(tx) et cetera in this case also. OnHx kv we
define an invariant measuredtx,v as follows:

(5.7) dtx,v =


d×t11v d×t12v d×t21v d×t22v (sp) ,

d×t11v d×t21v (sp ur), (sp rm) ,

d×t11v d×t12v (in), (rm), (in ur), (rm rm)* ,

d×t11v otherwise.

We note that ifv ∈ Mf , then the volume ofHxOv
under this measure is 1 in every case.

Suppose thatx ∈ V ss
kv

corresponds to a quadratic extension ofkv. Then it is possible to
choose an elementg x ∈ Gkv(x) such thatx = g xw. Consider the following condition on such
an element.

CONDITION 5.8. g −1
x g ν

x = (−τ,−τ, τ ) or (−τ, τ ).

It is possible to findg x satisfying this condition for anyx. Indeed,x = g xwp
wp for

someg xwp
∈ Gkv and some choice ofp. Thenx = g xwp

g pw andg x = g xwp
g p ∈ Gkv(x)

satisfies the condition.

PROPOSITION 5.9. If g x satisfies Condition 5.8, then

(5.10) G◦
x kv

= g x{sx(tx) | tx ∈ Hx kv }g −1
x .

PROOF. We havekv(x) = kv(wp) for somep. Sinceg x andg p both satisfy Condition
5.8,g xg −1

p ∈ Gkv and if we puth = g xg −1
p , thenhwp = x, and soG◦

x kv
= hG◦

wp kv
h−1.

From Section 3,

(5.11) G◦
wp kv

= g p{sx(tx) | tx ∈ Hx kv }g −1
p

and the conclusion follows. �

If x = g xw with g x ∈ Gkv , then we need not impose any condition ong x .
Suppose now thatg x ∈ Gkv(x), x = g xw andg x satisfies Condition 5.8 ifkv(x) �= kv.

Then we can define an isomorphismθg x
: G◦

x kv
→ Hx kv by settingθg x

(g xsx(tx)g −1
x ) = tx .

If g x1 andg x2 are two such elements, then leth = g x2g
−1
x1 . From the condition, we see that
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h ∈ Gx kv . Also

θg x1
(g ) = s−1

x (g −1
x1 g g x1)

= s−1
x (g −1

x2 hg h−1g x2)(5.12)

= θg x2
(hgh−1) ,

and soθg x1
andθg x2

differ by the automorphismg �→ hgh−1 of G◦
x kv

. SinceG◦
x kv

is abelian

andGx kv /G◦
x kv

has order two, the automorphismg �→ hgh−1 depends only on the class ofh

in Gx kv /G◦
x kv

and either is the identity (ifh ∈ G◦
x kv

) or squares to the identity (ifh /∈ G◦
x kv

).
In either case, this automorphism is measure preserving and hence we may make the following
definition without ambiguity.

DEFINITION 5.13. Letdg ′′
x,v = θ∗

g x
(dtx,v) for any choice ofg x ∈ Gkv(x) such that

g xw = x andg x satisfies Condition 5.8 ifkv(x) �= kv.

This establishes a choice of invariant measure onG◦
x kv

for eachx ∈ V ss
kv

.
We have

T̃kv =
{(t1I2, t2I2, (t1t2)

−1I2)} in case (1) ,

{(t1I2, Nk̃v/kv
(t1)

−1I2)} in case (2) ,
(5.14)

and soT̃kv
∼= (k×

v )2 in case (1) and̃Tkv
∼= k̃×

v in case (2). We use the measure

d× t̃v =
d×t1v d×t2v in case (1) ,

d×t1v in case (2) ,
(5.15)

on this group. We letd g̃ ′′
x,v be the measure onG◦

x kv
/T̃kv such thatdg ′′

x,v = d g̃ ′′
x,v d× t̃v .

It is to achieve the following result that we have taken such pains with the definition of
the measures.

PROPOSITION 5.16. Suppose that x, y ∈ V ss
kv

and that y = g xyx for some g xy ∈ Gkv .

Let ig xy
: G◦

y kv
→ G◦

x kv
be the isomorphism ig xy

(g ) = g −1
xy g g xy . Then

(5.17) dg ′′
y,v = i∗g xy

(dg ′′
x,v) and d g̃ ′′

y,v = i∗g xy
(d g̃ ′′

x,v) .

PROOF. Let g x be chosen as above and putg y = g xyg x . Theng y ∈ Gkv(y) = Gkv(x),
g yw = y and if kv(y) �= k, theng −1

y g ν
y = g −1

x g ν
x , so thatg y satisfies Condition 5.8 in this

case. It follows that

i∗g xy
(dg ′′

x,v) = i∗g xy
θ∗
g x

(dtx,v)

= (θg x
ig xy

)∗(dtx,v)

= θ∗
g y

(dty,v)

= dg ′′
y,v

(5.18)

becauseHx kv = Hy kv anddtx,v = dty,v. This establishes the first claim and the second then
follows from the observation thatig xy

|T̃kv
is the identity map. �
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We choose a left invariant measuredg ′
x,v onGkv/G◦

x kv
so that ifΦ ∈ S(Vkv ), then

(5.19)
∫

Gkv /G◦
x kv

|P(g ′
x,vx)|svΦ(g ′

x,vx)dg ′
x,v =

∫
Gkv x

|P(y)|s−2
v Φ(y)dy ,

wheredy is the Haar measure such that the volume ofVOv
is one if v ∈ Mf , Lebesgue

measure ifv ∈ MR and 28 times Lebesgue measure ifv ∈ MC. This is possible because
|P(y)|−2

v dy is aGkv -invariant measure onV ss
kv

and each of the orbitsGkvx is an open set in
V ss

kv
. Note that ∫

Gkv /G◦
x kv

|χ(g ′
x,v)|svΦ(g ′

x,vx)dg ′
x,v

= |P(x)|−s
v

∫
Gkv /G◦

kv

|P(g ′
x,vx)|svΦ(g ′

x,vx)dg ′
x,v

(5.20)

and so, from (5.19), this integral converges absolutely at least when Re(s) > 2. If g xy ∈
Gkv satisfiesy = g xyx and ig xy

is the inner automorphismg �→ g −1
xy g g xy of Gkv , then

ig xy
(G◦

y kv
) = G◦

x kv
, and soig xy

induces a mapig xy
: Gkv/G◦

y kv
→ Gkv/G◦

x kv
. Since

the integral on the right hand side of (5.19) depends only on the orbit ofx, it follows that
i∗g xy

(dg ′
x,v) = dg ′

y,v.

DEFINITION 5.21. Forv ∈ M andx ∈ V ss
kv

we letbx,v > 0 be the constant verifying
dg v = bx,v dg ′

x,v dg ′′
x,v, wheredg v is the measure onGkv chosen at the end of Section 4.

DEFINITION 5.22. ForΦ ∈ S(Vkv ) ands ∈ C we define

Zx,v(Φ, s) = bx,v

∫
Gkv /G◦

x kv

|χ(g ′
x,v)|svΦ(g ′

x,vx)dg ′
x,v

= bx,v|P(x)|−s
v

∫
Gkv x

|P(y)|s−2
v Φ(y)dy .

PROPOSITION 5.23. If x, y ∈ V ss
kv

and Gkvx = Gkvy, then bx,v = by,v.

PROOF. Since the groupGkv is unimodulari∗g x,y
dg v = dg v . So

dg v = by,vdg ′
y,vdg ′′

y,v

= by,vi
∗
g x,y

dg ′
x,vi

∗
g x,y

dg ′′
x,v = by,vb

−1
x,vi

∗
g x,y

dg v

= by,vb
−1
x,vdg v .

Thereforebx,v = by,v. �

Let dprg ′′
x = ∏

v dg ′′
x,v, dprg̃ ′′

x = ∏
v d g̃ ′′

x,v andd×
prt̃ = ∏

v d× t̃v , whered× t̃v is defined
in (5.15).

PROPOSITION 5.24. Suppose x ∈ V ss
k and k(x) �= k, k̃. Then, with respect to the

measure dprg̃ ′′
x, the volume of G◦

x A/T̃AG◦
x k is 2Ck̃(x)/Ck̃ .
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PROOF. Identifying T̃ with GL(1)k̃ andG◦
x with GL(1)k̃(x), we defineT̃ 1

A (resp.G◦1
x A)

to be the set of idèles of̃k (resp. k̃(x)) with absolute value one. Letd×
prt̃

1 anddprg ′′
x

1 be the

measures oñT 1
A andG◦1

x A, such thatdprg ′′
x = d×λdprg ′′

x
1, d×

prt̃ = d×λd×
prt̃

1 for

g ′′
x = λk̃(x)

g ′′
x

1 , t̃ = λk̃ t̃
1 .

Note that ifλ ∈ R+, then the absolute value ofλk̃ as an idèle of̃k(x) is λ2. Therefore,
dprg ′′

x = 2d×λdprg ′′
x

1 for g ′′
x = λk̃g

′′
x

1. Sincedprg ′′
x = d×

prt̃dprg̃ ′′
x , this implies that 2dprg ′′

x
1 =

d×
prt̃

1dprg̃ ′′
x . So

2
∫

G◦1
x A/G◦

x k

dprg ′′
x

1 =
∫

G◦1
x A/G◦

x kT̃
1
A

dprg̃ ′′
x

∫
T̃ 1

A/T̃k

d×
prt̃

1

= vol(G◦1
x A/T̃ 1

AG◦
x k)

∫
T̃ 1

A/T̃k

d×
prt̃

1 .

Since ∫
G◦1

x A/G◦
x k

dprg̃ ′′
x

1 = Ck̃(x) and
∫

T̃ 1
A/T̃k

d×
prt̃

1 = Ck̃

this proves the proposition. �

For the rest of this paper we consider Case (2) in both the global and the local situations
and Case (1) only in the local situation, where it arises as a localization of Case (2).

6. A preliminary mean value theorem and the formulation of its proof. In this
section we introduce the global zeta function of the prehomogeneous vector space(G, V )

and recall from [27] its most basic analytic properties. The zeta function is approximately
the Dirichlet generating series for the sequence vol(G◦

x A/T̃AG◦
x k). If it were exactly this

generating series, then our work would be almost complete, since Tauberian theory would
allow us to extract the mean value of the coefficients from the analytic behavior of the series.
Unfortunately, the actual zeta function contains an additional factor in each term and we
proceed to explain the filtering process by which this difficulty may be surmounted. This
leads us, on the basis of a number of assumptions, to a preliminary form of the mean value
theorem that is our goal. The validity of these assumptions is demonstrated in later sections.
The final form of the theorem, which differs from the preliminary form mostly in being more
explicit, is given in the next section.

We putG1 = GL(2)k̃ andG2 = GL(2). Let GA = G1A × G2A, let dg 1 anddg 2

be the measures onG1A andG2A which were defined in Section 4 and putdg = dg 1 dg 2

for g = (g 1, g 2); this is a Haar measure onGA. Write G̃ = G/T̃ , so thatV is a faithful
representation of̃G. SinceT̃ ∼= GL(1)k̃ as groups overk, the first Galois cohomology group
of T̃ is trivial, and it follows thatG̃F

∼= GF/T̃F for any fieldF ⊇ k. ThusG̃A ∼= GA/T̃A and
G̃A/G̃k

∼= GA/T̃AGk. Let d×
prt̃ be the measure oñTA defined immediately before Proposition

5.24. Thend× t̃ = C−1
k̃

d×
prt̃ is the measure oñTA compatible under the isomorphism̃TA ∼= Ã

×

with the measure defined oñA
×

in Section 2. We choose the measured g̃ on G̃A which



530 A. KABLE AND A. YUKIE

satisfiesdg = d g̃ d× t̃ . Similarly, we choose the measured g̃ v on G̃kv which satisfiesdg v =
d g̃ v d× t̃v . Let dprg̃ = ∏

v d g̃ v. From (4.2), we obtain

(6.1) d g̃ = |∆k∆k̃|−1/2C−2
k C−1

k̃
dprg̃ .

DEFINITION 6.2. LetL0 = {x ∈ V ss
k | k(x) �= k, k̃}. ForΦ ∈ S(VA) ands ∈ C we

define

Z(Φ, s) =
∫

GA/T̃AGk

|χ(g̃ )|s
∑
x∈L0

Φ(g̃ x)d g̃ .

The integralZ(Φ, s) is called theglobal zeta function of (G, V ). It was proved in [27]
that the integral converges (absolutely and uniformly on compacta) if Re(s) is sufficiently
large. However, a slightly different formulation was used in [27] and it is necessary to say a
few words about the translation from that paper to this.

The definition of the zeta function used in [27] is stated in Definition (2.10) of that
paper. For our purposes we shall always take the characterω appearing there to be the trivial
character. The domain of integration used in [27] isR+ × G0

A/Gk, whereG0
A = G0

1A × G0
2A

is the set of elements ofGA both of whose entries have determinant of idèle norm 1. We have
(R+ ×G0

A)/T̃ 1
A

∼= G̃A via the map which sends the class of(λ, g 0) to the class of(1, c(λ))g 0.
In [27], R+ ×G0

A is made to act onVA by requiring that(λ, 1) acts by multiplication byλ and
the above isomorphism is compatible with this.

We must compare the measured g̃ on G̃A with the measured×λ dg 0 which was used in
[27]. We haveG̃A ∼= (R2+ × G0

A)/(R+ × T̃ 1
A) whereR+ × T̃ 1

A is included inR2+ × G0
A via

(λ, t̃) �→ (λ, λ−1, t̃ ) andR2+ × G0
A maps ontoG̃A via (λ1, λ2, g 0) �→ (c(λ̃1), c(λ2))g

0 · T̃A

(recall thatλ̃1 ∈ Ã andλ2 ∈ A). In this quotient we have chosen the measured g̃ to be
compatible with the measures 4d×λ1 d×λ2 dg 0 onR2+×G0

A andd×λ d× t̃1 onR+×T̃ 1
A , where

the volume ofT̃ 1
A/T̃k underd× t̃1 is 1 (as in Section 2). From this it follows that the measures

4d×λ dg 0 andd× t̃1 are compatible with the measured g̃ in the quotient(R+×G0
A)/T̃ 1

A
∼= G̃A.

Furthermore,|χ(1, c(λ))| = λ4, and so ifZ∗(Φ, s) denotes the zeta function studied in
[27], then we haveZ(Φ, s) = 4Z∗(Φ, 4s). In [27], Corollary 8.16 it is shown thatZ∗(Φ, s)

has a meromorphic continuation to the region Re(s) > 6 with a simple pole ats = 8 with
residueVkVk̃Φ̂(0). Thus we arrive at:

THEOREM 6.3. The zeta function Z(Φ, s) has a meromorphic continuation to the re-
gion Re(s) > 3/2 with a simple pole at s = 2 with residue VkVk̃Φ̂(0).

Note thatΦ̂(0) is the Fourier transform ofΦ evaluated at the origin, and so is simply
the integral ofΦ over theVA. We defineΣ(Φ) = Φ̂(0) for Φ ∈ S(VA). For v ∈ M and
Φv ∈ S(Vkv ) we can define the local version of the distributionΣ(Φ) by

(6.4) Σv(Φv) =
∫

Vkv

Φv(y)dy .
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Since the coordinate system ofV consists of four coordinates ink and two coordinates iñk,
if Φ = ⊗

v Φv , then

(6.5) Σ(Φ) = |∆k|−2|∆k̃|−1
∏
v

Σv(Φv) .

This completes our review of the analytic properties of the global zeta function. Before
we can rewriteZ(Φ, s) in a form which makes this analytic information bear on the problem
at hand we must return briefly to the local situation.

Let v ∈ Mf . If F/kv is a quadratic extension, thenF is generated overkv by either of the
roots of some irreducible polynomialp(z) = z2 + a1z + a2 ∈ kv[z]. In fact, this polynomial
may always be chosen to satisfy the more stringent condition thatOF is generated overOv by
either of the roots ofp(z). If this condition is satisfied, then the discriminant ofp(z) generates
the ideal∆F/kv . We wish to recall how this may be achieved in each case.

Recall thatp(z) ∈ kv[z] is called anEisenstein polynomial if a1 ∈ pv anda2 ∈ pv \ p2
v.

If F/kv is a ramified extension, then there is always an Eisenstein polynomial whose roots
generateF overkv and any such polynomial will satisfy the stronger condition stated above.
For eachv ∈ Mf , kv has a unique unramified quadratic extension. IfF is this extension and
v /∈ Mdy, then we may satisfy the stronger condition simply by takingp(z) with a1 = 0 and
−a2 any non-square unit inkv. If v ∈ Mdy, then we must instead takep(z) to be anArtin-
Schreier polynomial, which means, by definition, thatp(z) is irreducible inkv[z], a1 = −1
anda2 is a unit. Note thatp stays irreducible modulopv in this case by Hensel’s lemma.

For eachv ∈ Mf we choose a list of representativeswv,1, . . . , wv,Nv , one for each of the
Gkv -orbits inV ss

kv
, in such a way thatP(wv,i ) generates the ideal∆k(wv,i )/kv for i = 1, . . . , Nv .

This is possible, in light of the previous paragraph, if we take eachwv,i to equalwp for
a suitablep(z) ∈ kv[z]. In the special case wherek(wv,i) = kv we takewv,i = wp for
p(z) = z2 − z. For v ∈ M∞ we require instead that|P(wv,i)|v = 1 for i = 1, . . . , Nv ,
which is clearly possible. In both cases we assume for convenience thatwv,1 represents
the orbit corresponding tokv itself. This done, ifF/k is a quadratic extension, then let
wv,iv(F ) represent the orbit corresponding toFv/kv (with iv(F ) = 1 if v splits inF ). Then
we have

(6.6) N (∆F/k)
−1 =

∏
v∈�f

Nv(∆F/k,v)
−1 =

∏
v∈�f

|P(wv,iv(F ))|v =
∏
v∈�

|P(wv,iv(F ))|v .

For x ∈ L0 andΦ = ⊗
Φv ∈ S(VA) we define theorbital zeta function of x to be

Zx(Φ, s) = ∏
v∈�Zx,v(Φv, s). If x lies in the orbit ofwv,i in V ss

kv
, then we shall write

Ξx,v(Φv, s) = Zwv,i ,v(Φv, s) andΞx(Φ, s) = ∏
v∈�Ξx,v(Φv, s). We callΞx,v(Φv, s) the

standard local zeta function andΞx(Φv, s) thestandard orbital zeta function.

PROPOSITION 6.7. For x ∈ L0 and Φ = ⊗
Φv ∈ S(VA) we have

Zx(Φ, s) = N (∆k(x)/k)
−sΞx(Φ, s) .
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PROOF. For eachv ∈ M let iv(x) be such thatx ∈ Gkvwv,iv(x). Then, from (5.22),

Zx,v(Φv, s) = bx,v|P(x)|−s
v

∫
Gkv x

|P(y)|s−2
v Φv(y)dy

= |P(wv,iv(x))|sv
|P(x)|sv

· bwv,iv (x),v

|P(wv,iv(x))|sv

∫
Gkv wv,iv (x)

|P(y)|s−2
v Φv(y)dy

= |P(wv,iv(x))|sv
|P(x)|sv

· Zwv,iv (x),v(Φv, s)

= |P(wv,iv(x))|sv
|P(x)|sv

· Ξx,v(Φv, s) ,

(6.8)

where we have used Proposition 5.23 in passing from the first line to the second. Applying
(6.6) to F = k(x), we find that

∏
v∈� |P(wv,iv(x))|sv = N (∆k(x)/k)

−s . Sincex ∈ V ss
k ,

P(x) ∈ k×, and so the Artin product formula implies that
∏

v∈� |P(x)|v = 1. Now taking
the product over allv ∈ M on both sides of (6.8) proves the identity. �

For convenience, we introduce the abbreviation

(6.9) R1 = |∆k|−1/2|∆k̃|−1/2C−2
k C−2

k̃
.

PROPOSITION 6.10. If Φ = ⊗
Φv ∈ S(VA), then we have

Z(Φ, s) = R1

∑
x∈Gk\L0

N (∆k(x)/k)
−sCk̃(x)

Ξx(Φ, s) .

PROOF. From Definition 6.2 we have

Z(Φ, s) =
∑

x∈Gk\L0

∫
GA/T̃AGk

|χ(g̃ )|s
∑

γ∈Gk/Gx k

Φ(g̃ γ x)d g̃

=
∑

x∈Gk\L0

∫
GA/T̃AGx k

|χ(g̃ )|sΦ(g̃ x)d g̃

= 1

2

∑
x∈Gk\L0

∫
GA/T̃AG◦

x k

|χ(g̃ )|sΦ(g̃ x)d g̃ since [Gx k : G◦
x k] = 2

= 1

2
R1Ck̃

∑
x∈Gk\L0

∫
GA/T̃AG◦

x k

|χ(g̃ )|sΦ(g̃ x)dprg̃ by (6.1)

= 1

2
R1Ck̃

∑
x∈Gk\L0

(∏
v

bx,v

)∫
GA/G◦

x A

|χ(g̃ ′)|sΦ(g̃ ′x)dprg̃ ′

·
∫

G◦
x A/T̃AG◦

x k

dprg̃ ′′ by Definition 5.21

= 1

2
R1Ck̃

∑
x∈Gk\L0

(∏
v

Zx,v(Φv, s)

)
· vol(G◦

x A/T̃AG◦
x k) by Definition 5.22
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= R1

∑
x∈Gk\L0

Zx(Φ, s)Ck̃(x) by Proposition 5.24

= R1

∑
x∈Gk\L0

N (∆k(x)/k)
−sCk̃(x)

Ξx(Φ, s) by Proposition 6.7.

�

We are now ready to describe the filtering process. This process was originally used in
[5] and is described in a general setting in [28], §0.5. Our discussion will follow this latter
reference, but with simplifications arising from the fact that we know the residue of the global
zeta function explicitly (by Theorem 6.3).

We setS0 = M∞ ∪Mrm ∪ Mdy and fix a finite setS ⊇ S0 of places ofk. For each finite
subsetT ⊇ S of M we considerT -tuplesωT = (ωv)v∈T where eachωv is one of the standard
orbital representatives,wv,i, for the orbits inV ss

kv
chosen above. Ifx ∈ V ss

k andx ∈ Gkvωv ,
then we writex ≈ ωv and ifx ≈ ωv for all v ∈ T , then we writex ≈ ωT .

For later purposes, it is convenient to make the following definition.

DEFINITION 6.11. For anyv ∈ Mf , Φv,0 is the characteristic function ofVOv
.

Let Ξx,v(s) = Ξx,v(Φv,0, s) andΞx,T (s) = ∏
v /∈T Ξx,v(s). From the integral defin-

ing Ξx,v(s) it follows that for v /∈ S0 this function may be expressed asΞx,v(s) =∑∞
n=−∞ ax,v,nq

−ns
v for certain numerical coefficientsax,v,n. In Section 8 we shall establish

the following condition.

CONDITION 6.12. For allv /∈ S0 and allx ∈ V ss
kv

we haveax,v,n = 0 for n < 0,
ax,v,0 = 1 andax,v,n ≥ 0 for all n.

Suppose that we have Dirichlet seriesLi(s) = ∑∞
m=1 li,mm−s for i = 1, 2. If l1,m ≤ l2,m

for all m ≥ 1, then we shall writeL1(s) � L2(s). In Section 9 we shall establish that for every
v /∈ S0 there exists a Dirichlet seriesLv(s) = ∑∞

n=0 lv,nq
−ns
v which satisfies the following

condition.

CONDITION 6.13. (1) For allv /∈ S0 andx ∈ V ss
kv

, Ξx,v(s) � Lv(s).
(2) The series definingLv(s) converges to a holomorphic function in the region Re(s) >

1 and the product
∏

v /∈S0
Lv(s) converges absolutely and locally uniformly in the region

Re(s) > 3/2.
(3) For allv /∈ S0, lv,0 = 1 andlv,n ≥ 0 for all n.

For anyT ⊇ S we defineLT (s) = ∏
v /∈T Lv(s). BothΞx,T (s) andLT (s) are Dirichlet

series and if we let

(6.14) Ξx,T (s) =
∞∑

m=1

a∗
x,T ,mm−s and LT (s) =

∞∑
m=1

l∗T ,mm−s ,

thena∗
x,T ,m (resp. l∗T ,m) is the sum of the terms

∏
v /∈T ax,v,nv (resp.

∏
v /∈T lv,nv ) over all

possible factorizationsm = ∏
v /∈T q

nv
v . Since only finitely-many places,v, of k can haveqv

equal to a power of a particular prime, the number of such factorizations is finite. Also, in
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any such factorization,nv = 0 for all but finitely-manyv, and so this sum is well-defined. It
follows from Conditions 6.12 and 6.13 that 0≤ a∗

x,T ,m ≤ l∗T ,m anda∗
x,T ,1 = 1 for all x ∈ V ss

k ,
all T ⊇ S and allm ≥ 1. We shall use these observations in the proof of Theorem 6.22 below.

We define

(6.15) ξωT (s) =
∑

x∈Gk\L0,x≈ωT

N (∆k(x)/k)
−sCk̃(x)

Ξx,T (s)

and

(6.16) ξωS ,T (s) =
∑

x∈Gk\L0,x≈ωS

N (∆k(x)/k)
−sCk̃(x)Ξx,T (s) ,

which is the sum ofξωT (s) over all ωT = (ωv)v∈T which extend the fixedS-tupleωS . In
order to determine the analytic properties of these Dirichlet series we require the following
result.

LEMMA 6.17. Let v ∈ M, x ∈ V ss
kv

and r ∈ C. Then there exists Φv ∈ S(Vkv )

such that the support of Φv is contained in Gkvx, Zx,v(Φv, s) is an entire function and
Zx,v(Φv, r) �= 0.

PROOF. The setGkvx is open andy �→ |P(y)|r−2
v is a continuous function on it. We

may therefore find an open setU containingx, having compact closurēU ⊆ Gkvx and such
that

(6.18) | |P(y)|r−2
v − |P(x)|r−2

v | <
1

2
|P(x)|r−2

v

for y ∈ Ū . We can then chooseΦv ∈ S(Vkv ) in such a way that supp(Φv) ⊆ Ū and∫
Ū Φv(y) dy = 1. Now (6.18) implies that|P(y)|v does not vanish on̄U and hence it is

bounded both above and below by positive constants on this compactum. ThusZx,v(Φv, s) is
entire. The inequality (6.18) also implies that

|Zx,v(Φv, r) − bx,v|P(x)|−2
v | ≤ 1

2
bx,v|P(x)|−2

v

and henceZx,v(Φv, r) �= 0. �

PROPOSITION 6.19. Let T ⊇ S be a finite set of places of k and ωT be a T -tuple, as
above. The Dirichlet series ξωT (s) has a meromorphic continuation to the region Re(s) >

3/2. Its only possible singularity in this region is a simple pole at s = 2 with residue

R2

∏
v∈T

b−1
ωv,v|P(ωv)|2v ,

where

R2 = Ress=1 ζk(s) · Ress=1 ζ
k̃
(s) · Zk(2)Z

k̃
(2)/|∆k| .

PROOF. For eachv ∈ T we chooseΦv ∈ S(Vkv ) such that supp(Φv) ⊆ Gkvωv . Let
Φ = ⊗

v∈T Φv ⊗⊗
v /∈T Φv,0 ∈ S(VA). Forv ∈ T we haveΞx,v(Φv, s) = 0 unlessx ≈ ωv
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and hence

Z(Φ, s) = R1

(∏
v∈T

Ξωv,v(Φv, s)

) ∑
x∈Gk\L0,x≈ωT

N (∆k(x)/k)
−sCk̃(x)Ξx,T (s)

= R1

(∏
v∈T

Ξωv,v(Φv, s)

)
ξωT (s)

by Proposition 6.10. By Lemma 6.17 and Theorem 6.3, this formula implies the first state-
ment.

Now chooseΦv for v ∈ T so thatΞωv,v(Φv, 2) �= 0. It follows directly from the
definition thatΞωv,v(Φv, 2) = bωv,v|P(ωv)|−2

v Σv(Φv) for all v ∈ T , and so the residue of
ξωT (s) at s = 2 is

R−1
1

(∏
v∈T

b−1
ωv,v

|P(ωv)|2v
)(∏

v∈T

Σv(Φv)

)−1

Ress=2 Z(Φ, s) .

We haveΣv(Φv,0) = 1 for v /∈ T and hence

Ress=2 Z(Φ, s) = VkVk̃|∆k|−2|∆k̃|−1
∏
v∈T

Σv(Φv) .

Combining the last two equations shows that the residue ofξωT (s) at s = 2 is

R−1
1 VkVk̃|∆k|−2|∆k̃|−1

(∏
v∈T

b−1
ωv,v

|P(ωv)|2v
)

,

and using the definition ofR1 and the values ofVk andVk̃ (see the end of Section 4) gives
the second claim. �

COROLLARY 6.20. The Dirichlet series ξωS ,T (s) has a meromorphic continuation to
the region Re(s) > 3/2. Its only possible singularity in this region is a simple pole at s = 2
with residue

R2

(∏
v∈S

b−1
ωv,v

|P(ωv)|2v
) ·

∏
v∈T \S

∑
x

(
b−1
x,v|P(x)|2v

)
,

where the sum is over the complete set, {x}, of standard orbit representatives for Gkv\V ss
kv

.

PROOF. We haveξωS ,T (s) = ∑
ωT

ξωT (s) where the sum is over allT -tuplesωT which
extend theS-tupleωS . The claim follows immediately. �

We letEv = ∑
x b−1

x,v|P(x)|2v for v /∈ S0, where the sum is over all standard represen-
tatives,x, for orbits in Gkv\V ss

kv
. In Section 7 we shall prove that the following condition

holds.

CONDITION 6.21. The product
∏

v /∈S0
Ev converges to a positive number.

We are now ready to state and prove, subject to Conditions 6.12, 6.13 and 6.21, the
theorem which is the goal of this section.
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THEOREM 6.22. Let S ⊇ S0 be a finite set of places of k and ωS an S-tuple of standard
orbital representatives. Then

lim
X→∞ X−2

∑
x∈Gk\L0,x≈ωSN (∆k(x)/k)≤X

Ck̃(x)
= 1

2
R2

∏
v∈S

(b−1
ωv,v

|P(ωv)|2v) ·
∏
v /∈S

Ev .

PROOF. In the following, sums overx will be understood to include the conditions
x ∈ Gk\L0 andx ≈ ωS as well as any further conditions which may be explicitly imposed.
We haveξωS,T (s) = ∑∞

m=1 cmm−s where

cm =
∑

x,n,N (∆k(x)/k)n=m

C
k̃(x)

a∗
x,T ,n .

Applying the Tauberian theorem ([21], p. 464, Theorem I) toξωS ,T (s), we obtain, in light of
Corollary 6.20,

lim
X→∞ X−2

∑
x,n,N (∆k(x)/k)n≤X

Ck̃(x)a
∗
x,T ,n = 1

2
R2

(∏
v∈S

b−1
ωv,v|P(ωv)|2v

)
·
∏

v∈T \S
Ev .

We shall denote the right hand side of this equation byLT . Note thatL = limT →� LT is the
right hand side of the equation in the statement. Sincea∗

x,T ,n ≥ 0 for all n anda∗
x,T ,1 = 1 we

obtain

lim sup
X→∞

X−2
∑

N (∆k(x)/k)≤X

Ck̃(x) ≤ LT

for all T , and so lim supX→∞ X−2∑N (∆k(x)/k)≤X Ck̃(x) ≤ L. It follows that there is a constant

C such that
∑

N (∆k(x)/k)≤X Ck̃(x) ≤ CX2 for all X > 0 (note that ifX < 1, then the sum is
0). Furthermore,∑

N (∆k(x)/k)≤X

Ck̃(x) =
∑

N (∆k(x)/k)n≤X

Ck̃(x)a
∗
x,T ,n −

∑
N (∆k(x)/k)n≤X,n≥2

Ck̃(x)a
∗
x,T ,n

≥
∑

N (∆k(x)/k)n≤X

Ck̃(x)a
∗
x,T ,n −

∑
N (∆k(x)/k)n≤X,n≥2

Ck̃(x)l
∗
T ,n

=
∑

N (∆k(x)/k)n≤X

Ck̃(x)a
∗
x,T ,n −

∞∑
n=2

l∗T ,n

∑
N (∆k(x)/k)≤X/n

Ck̃(x)

≥
∑

N (∆k(x)/k)n≤X

C
k̃(x)

a∗
x,T ,n − CX2

∞∑
n=2

l∗T ,nn
−2

=
∑

N (∆k(x)/k)n≤X

Ck̃(x)a
∗
x,T ,n − CX2(LT (2) − 1) .
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It follows that, for allT ⊇ S,

lim inf
X→∞ X−2

∑
N (∆k(x)/k)≤X

Ck̃(x) ≥ LT − C(LT (2) − 1)

and lettingT → M we obtain

lim inf
X→∞ X−2

∑
N (∆k(x)/k)≤X

Ck̃(x)
≥ L

since limT →� LT (2) = 1. �

The remainder of this paper and its companions [17], [18] are devoted to verifying the
conditions enunciated in this section and to evaluating the constants which appear in Theorem
6.22. In the next section we make use of the results of this work to state the theorem in a more
explicit form.

7. The mean value theorem. In this section we shall derive a more explicit and con-
venient mean value theorem from Theorem 6.22. Throughout,k will be a number field and̃k
a fixed quadratic extension ofk. If F1 andF2 are distinct quadratic extensions ofk, neither
equal tok̃, then we shall say thatF1 andF2 arepaired (with respect tok̃) if F2 ⊆ F1 · k̃.
Since this condition uniquely determinesF2 from F1, we may writeF2 = F ∗

1 if F2 andF1

are paired. Our first result will be used below to expressCk̃(x) in terms ofCk(x) andCk(x)∗ for
x ∈ L0.

PROPOSITION 7.1. Suppose that L/k is a biquadratic extension of number fields and
that k1, k2 and k3 are the quadratic extensions of k contained in L. Then CL = C−2

k Ck1Ck2Ck3 .

PROOF. This identity is perhaps the simplest instance of what is known as a Brauer
relation (see [1], p. 162, for instance). For the reader’s convenience we sketch the proof from
the theory of the Dedekind zeta function. Using Theorem 1.1, Chapter XII of [19], p. 230 we
have the factorization

ζL(s) = ζk(s)L(s, χ1)L(s, χ2)L(s, χ3) ,

whereχj is the idèle class character ofk corresponding by class field theory tokj . Multiplying
both sides of this identity byζk(s)

2 we obtain

(7.2) ζL(s)ζk(s)
2 = ζk1(s)ζk2(s)ζk3(s) .

Since Ress=1 ζF (s) = CF /|∆F |1/2, it follows that

CLC2
k|∆L∆2

k|−1/2 = Ck1Ck2Ck3|∆k1∆k2∆k3|−1/2 .

Recall that we have a functional equation

ζF (1 − s) = (2−2r2(F )π−[F :Q]|∆F |)s−1/2 Γ (s/2)r1(F )Γ (s)r2(F )

Γ ((1 − s)/2)r1(F )Γ (1 − s)r2(F )
ζF (s) ,

wherer1(F ) denotes the number of real places ofF andr2(F ) the number of complex places
of F . It is easy to check that[L : Q] + 2[k : Q] = ∑3

j=1[kj : Q] andri(L) + 2ri(k) =
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j=1 ri(kj ) for i = 1, 2. Comparing the factors in the functional equation on both sides of

(7.2) now shows that|∆L∆2
k| = |∆k1∆k2∆k3| and the identity follows. �

For notational compactness we shall setεv(x) = b−1
x,v|P(x)|2v for all v ∈ M andx ∈ V ss

kv
.

These constants are related to the quantities calculated in later parts by the following result.

LEMMA 7.3. Let v ∈ Mf and x ∈ V ss
kv

. Then

εv(x) = vol(Kv ∩ G◦
x kv

)vol(Kvx) ,

where the first volume is evaluated with respect to the canonical measure dg ′′
x,v on G◦

x kv
and

the second with respect to the measure on Vkv under which VOv
has volume 1.

PROOF. We have

1 =
∫

Kv

dg v

= bx,v

∫
KvG

◦
x kv

/G◦
x kv

dg ′
x,v ·

∫
Kv∩G◦

x kv

dg ′′
x,v by Definition 5.21

= bx,vvol(Kv ∩ G◦
x kv

)

∫
Kvx

|P(y)|−2
v dy

by (5.19) withs = 0 andΦ the characteristic function ofKvx. But |P(y)|v = |P(x)|v for all
y ∈ Kvx, and so 1= bx,vvol(Kv ∩ G◦

x kv
)|P(x)|−2

v vol(Kvx). �

Using this formula forεv(x) and the results of Sections 3 and 4 in [17], we may determine
the values ofεv(x) for all v /∈ Mdy ∪ M∞ and all standard orbital representativesx ∈ V ss

kv
.

We record the results in Table 1.
The first column displays the index of the orbit and the second,εv(x), wherex is the

standard representative for the orbit. The values of vol(Kv ∩ G◦
x kv

) which we use here are
contained in Propositions 3.2, 3.3, 3.5 and 3.6 in [17] and the values of vol(Kvx) in Proposi-
tions 4.14, 4.15 and 4.26 in [17].

The infinite and dyadic places ofk both require special treatment. We shall begin with
the infinite places as the easier of the two. We extend a classical notation (r1 for the number
of real places andr2 for the number of complex places) by lettingr11 be the number of real
places ofk which split in k̃ andr12 the number of real places ofk which ramify in k̃.

PROPOSITION 7.4. For any S-tuple ωS we have∏
v∈�∞

εv(ωv) = 22r2−r11π3r11+2r12+3r2 .

In particular, the product does not depend on ωS .

PROOF. For the standard orbital representatives,x, at the infinite places we have re-
quired that|P(x)|v = 1, and soεv(x) = b−1

x,v. If v is a real place ofk which splits ink̃, then
V ss

kv
is the union of two orbits with indices (sp) and (sp rm), respectively. From Propositions

5.2 and 5.6 [17] we see thatεv(ωv) = π3/2 for both these orbits. In the product, the total con-
tribution from these places is thus 2−r11π3r11. If v is a real place ofk which ramifies ink̃, then
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TABLE 1. εv(x) for v finite and non-dyadic.

Index εv(x)

(sp) (1/2)(1 + q−1
v )(1 − q−2

v )2

(in) (1/2)(1 − q−1
v )(1− q−4

v )

(rm) (1/2)(1 − q−2
v )2

(sp ur) (1/2)(1 − q−1
v )3(1− q−2

v )

(sp rm) (1/2)q−1
v (1 − q−1

v )(1− q−2
v )3

(in ur) (1/2)(1 − q−1
v )(1− q−4

v )

(in rm) (1/2)q−1
v (1 − q−1

v )(1− q−2
v )(1− q−4

v )

(rm ur) (1/2)(1 − q−1
v )2(1− q−2

v )

(rm rm)* (1/2)q−2
v (1 − q−2

v )2

(rm rm ur) (1/2)q−2
v (1 − q−1

v )2(1− q−2
v )

V ss
kv

is the union of two orbits with indices (rm) and (rm rm)*, respectively. From Propositions

5.4 and 5.7 in [17] we see thatεv(ωv) = π2 for both these orbits. In the product, the total
contribution from these places is thusπ2r12. Finally, if v is a complex place ofk, thenV ss

kv

consists of a single orbit with index (sp) and, from Proposition 5.2 in [17],εv(ωv) = 4π3 for
this orbit. The total contribution to the product from the complex places ofk is thus 22r2π3r2

and the formula follows. �

Whenv ∈ Mdy we shall not calculate the constantsεv(x) individually in all cases. Rather
we shall sometimes calculate the sum of theεv(x) over a set of orbits with similar arithmetical
properties. This is because ifv ∈ Mdy, then it is difficult to deal with the ramified quadratic
extensions ofkv individually. This leads to a final version of Theorem 6.22 which contains
no unevaluated constants, but which employs an equivalence relation, denoted by�, coarser
than the relation≈. Our next task is to define this relation.

Recall that, forx, y ∈ V ss
kv

, we writex ≈ y if kv(x) = kv(y) (we have previously used
this notation only wheny was a standard orbital representative, but the extension is convenient
here). Ifv /∈ Mdy or if v ∈ Mdy but kv(x)/kv is unramified (including the casekv(x) = kv),
thenx � y will have the same meaning asx ≈ y. Suppose now thatv ∈ Mdy and that
kv(x)/kv is ramified. If the type ofx is (sp rm) or (in rm), then we shall writex � y if
∆kv(x)/kv = ∆kv(y)/kv . If the type ofx is (rm rm)* or (rm rm ur), then we writex � y

if y has the same type asx. Finally, if x has type (rm rm rm), then we writex � y if
∆kv(x)/kv = ∆kv(y)/kv and∆k̃v(x)/k̃v

= ∆k̃v(y)/k̃v
. This defines an equivalence relation onV ss

kv
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for all placesv of k. If ωS is anS-tuple of standard orbital representatives andx ∈ L0, then
we writex � ωS to mean thatx � ωv for all v ∈ S.

The grouping of dyadic orbits is differently expressed in [18] and we must explain the
connection between the two formulations. For anyv ∈ Mdy we shall put 2Ov = pmv

v . If x ∈
V ss

kv
, then let∆kv(x)/kv = p

δx,v
v and, ifv /∈ Msp, also let∆k̃v/kv

= p
δ̃v
v and∆k̃v(x)/k̃v

= p̃
δ̃x,v
v .

It is well-known that ifkv(x)/kv is ramified andv is dyadic, thenδx,v takes one of the values
2, 4, . . . , 2mv, 2mv + 1. In [18] we introduce a natural number lev(k1, k2), thelevel of k1 and
k2, which is defined wheneverk1 andk2 are ramified quadratic extensions of a local field. Let
us writeλx,v = lev(kv(x), k̃v) whenv ∈ Mrm ∩ Mdy andkv(x)/kv is ramified. Ifδx,v �= δ̃v ,
then

(7.5) λx,v = min

{⌊
1

2
(δx,v + 1)

⌋
,

⌊
1

2
(δ̃v + 1)

⌋}
,

but if δx,v = δ̃v, thenλx,v may take any value from this minimum up toδx,v. We have the
relation

(7.6) δ̃x,v = 2(δx,v − λx,v) ,

and so, with∆kv(x)/kv fixed, ∆k̃v(x)/k̃v
and lev(kv(x), k̃v) determine one another. Thus the

grouping of dyadic orbits with index (rm rm rm) in [18], by discriminant and level withk̃v,
coincides with the grouping defined here.

If x is a standard orbital representative inV ss
kv

for anyv ∈ M, then let us write

ε̄v(x) =
∑
y�x

εv(y) ,

where the sum is over standard orbital representatives that satisfyy � x. Thusε̄v(x) = εv(x)

unlessv ∈ Mdy andkv(x)/kv is ramified. Alsoy � x implies thatx andy have the same type
and since there is only one orbit corresponding to each of the indices (rm rm)* and (rm rm ur),
ε̄v(x) = εv(x) if x is the standard representative for either of these orbits. In Table 2 we collect
the values of the constantsεv(x) for those dyadic orbits havinḡεv(x) = εv(x) and in Table 3
we collect the values of the constantsε̄v(x) for the remaining dyadic orbits.

The values of vol(Kvx) and vol(Kv ∩ G◦
x kv

) used to determine the entries in the two
tables were drawn from Propositions 3.2, 3.3,3.5, 4.14, 4.25 of [17] and Propositions 4.2,
5.11, 5.14 and Corollary 5.15 of [18]. In Table 3, the second column records the conditions
on δx,v, δ̃v andλx,v under which the entry is valid. From (7.5) and the observations made in
the previous paragraph it is easy to see that the available conditions are exhaustive.

It will be convenient to extend the notation of Section 6 by writing

Ev =
∑
x

εv(x)

for all v ∈ Mf , where the sum is taken over all standard representatives,x, of orbits in
Gkv\V ss

kv
. We callEv thelocal density at the placev.
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TABLE 2. εv(x) for ungrouped dyadic orbits.

Index εv(x)

(sp) (1/2)(1 + q−1
v )(1 − q−2

v )2

(in) (1/2)(1 − q−1
v )(1− q−4

v )

(rm) (1/2)(1 − q−2
v )2

(sp ur) (1/2)(1 − q−1
v )3(1− q−2

v )

(in ur) (1/2)(1 − q−1
v )(1− q−4

v )

(rm ur) (1/2)(1 − q−1
v )2(1− q−2

v )

(rm rm)* (1/2)q
−2δ̃v−2�δ̃v /2�
v (1 − q−2

v )2

(rm rm ur) q
−2δ̃v
v (1 − (1/2)q

−2�δ̃v /2�
v )(1− q−1

v )2(1 − q−2
v )

TABLE 3. ε̄v(x) for grouped dyadic orbits.

Index Conditions ε̄v(x)

(sp rm) δx,v ≤ 2mv q
−δx,v/2
v (1− q−1

v )2(1 − q−2
v )3

(sp rm) δx,v = 2mv + 1 q
−(mv+1)
v (1 − q−1

v )(1 − q−2
v )3

(in rm) δx,v ≤ 2mv q
−δx,v/2
v (1 − q−1

v )2(1 − q−2
v )(1− q−4

v )

(in rm) δx,v = 2mv + 1 q
−(mv+1)
v (1 − q−1

v )(1− q−2
v )(1 − q−4

v )

(rm rm rm) δx,v �= δ̃v , δx,v ≤ 2mv q
−(δx,v/2+λx,v)
v (1 − q−1

v )2(1 − q−2
v )2

(rm rm rm) δx,v �= δ̃v, δx,v = 2mv + 1 q
−(mv+λx,v+1)
v (1 − q−1

v )(1− q−2
v )2

(rm rm rm) δx,v = δ̃v ≤ 2mv , λx,v = (1/2)δ̃v q
−2λx,v
v (1 − q−1

v )(1 − 2q−1
v )(1 − q−2

v )2

(rm rm rm) δx,v = δ̃v ≤ 2mv , λx,v > (1/2)δ̃v q
−2λx,v
v (1 − q−1

v )2(1 − q−2
v )2

(rm rm rm) δx,v = δ̃v = 2mv + 1 q
−2λx,v
v (1 − q−1

v )2(1 − q−2
v )2

PROPOSITION 7.7. Let v ∈ Mf . Then Ev = (1 − q−2
v )E′

v, where

(7.8) E′
v =


1 − 3q−3

v + 2q−4
v + q−5

v − q−6
v if v ∈ Msp,

(1 + q−2
v )(1 − q−2

v − q−3
v + q−4

v ) if v ∈ Min ,

(1 − q−1
v )(1 + q−2

v − q−3
v + q

−2δ̃v−2�δ̃v/2�−1
v ) if v ∈ Mrm .
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PROOF. First suppose thatv /∈ Mdy. Then every index corresponds to a single orbit,
with the exception of (sp rm) and (in rm), which correspond to two orbits each. Using this
and the values ofεv(x) given in Table 1 it is routine to check the given expressions.

Now suppose thatv ∈ Mdy. We haveEv = ∑
x ε̄v(x), where the sum now runs over a

complete set of representatives for the� equivalence classes. The values ofε̄v(x) are given
in Tables 2 and 3 and using them one can easily establish the claim whenv /∈ Mrm. We carry
out the casev ∈ Mrm explicitly, since it is rather more elaborate.

First suppose that̃δv = 2l̃ with 1 ≤ l̃ ≤ mv. The indices which are possible with our
assumptions are (rm), (rm ur), (rm rm)* and (rm rm ur), corresponding to one orbit each, and
(rm rm rm), which corresponds to many orbits. By Table 2, the contribution toEv from the
first four of these indices is

1

2
(1 − q−2

v )2 + 1

2
(1 − q−1

v )2(1 − q−2
v )

+ 1

2
q−6l̃
v (1 − q−2

v )2 + q−4l̃
v

(
1 − 1

2
q−2l̃
v

)
(1 − q−1

v )2(1 − q−2
v ) .

(7.9)

Recall that the orbits with index (rm rm rm) have been grouped under� by δx,v if δx,v �= δ̃v

and by level ifδx,v = δ̃v. If δx,v �= δ̃v, then eitherδx,v = 2l with l �= l̃ or δx,v = 2mv + 1.
Using Table 3 and (7.5), we see that the contribution from these equivalence classes is

l̃−1∑
l=1

q−2l
v (1 − q−1

v )2(1 − q−2
v )2 +

mv∑
l=l̃+1

q−(l+l̃)
v (1 − q−1

v )2(1 − q−2
v )2

+ q−(mv+l̃+1)
v (1 − q−1

v )(1 − q−2
v )2

= (q−2
v − q−2l̃

v )(1 − q−1
v )2(1 − q−2

v )

+ (q−(2l̃+1)
v − q−(mv+l̃+1)

v )(1 − q−1
v )(1 − q−2

v )2

+ q−(mv+l̃+1)
v (1 − q−1

v )(1 − q−2
v )2

= q−2
v (1 − q−1

v )2(1 − q−2
v ) − q−2l̃

v (1 − q−1
v )2(1 − q−2

v )

+ q−(2l̃+1)
v (1 − q−1

v )(1 − q−2
v )2 .

(7.10)

If δx,v = δ̃v, then the level,λx,v, runs froml̃ up toδ̃v −1. By (7.6), the valueλx,v = δ̃v = δx,v,
although possible, corresponds to the orbit with index (rm rm ur), and so is excluded here. The
contribution from the equivalence classes withδx,v = δ̃v is thus
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q−2l̃
v (1 − q−1

v )(1 − 2q−1
v )(1 − q−2

v )2

+
2l̃−1∑
i=l̃+1

q−2i
v (1 − q−1

v )2(1 − q−2
v )2

= q−2l̃
v (1 − q−1

v )(1 − 2q−1
v )(1 − q−2

v )2

+ (q−(2l̃+2)
v − q−4l̃

v )(1 − q−1
v )2(1 − q−2

v ) .

(7.11)

Let us now collect all the terms from (7.10) and (7.11) which haveq−2l̃
v as a visible factor.

The result is

q−2l̃
v [−(1 − q−1

v )2(1 − q−2
v ) + q−1

v (1 − q−1
v )(1 − q−2

v )2

+ (1 − q−1
v )(1 − 2q−1

v )(1 − q−2
v )2 + q−2

v (1 − q−1
v )2(1 − q−2

v )]
= q−2l̃

v (1 − q−1
v )(1 − q−2

v )[−(1 − q−1
v ) + q−1

v (1 − q−2
v )

+ (1 − 2q−1
v )(1 − q−2

v ) + q−2
v (1 − q−1

v )]
= 0

on expanding the factor in the square brackets. It remains to add (7.9), the first term of (7.10)
and the term−q−4l̃

v (1 − q−1
v )2(1 − q−2

v ) from (7.11) to obtainEv. This is easily done. The
situation wherẽδv = 2mv + 1 is similar, but simpler, and we leave it to the reader. �

In particular, this proposition verifies Condition 6.21 subject to the results of Sections 3
and 4 of [17].

If F/k is a quadratic extension distinct from̃k/k, thenF = k(x) for somex ∈ L0 and
we shall writeF ≈ ωS if x ≈ ωS andF � ωS if x � ωS .

THEOREM 7.12. Let S ⊇ M∞ be a finite set of places of k and ωS an S-tuple of
standard orbital representatives. Then

lim
X→∞ X−2

∑
[F :k]=2,F�ωSN (∆F/k)≤X

CF CF ∗

exists and has the value

2−(r1+r2+1)|∆k̃/∆k|1/2C3
kζk̃(2)

∏
v∈S\�∞

(1 − q−2
v )−1ε̄v(ωv) ·

∏
v /∈S

E′
v ,

where ε̄v(x) is given by Tables 1, 2 and 3 and E′
v by (7.8).

PROOF. By Proposition 7.1 we haveCk̃(x) = C−2
k Ck̃CF CF ∗ if F = k(x). Recall, from

Proposition 6.19 and (24), that

R2 = |∆k|−1/2Ck|∆k̃|−1/2Ck̃ · Zk(2)Zk̃(2)/|∆k|
= CkCk̃|∆k|−3/2|∆k̃|−1/2Zk(2)Zk̃(2)
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and, from (2.3), that

Zk(2) = 2−r2π−(r1+r2)|∆k|ζk(2) ,

Zk̃(2) = 2−r̃2π−(r̃1+r̃2)|∆k̃|ζk̃(2) ,

wherer̃1 is the number of real places ofk̃ andr̃2 the number of complex places of this field.
Thus

(7.13) R2 = 2−(r2+r̃2)π−(r1+r̃1+r2+r̃2)|∆k̃/∆k|1/2CkCk̃ζk(2)ζk̃(2) .

Let T = S ∪ S0 and choose aT -tuple,ω′
T = (ω′

v). According to Theorem 6.22,

(7.14) lim
X→∞

∑
[F :k]=2,F≈ω′

TN (∆F/k)≤X

CFCF ∗

exists and equals

1

2
C2

kC
−1
k̃

R2

∏
v∈T

εv(ω
′
v) ·

∏
v /∈T

Ev .

By (7.13) and Proposition 7.4 this quantity equals

2r2−r11−r̃2−1π3r11+2r12+2r2−r1−r̃1−r̃2|∆k̃/∆k|1/2C3
kζk(2)ζk̃(2)

∏
v∈T \�∞

εv(ω
′
v) ·

∏
v /∈T

Ev .

But r̃1 = 2r11, r̃2 = r12 + 2r2 andr1 = r11 + r12. Thus

r2 − r11 − r̃2 − 1 = r2 − r11 − r12 − 2r2 − 1

= −(r2 + r11 + r12 + 1) = −(r1 + r2 + 1)

and

3r11 + 2r12 + 2r2 − r1 − r̃1 − r̃2 = 3r11 + 2r12 + 2r2 − r11 − r12 − 2r11 − r12 − 2r2

= 0

and we have evaluated (7.14) as

(7.15) 2−(r1+r2+1)|∆k̃/∆k|1/2C3
kζk(2)ζk̃(2)

∏
v∈T \�∞

εv(ω
′
v) ·

∏
v /∈T

Ev .

Now ∏
v /∈T

Ev =
∏
v /∈T

(1 − q−2
v ) ·

∏
v /∈T

E′
v

= ζk(2)−1
∏

v∈T \�∞
(1 − q−2

v )−1 ·
∏
v /∈T

E′
v ,

and so (7.15) equals

(7.16) 2−(r1+r2+1)|∆k̃/∆k|1/2C3
kζk̃(2)

∏
v∈T \�∞

(1 − q−2
v )−1εv(ω

′
v) ·

∏
v /∈T

E′
v .
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Now we sum (7.14) and (7.16) over allT -tuplesω′
T = (ω′

v) which satisfyω′
v � ωv for all

v ∈ S to obtain the statement of the theorem. �

Note that in Theorem 7.12,S does not have to containS0.
Given anS-tuple,ωS , with S ⊇ M∞ let us define

n++ = #{v ∈ MR | v ∈ Msp andkv(ωv) = kv} ,

n+− = #{v ∈ MR | v ∈ Msp andkv(ωv) �= kv} ,

n−+ = #{v ∈ MR | v ∈ Mrm andkv(ωv) = kv} ,

n−− = #{v ∈ MR | v ∈ Mrm andkv(ωv) �= kv} .

If F is a quadratic extension ofk andF � ωS , then we denote the composite ofF andk̃ by
F̃ (which corresponds toL in Proposition 7.1). Then it is easy to see that

r1(F ) = 2(n++ + n−+) , r2(F ) = n−− + n+− + 2r2 ,

r1(F
∗) = 2(n++ + n−−) , r2(F

∗) = n+− + n−+ + 2r2 ,

r1(F̃ ) = 4n++ , r2(F̃ ) = 2(n+− + n−+ + n−−) + 4r2 ,

and sor1(F ), r1(F
∗), r1(F̃ ), r2(F ), r2(F

∗), andr2(F̃ ) depend only uponωS . This allows us
to define

c(ωS) = 2r1(F )+r1(F
∗)(2π)r2(F )+r2(F

∗) ,

c̃(ωS) = 2r1(F̃ )(2π)r2(F̃ ) ,

whereF �= k̃ is any quadratic extension ofk satisfyingF � ωS .

COROLLARY 7.17. Let S ⊇ M∞ be a finite set of places of k and ωS an S-tuple of
standard orbital representatives. Then

lim
X→∞ X−2

∑
[F :k]=2,F�ωSN (∆F/k)≤X

hF RF hF ∗RF ∗

exists and equals

2−(r1+r2+1)c(ωS)−1e2
k |∆k̃/∆k|1/2C3

kζk̃(2)
∏

v∈S\�∞

(1 − q−2
v )−1ε̄v(ωv) ·

∏
v /∈S

E′
v .

PROOF. Let F/k be a quadratic extension and suppose thatF contains a primitiventh

root of unity,ζn, for somen. Since[Q(ζn) : Q] = ϕ(n), it follows thatϕ(n) ≤ [F : Q] =
2[k : Q]. But it is well-known thatϕ(n) → ∞ asn → ∞, and so there is some constantN ,
independent ofF , such thatn ≤ N . We conclude thateF = eF ∗ = ek for all but finitely-many
quadratic extensionsF of k. This finite list of exceptions may be ignored in the limit. Since

CF = 2r1(F )(2π)r2(F )hF RF e−1
F ,

the corollary is now an immediate consequence of the theorem and the definition ofc(ωS).
�
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COROLLARY 7.18. With the same assumptions as in Corollary 7.17,

lim
X→∞ X−2

∑
[F :k]=2,F�ωSN (∆F/k)≤X

hF̃ RF̃

exists and equals

2−(r1+r2+1)2r1(k̃)(2π)r2(k̃)c̃(ωS)−1|∆k̃/∆k|1/2Ckhk̃Rk̃ζk̃(2)

×
∏

v∈S\�∞

(1 − q−2
v )−1ε̄v(ωv) ·

∏
v /∈S

E′
v .

PROOF. By Proposition 7.1,CF̃ = C−2
k CF CFCk̃. So

hF̃ RF̃ = 2−r1(F̃ )(2π)−r2(F̃ )eF̃ CF̃

= c̃(ωS)−1eF̃ C−2
k CFCF ∗Ck̃

= 2r1(k̃)(2π)r2(k̃)c̃(ωS)−1c(ωS)eF̃ e−1
k̃

e−1
F e−1

F ∗hk̃Rk̃C
−2
k hF RF hF ∗RF ∗ .

As in the proof of Corollary 7.17,eF = eF ∗ = ek andeF̃ = ek̃ except for a finite number of
quadratic extensionsF . Therefore Corollary 7.18 follows from Corollary 7.17. �

We now specialize to the casek = Q andS = M∞. Supposẽk = Q(
√

d0) whered0 �= 1
is a square-free integer. Thenr1 = 1, r2 = 0, hk = 1, ek = 2 andCk = 1. It is easy to verify
that 2−(r1+r2+1)c(ωS)−1e2

k = c(ωS)−1 and 2−(r1+r2+1)2r1(k̃)(2π)r2(k̃)c̃(ωS)−1 both coincide
with c±(d0)

−1 as defined in the introduction. Therefore Theorems 1.1 and 1.2 are special
cases of Corollaries 7.17 and 7.18.

8. The omega sets and their properties. The main purpose of this section is to verify
Condition 6.12. Letv ∈ Mf andx ∈ V ss

kv
. The functionΞx,v(s) is defined as an integral

overGkv/G◦
x kv

and our strategy is to replace this by an integral over a carefully chosen set
Ωx,v ⊆ Gkv called the omega set. We impose on the omega set,Ωx,v, several conditions
derived from an analysis of Datskovsky’s calculations of standard local zeta functions in [3].
Once we show that these conditions can be satisfied, Condition 6.12 is an almost immediate
consequence. Thus the bulk of the work in this section is devoted to finding the omega sets
and verifying their properties.

For the sake of Condition 6.12, it is enough to assume thatv ∈ M \ S0. However,
verifying Condition 6.12 will not be our only application of the existence of omega sets. We
shall also require them in certain proofs in Section 4 of [17] and, for this, greater generality
will be needed. Thus we shall allowv to be any finite place ofk and consider orbits of types
other than three types (rm rm)*, (rmrm ur), and (rm rm rm) at dyadic placesv ∈ Mdy.

Before we begin, we shall record as a lemma a simple observation which will be useful
both later in this section and in the next.

LEMMA 8.1. Suppose that v ∈ M, x ∈ V ss
kv

and y ∈ Gkvx. If |P(x)|v = |P(y)|v,
then Zx,v(Φ, s) = Zy,v(Φ, s) for all Φ ∈ S(Vkv ).
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PROOF. Examining the second equation in Definition 5.22 we see, in light of Proposi-
tion 5.23 and the hypotheses, that every factor in the definition of the local orbital zeta function
remains unchanged when we replacex by y. �

For eachx ∈ V ss
kv

we choose an elementg x ∈ Gkv(x) such thatg xw = x andg x satisfies
Condition 5.8 ifkv(x) �= kv. From this choice we obtain an isomorphismθg x

: G◦
x kv

→
Hx kv , whereHx kv is defined by (5.1).

DEFINITION 8.2. A setΩx,v ⊆ Gkv is called anomega set for x if it has the following
properties:

(1) Ωx,vx = (Gkvx) ∩ VOv
.

(2) KvΩx,vθ
−1
g x

(Hx Ov
) = Ωx,v.

(3) If g 1, g 2 ∈ Ωx,v, h ∈ G◦
x kv

andg 1 = g 2h, thenh ∈ θ−1
g x

(Hx Ov
).

(4) If g ∈ Ωx,v, then|χ(g )|v ≤ 1 with equality only ifg ∈ Kv.

Below we give omega sets for representatives of each of the orbit types that we require.
These include the six orbit types possible under the restriction thatv /∈ S0, as well as the
orbits of type (rm) and (rm ur). For the orbits of type (sp), (in) and (rm) it will be convenient
to usex = w as the orbital representative instead of the standardwp. This is permissible for
the purpose at hand by Lemma 8.1. For the orbits of types (sp ur), (sp rm), (in ur), (in rm) and
(rm ur) we shall use the standard representatives.

If p(z) = z2 + a1z + a2 ∈ kv[z], then we shall letα = {α1, α2} be the set of roots of
p and writee(α) = t (1 − α1) (a column vector inkv(wp)2). If l = t (l1 l2) is any such
column vector, then we set‖l‖ = max{|l1|kv(wp), |l2|kv(wp)}. Let t be as in (3.19) for the field
kv andn(u) = (n(u1), n(u2), n(u3)) for u = (u1, u2, u3) ∈ k3

v or n(u) = (n(u1), n(u2))

for u = (u1, u2) ∈ k̃v × kv. Let g = κtn(u) be the Iwasawa decomposition ofg ∈ Gkv .
In Section 6 we described the form of the polynomialp(z) for each of the standard orbital
representatives. It will be convenient here to add the assumption thata1 = 0 wheneverv is
not dyadic, as we may.

For the index (sp) with orbital representativex = w we define

(8.3) Ωx,v = {g = κtn(u) | tij = 1 for i, j = 1, 2 andg x ∈ VOv
} .

For the indices (in) and (rm) with orbital representativex = w we define

(8.4) Ωx,v = {g = κtn(u) | t11 = t12 = 1 andg x ∈ VOv
} .

For the index (sp ur) with orbital representativex = wp we define

Ωx,v = {g = (g 1, g 2, g 3) | | det(g 1)|v = 1 orq−1
v ,

| det(g 2)| = 1 orqv, g x ∈ VOv
} .

(8.5)

For the index (sp rm) with orbital representativex = wp we define

(8.6) Ωx,v = {g = (g 1, g 2, g 3) | | det(g i )|v = 1 for i = 1, 2, g x ∈ VOv
} .
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For the index (in ur) with orbital representativex = wp we define

(8.7) Ωx,v = {g = (g 1, g 2) | | det(g 1)|k̃v
= 1, ‖g 1e(α)‖ = 1, g x ∈ VOv

} .

For the index (in rm) with orbital representativex = wp we define

(8.8) Ωx,v = {g = (g 1, g 2) | | det(g 1)|k̃v
= 1, g x ∈ VOv

} .

Finally, for the index (rm ur) with orbital representativex = wp we define

(8.9) Ωx,v = {g = (g 1, g 2) | | det(g 1)|k̃v
= 1 orq−1

v , g x ∈ VOv
} .

In every case we shall write

(8.10) Ω1
x,v = {g ∈ �x,v | |χ(g )|v = 1} .

PROPOSITION 8.11. The sets defined by (8.3)–(8.9)have properties (1), (2) and (3)

of Definition 8.2.

PROOF. If κ ∈ Kv , thenκVOv
= VOv

, | det(κ)|v = 1 and‖κe‖ = ‖e‖ for any vector
e. This makes it clear thatKvΩx,v = Ωx,v in all cases. The rest of the argument will be case
by case, but we make two observations which will be used repeatedly. First, it follows at once
from the definition in every case thatΩx,vx ⊆ Gkvx ∩ VOv

, and so to establish (1) we need
only prove the reverse inclusion. This will be done if we can show that giveng ∈ Gkv with
g x ∈ VOv

we can findh ∈ G◦
x kv

such thatgh ∈ Ωx,v. Secondly, anyh ∈ G◦
x kv

may be

expressed ash = g xsx(tx)g −1
x , in the notation of (5.2)–(5.6), andh ∈ θ−1

g x
(HxOv

) if and only
if all the components oftx are units.

Consider the cases (sp), (in) and (rm). We may assume, for simplicity, thatg x has been
chosen to be the identity. Takeg ∈ Gkv with g x ∈ VOv

and letg = κ(g )t (g )n(u(g )) be
its Iwasawa decomposition. Letsx(tx) be as in (5.2) or (5.4). By choosingtx = (t11(g )−1,

t12(g )−1, t21(g )−1, t22(g )−1) in the first case andtx = (t11(g )−1, t12(g )−1) in the second, we
may arrange thatg sx(tx) ∈ Ωx,v. This proves Property (1). Moreover, ifg ∈ Ωx,v and all the
components oftx are units, then commutingsx(tx) past theTkv andNkv factors in the Iwasawa
decomposition and absorbing it into theKv factor shows thatg sx(tx) ∈ Ωx,v also, which
proves Property (2). For Property (3), observe that in the Iwasawa decomposition, theTkv

factor is unique up to multiplication of its diagonal elements by units. Thus ifg 1, g 2 ∈ Ωx,v

andg 1 = g 2h with h = sx(tx), thensx(tx) ∈ HxOv
. This proves Property (3).

We next turn to case (sp ur). Letsx(tx) be as in (5.3) andg ∈ Gkv with g x ∈ VOv
. Note

that

| detsx1(tx)|v = | Nkv(x)/kv(t11)|v
and sincekv(x)/kv is unramified, this may be any even power ofqv. The same holds for
| detsx2(tx)|v and the determinants of the components ofg xsx(tx)g −1

x are the same as those
of the corresponding components ofsx(tx). It follows that we can arrangeg

(
g xsx(tx)g −1

x

) ∈
Ωx,v for a suitable choice oftx and this proves (1). Ifsx(tx) ∈ HxOv

, then the determinants of
each of its components are units and this makes (2) obvious. Also, this argument shows that
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if g 1, g 2 ∈ Ωx,v, h = g xsx(tx)g −1
x andg 1 = g 2h, thent11 andt21 are units, which implies

thatsx(tx) ∈ HxOv
; hence (3).

The case (sp rm) is very similar, with the one difference that sincekv(x)/kv is ramified,
| detsxj (tx)|v can be any integer power ofqv.

Next we treat (in ur). Letg = (g 1, g 2) ∈ Gkv with g x ∈ VOv
andsx(tx) be as in (5.5).

Note thate(α) is an eigenvector for the first component ofh = g xsx(tx)g −1
x with eigen-

valuet11. So if h = (h1, h2), then‖g 1h1e(α)‖ = | t11|k̃v
‖g 1e(α)‖. Also, | det(g 1h1)|k̃v

=
| det(g 1)|k̃v

| t11t12|k̃v
. We are free to choose the pair(t11, t11t12) ∈ k̃2

v arbitrarily, and so there

existsh ∈ G◦
x kv

with g h ∈ Ωx,v, proving (1). Ifg ∈ Ωx,v andh ∈ θ−1
g x

(HxOv
), thent11 and

t12 are units, and so‖ghe(α)‖ = ‖g e(α)‖ and| det(gh)|k̃v
= | det(g )|k̃v

, which proves (2).

Also, if g 1, g 2 ∈ Ωx,v, h = g xsx(tx)g −1
x andg 1 = g 2h, then| t11|k̃v

= | t11t12|k̃v
= 1, which

implies thath ∈ θ−1
g x

(HxOv
) and (3) follows.

Finally, Cases (in rm) and (rm ur) are very similar to Cases (sp rm) and (sp ur). Note that
if sx(tx) is as in (5.6), then| detsx1(tx)|k̃v

= | Nk̃v (x)/k̃v
(t11)|k̃v

. In Case (in rm),̃kv(x)/k̃v is

ramified, and so this takes every value in| k̃×
v |k̃v

. In Case (rm ur),̃kv(x)/k̃v is unramified, and

so | detsx1(tx)|k̃v
takes every value in|(k̃×

v )2|k̃v
. The rest of the argument is identical to that

in the cases already mentioned. �

Using only Parts (1), (2) and (3) of Definition 8.2 we can prove the following.

PROPOSITION 8.12. Let Ψx,v be the characteristic function of Ωx,v. Then

Zx,v(Φv,0, s) =
∫

Gkv

|χ(g )|svΨx,v(g )dg v .

PROOF. Since

dg v = d g̃ vd
× t̃v , dg ′′

x,v = d g̃ ′′
x,vd

× t̃v , dg v = bx,vdg ′
x,vdg ′′

x,v ,

d g̃ v = bx,vdg ′
x,vd g̃ ′′

x,v. So the right hand side of the above identity is

(8.13) bx,v

∫
Gkv /G◦

x kv

|χ(g ′
x,v)|sv

(∫
G◦

kv

Ψx,v(g ′
x,vg

′′
x,v) dg ′′

x,v

)
dg ′

x,v .

By (2) and (3) of Definition 8.2,Ψx,v(g ′
x,vg

′′
x,v) is non-zero if and only ifg ′

x,v ∈ Ωx,v

andg ′′
x,v ∈ θ−1

g x
(HxOv

). Since we chose the measuredg ′′
x,v so that the volume of this set is

one, ∫
G◦

kv

Ψx,v(g ′
x,vg

′′
x,v)dg ′′

x,v

is the characteristic function ofΩx,vG
◦
x kv

/G◦
x kv

∼= Gkvx ∩ VOv
. Therefore, (8.13) is

bx,v

∫
Gkv /G◦

x kv

|χ(g ′
x,v)|svΦv,0(g ′

x,vx)dg ′
x,v ,

which is the definition ofZx,v(Φv,0, s). �
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Before we verify Part (4) of Definition 8.2 it will be convenient to prove three lemmas.
First note that we may let GL(2)kv act on the space of quadratic polynomials inkv[z] by
regarding such polynomials as the inhomogeneous forms of binary quadratic forms. With this
convention, ifp(z) = z2 + a1z + a2 ∈ kv[z] andg = a(t1, t2)n(u), then

gp(z) = t2
1z2 + t1t2(2u + a1)z + t2

2(u2 + a1u + a2) .

LEMMA 8.14. Suppose that p(z) is an Eisenstein polynomial. Let t ∈ k×
v , u ∈ kv,

i = 0 or 1 and suppose that πi
va(t, t−1π−i

v )n(u)p(z) ∈ Ov[z]. Then t ∈ O×
v and u ∈ Ov .

Moreover, if i = 1, then u ∈ pv .

PROOF. We haveπi
vt

2 ∈ Ov, which implies thatt ∈ Ov sincei = 0 or 1. Since
t−2π−i

v (u2 + a1u + a2) ∈ Ov , (u2 + a1u + a2) ∈ t2πi
vOv . In particular,u2 + a1u + a2 ∈ Ov ,

and sou(u + a1) ∈ Ov . If u /∈ Ov, then ord(u + a1) = ord(u) and we reach a contradiction.
Henceu ∈ Ov. The order ofu2 + a1u + a2 is either 0 (ifu ∈ O×

v ) or 1 (if u ∈ pv). If i = 0,
this forcest ∈ O×

v and if i = 1 it forces firstt ∈ O×
v and thenu ∈ pv.

LEMMA 8.15. Suppose that p(z) = z2 + a2 with −a2 ∈ O×
v \ (O×

v )2, if v /∈ Mdy, or
that p(z) is an Artin-Schreier polynomial, if v ∈ Mdy. Let t ∈ k×

v , u ∈ kv, i = −1, 0 or 1
and suppose that πi

va(t, t−1π−i
v )n(u)p(z) ∈ Ov[z]. Then i = 0, t ∈ O×

v and u ∈ Ov .

PROOF. The conditions imply thatπi
vt

2 andt−2π−i
v p(u) are integral. Since−1 ≤ i ≤

1, t ∈ Ov. Thusp(u) ∈ π−1
v Ov , which implies thatu(u + a1) ∈ π−1

v Ov . If u /∈ Ov ,
then ord(u) = ord(u + a1), and so ord(u(u + a1)) is a negative, even integer. This is a
contradiction, and sou ∈ Ov . The reduction of the polynomialp(z) has no roots inOv/pv

and thusp(u) ∈ O×
v for all u ∈ Ov . It follows thatt2πi

v ∈ O×
v . This givesi = 0 andt ∈ O×

v ,
as required. �

LEMMA 8.16. Let x be a standard orbital representative and suppose that y ∈ VOv

lies in the orbit of x under Gkv . Then |P(y)|v ≤ |P(x)|v .

PROOF. If kv(x) = kv, then|P(x)|v = 1 andP(y) ∈ Ov sincey ∈ VOv
. The statement

follows in this case. We now assume thatkv(x) �= kv. LetFy(v1, v2) = b0v
2
1 +b1v1v2 +b2v

2
2

and consider the polynomialr(z) = z2 + b1z + b0b2. Sincey ∈ VOv
, b0, b1, b2 ∈ Ov, and so

r(z) ∈ Ov[z]. The discriminant ofr(z) is equal to the discriminant ofFy , and so ifβ is a root
of r(z), thenβ ∈ kv(y) = kv(x). It follows thatOv[β] ⊆ Okv(x) and hence thatP(y)Ov ⊆
∆kv(x)/kv . But the standard orbital representative was chosen so that∆kv(x)/kv = P(x)Ov and
the statement follows in this case also. �

PROPOSITION 8.17. The sets defined by (8.3)–(8.9)have property (4) of Definition
8.2.Consequently, they are omega sets.

PROOF. If g ∈ Ωx,v, theng x ∈ VOv
, and so|P(g x)|v ≤ |P(x)|v by Lemma 8.16. But

|P(g x)|v = |χ(g )|v|P(x)|v and it follows that|χ(g )|v ≤ 1. This establishes the first part of
(4) in Definition 8.2.
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We now have to show that ifg ∈ Ω1
x,v, then g ∈ Kv. The orbital representatives

have already been fixed in (8.3)–(8.9) and thenotation introduced there will be used without
comment below.

We begin with the Cases (sp), (in) and (rm). Letg ∈ Ω1
x,v; we have to show thatg ∈ Kv .

By (2) of Definition 8.2,Ω1
x,v is left Kv-invariant, and so we may assume thatg = tn(u).

Sinceg ∈ Ωx,v we havet11 = t12 = t21 = t22 = 1 in Case (sp) andt11 = t12 = 1 in Cases
(in) and (rm). The assumption that|χ(g )|v = 1 implies that| t31t32|v = 1 in Case (sp) and
that| t21t22|v = 1 in Cases (in) and (rm). In Case (sp) we have

(8.18) gw =
(

t31

(
1 u2
u1 u1u2

)
, t32

(
u3 u2u3

u1u3 1 + u1u2u3

))
,

and in Cases (in) and (rm) we have

(8.19) gw =
(

t21

(
1 uσ

1
u1 Nk̃v/kv

(u1)

)
, t22

(
u3 uσ

1u3
u1u3 1 + Nk̃v/kv

(u1)u3

))
.

Let a = ordkv (t31) or ordkv (t21). Then, by assumption, ordkv (t32) = −a or ordkv (t22) = −a.
Consider Case (sp). Letūi = πa

v ui for i = 1, 2, andū3 = π−a
v u3. Thengw ∈ VOv

if and
only if

πa
v , ū1, ū2, ū3 , π−aū1ū2 , π−aū1ū3 , π−aū2ū3 , π−a

v (1 + π−a
v ū1ū2ū3)

are integral. Soa ≥ 0. We assumea > 0 and deduce a contradiction. Supposeū1 is not a
unit. Then

π−a
v ū1ū2ū3 = (π−a

v ū2ū3)ū1 ≡ 0 (pv) .

Then 1+π−a
v ū1ū2ū3 is a unit. This impliesπ−a

v (1+π−a
v ū1ū2ū3) /∈ Ov , which is a contradic-

tion. Soū1 is a unit and similarlȳu2, ū3 are units also. Then the order ofπ−a
v (1+π−a

v ū1ū2ū3)

is −2a, which is a contradiction. This impliesa = 0. Thenui ∈ Ov for i = 1, 2, 3. Cases (in)
and (rm) are similar usingu1, u

σ
1 , u2 in the places ofu1, u2, u3 above. The only difference is

that we consider elements iñOv .
Next we treat the Case (sp rm). Supposeg = (g 1, g 2, g 3) ∈ Ω1

x,v. Then| detg i |v = 1
for i = 1, 2, 3. We may assume thatg 1, g 2, g 3 are lower triangular. Note thatFwp (z, 1) =
p(z). SoFgwp(z, 1) = (detg 1 detg 2)g 3p(z) is integral. Since detg 1, detg 2 ∈ O×

v , we have
g 3 ∈ GL(2)Ov

by Lemma 8.14.
In this case, we can regardV as Aff2 ⊗ Aff 2 ⊗ Aff 2. Instead of the third factor, we can

use the first and the second factors to make equivariant maps similar toFx . Then because of
the symmetry of our elementwp, we haveg 1, g 2 ∈ GL(2)Ov

by Lemma 8.14 again. This
concludes the verification in this case.

Now we consider the Case (sp ur). Letg = (g 1, g 2, g 3) ∈ Ωx,v and|χ(g )|v = 1. In
this case there are four possibilities as follows:

(A) | detg 1|v = | detg 2|v = 1,
(B) | detg 1|v = 1, | detg 2|v = q−1

v ,
(C) | detg 1|v = q−1

v , | detg 2|v = 1,
(D) | detg 1|v = q−1

v , | detg 2|v = qv.
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In these cases,| detg 3|v = 1, qv, qv, 1, respectively. The argument in Case (A) is similar to
that used in Case (sp rm). In Case (B),Fgwp(z, 1) = πvg 3p(z), and detg 3 = π−1

v . Since
Fgwp(z, 1) is integral, this corresponds to the casei = 1 in Lemma 8.15. Therefore this
cannot happen. Cases (C), (D) are similar to Case (B) because of the symmetry (considering
an equivariant map using the second Aff2 factor in Case (D)).

Now we consider the case (in ur). Suppose thatg = (g 1, g 2) ∈ Ω1
x,v. This implies that

| det(g 1)|k̃v
= | det(g 2)|v = 1. We have

Fg x(z, 1) = Nk̃v/kv
(detg 1)g 2p(z)

and, since Ñkv/kv
(detg 1) is a unit by assumption,g 2 ∈ GL(2)Ov

by Lemma 8.15. Since
Ωx,v is left Kv-invariant we may assume thatg 2 = 1 and thatg 1 is lower triangular, say
g 1 = a(t11, t12)n(u1). Note that

(8.20) g 1e(α) =
(

t11
t12(u1 − α1)

)
and this is a primitive integral vector. Computation gives(g 1, 1)wp = (M1,M2), where

M1 =
(

0 t11t
σ
12

tσ11t12 Nk̃v/kv
(t12)[Trk̃v/kv

(u1) + a1]
)

,

M2 =
(

Nk̃v/kv
(t11) t11t

σ
12(u

σ
1 + a1)

tσ11t12(u1 + a1) Nk̃v/kv
(t12)m(u1, p)

)(8.21)

with

m(u1, p) = a2
1 − a2 + a1Trk̃v/kv

(u1) + Nk̃v/kv
(u1)

and both these matrices must be integral. Letū1 = u1 − α1. Then Tr̃kv/kv
(u1) + a1 =

Trk̃v/kv
(ū1) and

m(u1, p) = Nk̃v/kv
(ū1) − Trk̃v/kv

(α1ū1) ,

and soM1 andM2 are integral if and only if

t11 , ū1 , Nk̃v/kv
(t12)Trk̃v/kv

(ū1) , Nk̃v/kv
(t12)[Nk̃v/kv

(ū1) − Trk̃v/kv
(α1ū1)]

are integral. Sinceα1 ∈ Õv , it follows that u1 ∈ Õv. Also t11 ∈ Õv and it remains to
show thatt11 andt12 are units. From the definition ofΩx,v we know that|t11t12|k̃v

= 1. Let
ordk̃v

(t11) = i; we assume thati > 0 and deduce a contradiction. We have ordk̃v
(t12) = −i

and, from (8.20), we conclude that ordk̃v
(ū1) = i. Thus we may writēu1 = πi

v(ū11+ ū12α1),

whereū11, ū12 ∈ Ov andū11 + ū12α1 ∈ Õ×
v . Then

Nk̃v/kv
(ū1) = π2i

v [ū2
11 − a1ū11ū12 + a2ū

2
12] ,

Trk̃v/kv
(ū1) = πi

v[2ū11 − a1ū12] ,

Trk̃v/kv
(α1ū1) = πi

v[−a1ū11 + (a2
1 − 2a2)ū12]
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and, since ordkv (Nk̃v/kv
(t12)) = −2i, it follows that

−a1ū11 + (a2
1 − 2a2)ū12 ≡ 0 (pi

v) ,

2ū11 − a1ū12 ≡ 0 (pi
v) .

(8.22)

Regarding this as a linear system for(ū11, ū12), the determinant of the coefficient matrix is
−a2

1 +4a2 = −P(x). This is a unit by the choice ofx, and so (8.22) implies that(ū11, ū12) ≡
(0, 0) (pv). This contradicts̄u11+ ū12α1 ∈ Õ×

v , and soi = 0. This completes the case (in ur).
Next we must deal with the case (in rm). Suppose thatg = (g 1, g 2) ∈ Ω1

x,v. By
arguments similar to those in the previous case, using Lemma 8.14 in place of Lemma 8.15,
we see thatg 2 ∈ GL(2)Ov

. Hence we may assume thatg 2 = 1 and thatg 1 = a(t11, t12)n(u1)

is lower triangular. Then(g 1, 1)wp = (M1,M2), whereM1 andM2 are given by (8.21).
Sincet11t

σ
12 ∈ Õ×

v , M1 andM2 are integral if and only if

(8.23) t11 , u1 , Nk̃v/kv
(t12)[Trk̃v/kv

(u1) + a1] , Nk̃v/kv
(t12)m(u1, p)

are integral. Let ord̃kv
(t11) = i; we shall again assume thati > 0 and derive a contradiction.

We have ord̃kv
(t12) = −i, so that ordkv (Nk̃v/kv

(t12)) = −2i. Thus Tr̃kv/kv
(u1) ≡ −a1 (p2i

v )

and, sincep(z) is an Eisenstein polynomial, it follows that Trk̃v/kv
(u1) ≡ 0 (pv). Also,

m(u1, p) ≡ 0 (p2i
v ) and, using our conclusion about Trk̃v/kv

(u1) together with the fact that

p(z) is an Eisenstein polynomial, we deduce that Nk̃v/kv
(u1) ≡ a2 (p2

v). But ordkv (a2) = 1
and ordkv (Nk̃v/kv

(u1)) = 2ordk̃v
(u1) is always even, so this last congruence is impossible.

This contradiction completes the case (in rm).
Finally we must deal with the case (rm ur). Suppose thatg = (g 1, g 2) ∈ Ω1

x,v. There
are apparently two possibilities: either| det(g 1)|k̃v

= | det(g 2)|v = 1 or | det(g 1)|k̃v
= q−1

v

and| det(g 2)|v = qv. However, Lemma 8.15 shows that the second possibility cannot occur
and, moreover, thatg 2 ∈ GL(2)Ov

. Thus we may assume, as usual, thatg 1 = a(t11, t12)n(u1)

andg 2 = 1. The matricesM1 andM2 given by (8.21) must be integral and, sincet11t
σ
12 is

a unit, this happens if and only if the quantities enumerated in (8.23) are all integral. Again
assume that ordk̃v

(t11) = i and thati > 0. Then Tr̃kv/kv
(u1) + a1 ≡ 0 (pi

v). If v is dyadic,

thena1 = −1, and so this congruence forces Trk̃v/kv
(u1) to be a unit. However, sincẽkv/kv

is ramified,uσ
1 ≡ u1 (p̃v), and so Tr̃kv/kv

(u1) ≡ 2u1 ≡ 0 (p̃v), which implies that Tr̃kv/kv
(u1)

is not a unit. This contradiction completes that proof in the dyadic case. Now assume thatv is
not dyadic. Thena1 = 0, and so Tr̃kv/kv

(u1) is not a unit. We can writeu1 = u11 + u12
√

πv

with u11, u12 ∈ Ov and a suitable choice of uniformizerπv. Since Tr̃
kv/kv

(u1) = 2u11,
we conclude thatu11 is not a unit and hence thatu1 is not a unit. However,m(u1, p) =
−a2 + Nk̃v/kv

(u1) ≡ 0 (pi
v) anda2 is a unit. This contradiction completes the proof in the

non-dyadic case. �

Having completed the verification thatΩx,v is an omega set in every case, we can now
quickly achieve the aim of this section.

COROLLARY 8.24. Condition 6.12holds. Moreover, ax,v,n = 0 if n is odd.
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PROOF. Let v ∈ M \ S0 andy ∈ V ss
kv

. From Lemma 8.1, Proposition 8.12 and the
choices made above we have

(8.25) Ξy,v(s) = Zx,v(Φv,0, s) =
∫

Ωx,v

|χ(g )|sv dg v ,

wherex is the representative we have chosen here to represent the orbit ofy. Let Vj = {g ∈
Ωx,v | |χ(g )|v = q

−j
v }. From (8.25) we obtain

Ξy,v(s) =
∞∑

j=−∞
vol(Vj )q

−js
v .

However, we haveVj = ∅ if j < 0 from (4) in the definition of an omega set. Thus the sum
really only extends from 0 to∞ anday,v,n = vol(Vn) for n ≥ 0. This makes it clear that
ay,v,n ≥ 0 for all n. Sinceχ is the square of a rational character, we haveVn = ∅ if n is odd,
and this gives the last statement. Finally, again by (4) of the definition,V0 = Ω1

x,v = Kv, and
soay,v,0 = vol(Kv) = 1. �

9. The estimate of the local zeta functions. The purpose of this section is to verify
Condition 6.13. So we assume thatv ∈ M \ S0 andx ∈ V ss

kv
. Our method will be to estimate

Ξx,v(s) by expressing it as an integral over a domain,Γv, adapted to the purposes of this
section as the omega sets were to those of Section 8. Throughout this section, ifTx1 andTx2

are distributions depending onx andTx1 = CxTx2 for some constantCx �= 0, then we shall
write Tx1 ∝ Tx2. After working with such proportionality statements, we shall appeal to the
results of Section 8 to strengthen them to inequalities. Thus the results of this section depend
logically on those of the last.

We introduce the following objects (j ≥ 0 in the last equation).

γ =
(a(1, t1)n(u1), a(1, t2)n(u2), n(u3)a(t3, t4)) v ∈ Msp,

(a(1, t1)n(u1), n(u2)a(t2, t3)) v /∈ Msp,

dγ =
d×t1d

×t2d
×t3d

×t4du1du2du3 v ∈ Msp,

d×t1d
×t2d

×t3du1du2 v /∈ Msp,

Γv =
{γ | t1, t2, t3, t4 ∈ k×

v , u1, u2, u3 ∈ kv} v ∈ Msp,

{γ | t1 ∈ k̃×
v , t2, t3 ∈ k×

v , u1 ∈ k̃v, u2 ∈ kv} v /∈ Msp,

Γ j
v =

{γ ∈ Γv | |t1t2t3t4|v = q
−j
v } v ∈ Msp,

{γ ∈ Γv | |N
k̃v/kv

(t1)t2t3|v = q
−j
v } v /∈ Msp .

(9.1)

In the above definition,d×t1, du1, etc., are the standard measures onk×
v , k̃×

v , kv, or k̃v, and
dγ is thus a measure onΓv right invariant with respect to the last entry and left invariant with
respect to the other entries.
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LEMMA 9.2. If x ∈ V ss
kv

is a standard orbital representative, then∫
Gkv /G◦

x kv

f (g ′
x,vx)dg ′

x,v ∝
∫

Γv

f (γ x)dγ

for every f ∈ L1(Gkvx) which is invariant on the left by the action of elements of the form
(1, 1, κ) or (1, κ) with κ ∈ GL(2)Ov

.

PROOF. We begin with the casev ∈ Msp. Define

(9.3) Γ̄v =
{
γ̄ ∈ Gkv

∣∣∣∣ γ̄ = (a(1, t1)n(u1), a(1, t2)n(u2), g 3)

t1, t2 ∈ k×
v , u1, u2 ∈ kv

}
.

Suppose thatx = wp, wherep(z) = z2 + a1z + a2 (recall that all the standard orbital
representatives have this form). We claim thatΓ̄v ∩ G◦

x kv
= {1} and that

Γ̄vG
◦
x kv

= {(g 1, g 2, g 3) | g 2
i11 + a1g i11g i12 + a2g 2

i12 �= 0, i = 1, 2} .

The elements of the groupG◦
x kv

have the form described in Lemma 3.27. If an element
a(1, t)n(u) is of the formAp(c, d) in (3.26) then(

1 0
tu t

)
=
(

c −d

a2d c − a1d

)
.

Therefore,c = 1 andd = 0. This implies thatΓ̄v ∩ G◦
x kv

= {1}. Since the last entry in

elements ofΓ̄v is unrestricted, we need only to show that the equation

(9.4)

(
1 0
u′ t

)(
m11 m12
m21 m22

)
=
(

c −d

a2d c − a1d

)
is always solvable fort �= 0, u′ andc andd satisfyingc2 − a1cd + a2d

2 �= 0 provided that
m2

11 + a1m11m12 + a2m
2
12 �= 0 and the matrix(mij ) is non-singular.

If (9.4) holds, we must takec = m11 andd = −m12 and then the equation is equivalent
to (

m11 m21
m12 m22

)(
u′
t

)
=
( −a2m12

m11 + a1m12

)
,

which is solvable fort andu′ since the coefficient matrix is non-singular by hypothesis. If
t = 0, then we haveu′m11 = −a2m12 andu′m12 = m11 + a1m12. Multiplying the first
equation bym12, the second bym11 and subtracting, we obtainm2

11+a1m11m12+a2m
2
12 = 0,

contrary to hypothesis. This proves the second claim.
Let dlγ̄ = d×t1 d×t2 du1 du2dg 3. Then dlγ̄ is a left Haar measure on the (non-

unimodular) groupΓ̄v. From what we have just shown, it follows thatGkv \ Γ̄v · G◦
x kv

always
has measure zero. Thus we have∫

Gkv /G◦
x kv

f (g ′
x,vx)dg ′

x,v =
∫

Γ̄v ·G◦
x kv

/G◦
x kv

f (g ′
x,vx)dg ′

x,v

∝
∫

Γ̄v

f (γ x)dlγ̄

(9.5)
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for all f ∈ L1(Gkvx). Now if ϕ ∈ L1(GL(2)kv
) is left invariant under GL(2)Ov

, then the
Iwasawa decomposition implies that∫

GL(2)kv

ϕ(h)dh ∝
∫

B

ϕ(b)drb ,

whereB = {n(u3)a(t3, t4) | t3, t4 ∈ k×, u3 ∈ k} anddrb denotes the right Haar measure
on the groupB. It is easy to check thatdrb = d×t3 d×t4 du3, and applying this in (9.5) we
obtain the conclusion.

Finally, almost identical arguments apply in the case where(Gkv , Vkv ) is not split and
we shall not repeat them. �

PROPOSITION 9.6. If p(z) = z2 − z, then we have

Ξwp,v(s) = (1 − q−(2s−1)
v )−1(1 − q−(2s−2)

v )−1 .

PROOF. Our work will be simplified if we compute with the elementx = n0wp

with n0 = (1, 1, tn(1)) or (1, tn(1)) instead of with the elementwp. By Lemma 8.1,
Zwp,v(Φv,0, s) = Zx,v(Φv,0, s), and so this is permissible.

Suppose thatv ∈ Msp. Then, by Lemma 3.27, elements ofG◦
x kv

have the form

(9.7)

((
c11 c11 − c12
0 c12

)
,

(
c21 c21 − c22
0 c22

)
, ∗
)

where∗ is determined by the other two entries. Note that the conjugation byn0 does not
change the first two components. Let

µ = (tn(u1),
t n(u2), a(t1, t2)n(u3)) ,

dµ = | t−1
1 t2|vd×t1d

×t2du1du2du3 ,

S = {µ | t1, t2 ∈ k×
v , u1, u2, u3 ∈ kv} .

(9.8)

From (9.7) and the Iwasawa decomposition it follows thatKvSG◦
x kv

= Gkv and dg ∝
dκ dµ dg ′′

x,v. SinceΦv,0 is Kv-invariant,

Ξx,v(s) = bx,v

∫
Gkv /G◦

x kv

|χ(g ′
x,v)|svΦv,0(g ′

x,vx)dg ′
x,v

∝
∫

S

|χ(µ)|svΦv,0(µx)dµ .

Computation gives

µx =
((

t1 0
0 0

)
, t2

(
u3 − u1 − u2 + u1u2 + 1 u1 − 1

u2 − 1 1

))
.

Introducing the variables

ū1 = t2(u1 − 1) , ū2 = t2(u2 − 1) , ū3 = t2(u3 − u1 − u2 + u1u2 + 1)
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we havedū1 dū2 dū3 = | t2|3vdu1du2du3. So

Ξx,v(s) ∝
∫

| t1|2s−1
v | t2|2s−2

v Φv,0

((
t1 0
0 0

)
,

(
ū3 ū1
ū2 t2

))
d×t1d

×t2dū1dū2dū3

=
∫

|t1|v,|t2|v≤1
| t1|2s−1

v | t2|2s−2
v d×t1d

×t2

= (1 − q−(2s−1)
v )−1(1 − q−(2s−2)

v )−1 .

But we know from Condition 6.12 that the constant term inΞx,v(s) is 1, and soΞx,v(s) has
the stated value. Whenv ∈ Min the calculation is a simple variation on the above and we
shall not reproduce it here. �

PROPOSITION 9.9. Let v ∈ Msp and suppose that x is the standard orbital represen-
tative for an orbit with kv(x) �= kv . If

Lv(s) = 1 + 8(1 − q−2(s−1)
v )−3q−2(s−1)

v (4 − 3q−2(s−1)
v + q−4(s−1)

v ) ,

then Ξx,v(s) � Lv(s).

PROOF. The standard orbital representative isx = wp for some quadratic polynomial
p(z) = z2 +a2 which is irreducible overkv (we may assume thata1 = 0 sincev /∈ Mdy). Let

γ , dγ , Γv andΓ
j
v be as in (9.1). By Definition 5.22 and Lemma 9.2,

Ξx,v(s) = Zx,v(Φv,0, s) = Cx

∫
Γv

|χ(γ )|svΦv,0(γ x)dγ

for some constantCx �= 0. SinceΓv = ∐
j Γ

j
v ,

Ξx,v(s) = Cx

∞∑
j=0

q−2js
v

∫
Γ

j
v

Φv,0(γ x)dγ ,

which implies that

(9.10) ax,v,2j = Cx

∫
Γ

j
v

Φv,0(γ x)dγ

for all j ≥ 0. (Recall thatax,v,n = 0 if n is odd by Corollary 8.24.)
Computing, we find thatγ x = (M1,M2), where

M1 =
(

0 t2t3
t1t3 t1t2t3(u1 + u2)

)
,

M2 =
(

t4 t2(t4u2 + t3u3)

t1(t4u1 + t3u3) m(t, u)

)
with

m(t, u) = t1t2t3(u1 + u2)u3 + t1t2t4(u1u2 − a2) .

If we maket1, . . . , t4 units andu1, . . . , u3 integers, thenγ x ∈ VOv
and the volume of the set

{γ | tj ∈ O×
v , uj ∈ Ov} underdγ is 1, and so it follows from this, Condition 6.12 and (9.10)
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that

1 = ax,v,0 = Cx

∫
Γ 0

v

Φv,0(γ x) dγ ≥ Cx .

Therefore, from (9.10) again,

(9.11) ax,v,2j ≤
∫

Γ
j
v

Φv,0(γ x) dγ

for all j ≥ 0.
We introduce new variables defined by

t̄1 = t4 , t̄2 = t2t3 , t̄3 = t1t3 , t̄4 = t1t2t3t4 .

Then

t1 = t̄−1
1 t̄−1

2 t̄4 , t2 = t̄−1
1 t̄−1

3 t̄4 , t3 = t̄1t̄2t̄3t̄
−1
4 , t4 = t̄1.

Note thatt̄1, . . . , t̄4 are monomials oft1, . . . , t4. So they correspond to a lattice inZ4. Since
the correspondence between(t1, . . . , t4) and(t̄1, . . . , t̄4) is bijective, this lattice must be uni-
modular. This implies that

(9.12) d× t̄1d
× t̄2d

× t̄3d
× t̄4 = d×t1d

×t2d
×t3d

×t4 .

Suppose thatγ x ∈ VOv
. Thent̄1, t̄2, t̄3 ∈ Ov. Since|P(x)|v is the maximum of|P(y)|v for

y ∈ Gkvx ∩ VOv
, |P(x)|v ≥ |P(γ x)|v = | t̄4|2v|P(x)|v, which implies that̄t4 ∈ Ov . The

conditions that the(2, 2) entry inM1 and the(2, 1) and(1, 2) entries inM2 are integers may
be expressed asN t(u1, u2, u3) ∈ O3

v where

N =
t1t2t3 t1t2t3 0

t1t4 0 t1t3
0 t2t4 t2t3

 =
t̄−1

1 t̄4 t̄−1
1 t̄4 0

t̄−1
2 t̄4 0 t̄3

0 t̄−1
3 t̄4 t̄2

 .

This matrix factors asN = D−1
1 CD2, where we have setD1 = diag(t̄1, t̄2, t̄3), D2 =

diag(t̄4, t̄4, t̄2t̄3) and

C =
1 1 0

1 0 1
0 1 1

 .

Let ū1
ū2
ū3

 = CD2

u1
u2
u3

 .

Then the three conditions are equivalent tot (ū1 ū2 ū3) ∈ D1O3
v , which in turn is equivalent

to the conditions

(9.13) ū1 ∈ t̄1Ov , ū2 ∈ t̄2Ov , ū3 ∈ t̄3Ov .
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By computation, u1
u2
u3

 = 1

2

 t̄−1
4 (ū1 + ū2 − ū3)

t̄−1
4 (ū1 − ū2 + ū3)

t̄−1
2 t̄−1

3 (−ū1 + ū2 + ū3)


and

(9.14) du1du2du3 = | t̄2t̄3t̄2
4 |−1

v dū1dū2dū3 .

The remaining condition forγ x ∈ VOv
is thatm(t, u) ∈ Ov . Expressingm(t, u) in terms of

the coordinates(t̄1, t̄2, t̄3, t̄4, ū1, ū2, ū3) we find that

m(t, u) = (1/4)t̄−1
1 t̄−1

2 t̄−1
3 [−Q(ū1, ū2, ū3) − 4t̄2

4a2] ,

whereQ(ū1, ū2, ū3) = ū2
1 + ū2

2 + ū2
3 − 2(ū1ū2 + ū1ū3 + ū2ū3). Sincev /∈ Mdy and

P(x) = −4a2, we havem(t, u) ∈ Ov if and only if

(9.15) Q(ū1, ū2, ū3) − t̄2
4P(x) ∈ t̄1t̄2t̄3Ov .

We claim that at least one of| t̄1|v, | t̄3|v and| t̄2|v must be greater than or equal to| t̄4|v .
Suppose to the contrary that| t̄1|v, | t̄2|v, | t̄3|v < | t̄4|v. Then|ū1|v, |ū2|v, |ū3|v < | t̄4|v also,
by (9.13), and so|Q(ū1, ū2, ū3)|v ≤ | t̄4|2vq−2

v . Furthermore, sincēt4 ∈ Ov,

| t̄1t̄2t̄3|v ≤ | t̄4|3vq−3
v < | t̄4|2vq−2

v ,

and it follows from (9.15) that| t̄4|2v|P(x)|v ≤ | t̄4|2vq−2
v , and so|P(x)|v ≤ q−2

v . However, by
the choice of the standard orbital representatives,|P(x)|v ≥ q−1

v and we have a contradiction.
This establishes our claim.

Next we claim that| t̄1|v, | t̄2|v, | t̄3|v ≥ | t̄4|2vq−1
v . Suppose to the contrary that one of

these quantities is less than| t̄4|2vq−1
v . In light of the symmetry between the roles of the

pairs (t̄1, ū1), ( t̄2, ū2) and (t̄3, ū3) we may suppose without loss of generality that| t̄3|v is
the greatest of| t̄1|v, | t̄2|v and| t̄3|v and that| t̄1|v < | t̄4|2vq−1

v . By the previous paragraph,
| t̄3|v ≥ | t̄4|v. Dividing (9.15) through bȳt2

3 we obtain

Q(t̄−1
3 ū1, t̄

−1
3 ū2, t̄

−1
3 ū3) − (t̄−1

3 t̄4)
2P(x) ∈ t̄−1

3 t̄1t̄2Ov ⊆ t̄−1
3 t̄1Ov .

We haveū1/t̄3 ∈ (t̄1/t̄3)Ov , and so we may drop the terms involvingū1/t̄3 to obtain

(9.16) (t̄−1
3 (ū2 − ū3))

2 − (t̄−1
3 t̄4)

2P(x) ∈ t̄−1
3 t̄1Ov .

Now

|(t̄−1
3 t̄4)

2P(x)|v ≥ | t̄3|−2
v | t̄4|2vq−1

v > | t̄3|−2
v | t̄1|v ≥ | t̄3|−1

v | t̄1|v ,

and hence| t̄−1
3 (ū2 − ū3)|2v = |(t̄−1

3 t̄4)
2P(x)|v . This implies that| t̄−1

4 (ū2−ū3)|2v = |P(x)|v ≥
q−1
v , and so ordkv (t̄

−1
4 (ū2 − ū3)) ≤ 0. By (9.16),

(t̄−1
4 (ū2 − ū3))

2 − P(x) ∈ t̄−2
4 t̄1t̄3Ov ⊆ t̄−2

4 t̄1Ov ⊆ p2
v .

These last two facts allow us to apply Hensel’s lemma to conclude thatP(x) ∈ (k×
v )2, which

contradicts the assumption thatkv(x) �= kv. Thus| t̄1|v, | t̄2|v, | t̄3|v ≥ | t̄4|2vq−1
v , as claimed.
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Changing variables to(t̄1, t̄2, t̄3, t̄4, ū1, ū2, ū3) in (9.11) and using (9.12), (9.14), we ob-
tain

ax,v,2j ≤
∫

| t̄2t̄3t̄2
4 |−1

v d× t̄1d
× t̄2d

× t̄3d
× t̄4dū1dū2dū3

= q2j
v

∫
| t̄2t̄3|−1

v d× t̄1d
× t̄2d

× t̄3dū1dū2dū3

where, on the domain of integration,|ūi |v ≤ | t̄i |v and 1≥ | t̄i |v ≥ | t̄4|2vq−1
v = q

−2j−1
v for

i = 1, 2, 3. Note that| t̄4|v = q
−j
v onΓ

j
v . Carrying out the integration with respect toū1, ū2

andū3 we get

ax,v,2j ≤ q2j
v

∫
| t̄1|vd× t̄1 d× t̄2 d× t̄3

≤ q2j
v (1 − q−1

v )−1
∫

1≥|t̄3|v,|t̄2|v≥q
−2j−1
v

d× t̄2d
× t̄3

≤ 2q2j
v (2j + 2)2

= 8q2j
v (j + 1)2 .

Note that the volume of the set
⋃2j+1

i=0 πi
vO×

v is 2j + 2 and(1 − q−1
v )−1 ≤ 2. PutBj (v) =

8q
2j
v (j + 1)2. Using the formulas

∞∑
j=1

q−js
v = q−s

v (1 − q−s
v )−1 ,

∞∑
j=1

jq−js
v = q−s

v (1 − q−s
v )−2 ,

∞∑
j=1

j2q−js
v = q−s

v (1 + q−s
v )(1 − q−s

v )−3 ,

(9.17)

valid for Re(s) > 0, we obtain
∞∑

j=1

Bj(v)q−2js
v = Lv(s) − 1 ,

valid for Re(s) > 1, whereLv(s) is given in the statement of the proposition. This completes
the proof. �

PROPOSITION 9.18. Let v ∈ Min and suppose that x is the standard orbital represen-
tative for an orbit with kv(x) �= kv . If

Lv(s) = 1 + 4(1 − q−2(s−1)
v )−2q−2(s−1)

v (2 − q−2(s−1)
v ) ,

then Ξx,v(s) � Lv(s).

PROOF. The structure of this proof will be very similar to that of the proof of Propo-
sition 9.9, and so we shall abbreviate somewhat. We havex = wp for some irreducible
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quadratic polynomialp(z) = z2 + a2 ∈ kv[z]. Let γ , dγ , Γv andΓ
j
v be as in (9.1). Arguing

as in the previous proposition we obtain the inequality

(9.19) ax,v,2j ≤
∫

Γ
j
v

Φv,0(γ x)dγ

for all j ≥ 0.
Calculation givesγ x = (M1,M2), where

M1 =
(

0 tσ1 t2
t1t2 t2Nk̃v/kv

(t1)Trk̃v/kv
(u1)

)
,

M2 =
(

t3 tσ1 (t3u
σ
1 + t2u2)

t1(t3u1 + t2u2) m(t, u)

)
with

m(t, u) = t2Nk̃v/kv
(t1)Trk̃v/kv

(u1)u2 + t3Nk̃v/kv
(t1)[Nk̃v/kv

(u1) − a2] .

We introduce new variables defined by

t̄1 = t1t2 , t̄2 = t3 , t̄3 = t2t3Nk̃v/kv
(t1) .

Then

t1 = t̄−σ
1 t̄−1

2 t̄3 , t2 = t̄2t̄
−1
3 Nk̃v/kv

(t̄1) , t3 = t̄2 .

Since we are dealing with coordinates in two different fields,kv andk̃v, a small digression is
required to calculate the relationship betweend× t̄1d

× t̄2d
× t̄3 andd×t1d

×t2d
×t3. Let us fix

an elementβ ∈ k̃×
v which satisfiesβσ = −β. For u ∈ k̃v, we defineu+ = u + uσ and

u− = (u − uσ )/β. Both u+ andu− lie in kv and sinceu = (1/2)(u+ + βu−), u+ and
u− serve askv coordinates for̃kv. We use this notation replacingu by other letters. The
measure corresponding todt+1 dt−1 is invariant under addition and hence there is a constant
Cv , depending only onk, k̃ andv, such that

d×t1 = Cv

dt+1 dt−1
| Nk̃v/kv

(t1)|v .

We also have Ñkv/kv
(t1) = (1/4)[(t+1 )2 − β2(t−1 )2] and a calculation gives∣∣∣∣∣∂(t̄+1 , t̄−1 , t̄2, t̄3)

∂(t+1 , t−1 , t2, t3)

∣∣∣∣∣
v

= | t3Nk̃v/kv
(t̄1)|v ,

so thatdt̄+1 dt̄−1 d× t̄2d
× t̄3/| Nk̃v/kv

(t̄1)|v = dt+1 dt−1 d×t2d
×t3 /| Nk̃v/kv

(t1)|v. Multiplying both
sides byCv we obtain

(9.20) d× t̄1d
× t̄2d

× t̄3 = d×t1d
×t2d

×t3 .
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Suppose thatγ x ∈ VOv
. Thent̄1 ∈ Õv and t̄2 ∈ Ov. Also t̄3 ∈ Ov by Lemma 8.16. If

we set

ū1 = Nk̃v/kv
(t̄1)u2 + t̄3u1

ū2 = t̄3Trk̃v/kv
(u1) ,

then the(2, 2) entry inM1 is t̄−1
2 ū2 and the(2, 1) entry inM2 is t̄−σ

1 ū1, and it follows that

ū1 ∈ t̄ σ1 Õv and ū2 ∈ t̄2Ov .

We have

u1 = (1/2)t̄−1
3 (ū1 − ūσ

1 + ū2) ,

u2 = (1/2)Nk̃v/kv
(t̄1)

−1
(ū1 + ūσ

1 − ū2) ,

and so

u+
1 = t̄−1

3 ū2 ,

u−
1 = t̄−1

3 ū−
1 ,

u2 = (1/2)Nk̃v/kv
(t̄1)

−1
(ū+

1 − ū2) .

Hencedu+
1 du−

1 du2 = | t̄3|−2
v | Nk̃v/kv

(t̄1)|−1
v dū+

1 dū−
1 dū2, which implies that

(9.21) du1du2 = | t̄3|−2
v | Nk̃v/kv

(t̄1)|−1
v dū1dū2 .

The remaining condition forγ x ∈ VOv
is that m(t, u) ∈ Ov. In the coordinates

(t̄1, t̄2, t̄3, ū1, ū2) we have

m(t, u) = (1/4)t̄−1
2 Nk̃v/kv

(t̄1)
−1[−Q(ū1, ū2) + t̄2

3P(x)] ,

where

Q(ū1, ū2) = ū2
1 + ū2

2 + (ūσ
1 )2 − 2(ū1ū2 + ūσ

1 ū2 + ū1ū
σ
1 ) .

Thusm(t, u) ∈ Ov if and only if

(9.22) Q(ū1, ū2) − t̄2
3P(x) ∈ t̄2Nk̃v/kv

(t̄1)Ov .

Note that for anya ∈ kv we have| a|k̃v
= | a|2v. We claim that either| t̄2|v ≥ | t̄3|v or

| t̄1|k̃v
≥ | t̄3|2vq−1

v . Suppose to the contrary that| t̄2|v ≤ | t̄3|vq−1
v and| t̄1|k̃v

≤ | t̄3|2vq−2
v , so

that | t̄2|k̃v
≤ | t̄3|2vq−2

v . Then|ū1|k̃v
, |ū2|k̃v

≤ | t̄3|2kv
q−2
v , and so|Q(ū1, ū2)|k̃v

≤ | t̄3|4vq−4
v .

Also

| t̄2Nk̃v/kv
(t̄1)|k̃v

≤ | t̄3|2vq−2
v | t̄3|4vq−4

v < | t̄3|4vq−4
v .

So, from (9.22),| t̄2
3P(x)|k̃v

≤ |t̄3|4vq−4
v . Thus|P(x)|v ≤ q−2

v , which is a contradiction. The
claim follows.

Next we claim that| t̄1|k̃v
≥ | t̄3|4vq−2

v . Suppose to the contrary that| t̄1|k̃v
≤ | t̄3|4vq−3

v .

Then, from the previous paragraph,| t̄2|k̃v
≥ | t̄3|2v . Dividing (9.22) byt̄2

2 we obtain

Q(t̄−1
2 ū2, t̄

−1
2 ū1) − (

t̄−1
2 t̄3)

2P(x) ∈ t̄−1
2 Nk̃v/kv

(t̄1)Ov ⊆ t̄−1
2 t̄1Õv .



MEAN VALUE THEOREM 563

Sinceū1/t̄2, ū
σ
1/t̄2 ∈ (t̄1/t̄2)Õv, this inclusion implies that

(9.23) (t̄−1
2 ū2)

2 − (t̄−1
2 t̄3)

2P(x) ∈ t̄−1
2 t̄1Õv .

Now

|(t̄−1
2 t̄3)

2P(x)|k̃v
≥ | t̄2|−2

k̃v
| t̄3|4vq−2

v > | t̄2|−2
k̃v

| t̄1|k̃v
≥ | t̄2|−1

k̃v
| t̄1|k̃v

.

Hence

|(t̄−1
2 ū2)

2|k̃v
= |(t̄−1

2 t̄3)
2P(x)|k̃v

.

This implies that|ū2/t̄3|2v = |P(x)|v ≥ q−1
v and so ordkv (ū2/t̄3) ≤ 0. By (9.23),

(t̄−1
3 ū2)

2 − P(x) ∈ t̄−2
3 t̄1t̄2Õv ⊆ t̄−2

3 t̄1Õv .

Thus|(ū2/t̄3)
2 −P(x)|k̃v

≤ | t̄1/t̄2
3 |k̃v

≤ q−3
v , and so|(ū2/t̄3)

2 −P(x)|v ≤ q−2
v . We may now

apply Hensel’s lemma to conclude thatP(x) ∈ (k×
v )2, which contradicts the assumption that

kv(x) �= kv. Thus| t̄1|k̃v
≥ | t̄3|4vq−2

v .
Changing variables to(t̄1, t̄2, t̄3, ū1, ū2) in (9.19) and using (9.20), (9.21), we obtain

ax,v,2j ≤
∫

| t̄3|−2
v | Nk̃v/kv

(t̄1)|−1
v d× t̄1d

× t̄2d
× t̄3dū1dū2

= q2j
v

∫
| Nk̃v/kv

(t̄1)|−1
v d× t̄1d

× t̄2dū1dū2 ,

where, on the domain of integration,|ū2|v ≤ | t̄2|v, |ū1|k̃v
≤ | t̄1|k̃v

= | Nk̃v/kv
(t̄1)|v, | t̄2| ≤ 1

and| t̄3|4kv
q−2
v ≤ | t̄1|k̃v

≤ 1. Carrying out the integration with respect toū1 andū2, we get

ax,v,2j ≤ q2j
v

∫
| t̄2|d× t̄1d

× t̄2

≤ q2j
v (1 − q−1

v )−1
∫

1≥|t̄1|k̃v ≥q−2
v |t̄3|4v

d× t̄1

≤ 2q2j
v (2j + 2) ,

sincek̃v/kv is unramified. SetBj(v) = 4q
2j
v (j + 1). Using (9.17), we obtain

∞∑
j=1

Bj(v)q−2js
v = Lv(s) − 1 ,

valid for Re(s) > 1, whereLv(s) is given in the statement of the proposition. �

We define

Lv(s) =



1 + 29q−2(s−1)
v − 21q−4(s−1)

v + 7q
−6(s−1)
v

(1 − q
−(2s−1)
v )(1 − q

−2(s−1)
v )4

v ∈ Msp,

1 + 6q
−2(s−1)
v − 3q

−4(s−1)
v

(1 − q
−(2s−1)
v )(1 − q

−2(s−1)
v )3

v ∈ Min .

(9.24)
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PROPOSITION 9.25. Let Lv(s) be as defined by (9.24) . Then Ξx,v(s) � Lv(s) for all
v ∈ M \ S0 and all x ∈ V ss

kv
. The product

∏
v∈�\S0

Lv(s) converges absolutely and locally
uniformly in the region Re(s) > 3/2. Moreover, if Lv(s) = ∑∞

n=0 lv,nq
−ns
v , then lv,0 = 1,

lv,n ≥ 0 for all n and the series is convergent in the region Re(s) > 1. Thus Condition 6.13 is
satisfied.

PROOF. Suppose we have two series

Li,v(s) = 1 +
∞∑

j=1

Bi,j (v)q−js
v , i = 1, 2 ,

with Bi,j (v) ≥ 0 for all i andj . Then

L1,v(s)L2,v(s) = 1 +
∞∑

j=1

Cj (v)q−js
v

with

Cj (v) = B1,j (v) + B2,j (v) +
j−1∑
m=1

B1,m(v)B2,j−m(v) ,

and so if we setLv(s) = L1,v(s)L2,v(s), thenL1,v(s) � Lv(s), L2,v(s) � Lv(s) andCj (v) ≥
0 for all j .

We have shown that ifv ∈ Msp, then

Ξx,v(Φv,0, s) = (1 − q−(2s−1)
v )−1(1 − q−(2s−2)

v )−1

if kv(x) = kv, and

Ξx,v(Φv,0, s) � (1 − q−2(s−1)
v )−3[1 + 29q−2(s−1)

v − 21q−4(s−1)
v + 7q−6(s−1)

v ]
if kv(x) �= kv (the right hand side comes from writingLv(s) in Proposition 9.9 over a common
denominator). Multiplying these two gives the value ofLv(s) recorded in (9.24). The case
v ∈ Min is similar.

From their construction, the series forLv(s) in (9.24) have non-negative coefficients and
constant term 1. It follows by inspection that these series converge when Re(s) > 1. The
discussion in the first paragraph shows thatΞx,v(s) � Lv(s) for all v ∈ M \ S0 andx ∈ V ss

kv
.

Finally, it is well-known that the series
∑

v∈�\S0
q−s
v is absolutely and locally uniformly

convergent in the region Re(s) > 1. The usual convergence test for products now shows that∏
v∈�\S0

Lv(s) has the stated convergence properties. �
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