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ON AFFINE HYPERSURFACES WITH PARALLEL
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Abstract. We investigate the classification problem of hypersurfaces with affine nor-
mal parallel second fundamental (cubic) form. A new method of approaching the solution
to this problem is here presented; it consists in showing and using the equivalence of the
mentioned problem with the classification of a certain class of solutions to the equation of
Monge-Ampère type det(∂ij f ) = ±1.

Introduction. An interesting open problem in affine differential geometry is that of
classifying hypersurfaces with affine normal parallel second fundamental (cubic) form, which
are not hyperquadrics. The first instance of this classification was achieved by Nomizu and
Pinkall, for dimensionn = 2, i.e., for surfaces immersed in affine 3-space, in [4]. See also
the book by Nomizu and Sasaki [5], where a different proof is presented. For dimensions
n ≥ 3, the only known result so far is the article by Vrancken(n = 3) [6]. It does not seem,
or at least it is not apparent to the present author, that the methods employed in any of the
mentioned articles are reasonably extendible to other cases of higher dimensions. Thus, it is
the object of this paper to present a new method of approaching the solution to the problem
which is, very seemingly, extendible to every case of higher dimensional hypersurfaces.

Among all of the geometrical properties of hypersurfaces satisfying the given condition
of parallelism there is one which is very remarkable: the hypersurface can be represented in
the form of Monge, i.e., as a graph immersion and, with respect to a suitable affine system of
coordinates in the ambient space, such a graph function, sayf , satisfies a partial differential
equation of Monge-Ampère type: det(∂ij f ) = ±1. Thus, it is not merely a coincidence that
the method exposed here is intimately related to the classification of certain kinds of solutions
of this type of equation. For the same reason, we expect that the method shall be useful
to solve other kinds of problems, mostly those which can be expressed, or are equivalent, to
existence and properties of solutions of such a partial differential equation. Roughly speaking,
the method consists of finding a special kind of coordinate system in which the given equation
can be integrated fairly easily.

This article is organized as follows: in Section 1 we summarize notation, and main prop-
erties for dimensions greater than or equal to two,n ≥ 2, related mostly with the topic under
consideration here. In Section 2, we present the so-calledmethod of algorithmic sequence of
coordinate changes, for every case of dimensionn greater than or equal to two, and use it to
furnish new proofs of the previously known, classificatory results by Nomizu, Pinkall, Sasaki
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(n = 2), and Vrancken(n = 3). Finally, in Section 3, we obtain the classification of the given
family for the case of dimensionn = 4.

1. Affine hypersurface geometry: Notation and summary of known properties.
Let X : Mn → En+1 be a differentiable, codimension-one immersion of the real, oriented,n-
dimensional, abstract differentiable manifoldM into the(n+1)-dimensional real vector space
E. (We could take, for exampleE = Rn+1, by considering only the real vector space structure
of Rn+1.) Under suitable geometrical and analytical conditions one can develop from the
above the so-called Affine Differential Geometry of Hypersurfaces ([1, 2, 3, 5]), where in the
first three of these references it is used, for notation, the method of moving frames, while in
the last it is developed by means of the “structural point of view", first considered for the topic
by K. Nomizu, i.e., the language of Koszul for connections. We shall consider in this work the
geometrical theory of invariants under the action of the unimodular affine group,ASL(n +
1, R), as acting on the hypersurfaceX(M). We keep notation as in our previously mentioned
works to describe the main geometrical objects, i.e., we use the method ofmoving frames,
with the following ranges for indices: Small Latin letters shall run from 1 ton = dim(M),
i.e., 1 ≤ i, j, k, p, q, . . . ≤ n. Small Greek letters shall run from 1 ton + 1 = dim(E):
1 ≤ α, β, γ, . . . ≤ n + 1. Thus, if (f1, f2, . . . , fn) denotes a positively oriented frame
field, locally defined on an open subsetU of M, and(σ 1, σ 2, . . . , σ n) is the corresponding
dual coframe, we can introduce a general affine frame field(X, (e1, e2, . . . , en+1)) on the
image hypersurfaceX(U), by writing ei = dX(fi) and prescribing thaten+1 be a non-zero
differentiable vector field, transversal toX(U) at each point. For this purpose it is enough to
require that[e1, e2, . . . , en+1] �= 0. Here we have denoted by square brackets[ , . . . , ] the
choice of a non-zero exterior(n + 1)-form in E, or determinant function.

Then, thefirst fundamental form Iua of unimodular affine geometry is denoted by

(1.1) Iua :=
∑

g ij σ
iσ j , g ij := |H |−1/(n+2)hij ,

whereH := det(hij ) �= 0.
The local expression of the unimodular affine normalNua is given by

(1.2) Nua := |H |1/(n+2)en+1 .

While theaffine normal connection ∇ is defined by projecting the ambient space co-
variant derivativeD, along the affine normal direction, onto the corresponding image tangent
space, and then pulling back toM.

From∇ one constructs thesecond fundamental form of the geometry, whose correspond-
ing local expression is given by

(1.3) IIua := ∇(Iua) =
∑

g ijkσ
iσ j σ k , g ijk := |H |−1/(n+2)hijk ,

where the scalar componentsg ijk are symmetric in all of their indices. Let us observe that
the second fundamental form is also known as the “cubic form” in the terminology of other
authors ([4, 5, 6]).
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Thethird fundamental form, represented locally by the expression

(1.4) III ga =
∑

Lij σ
iσ j ,

whereLij = Lji , is invariant under the action of thefull general affine group. Similarly, the

(1, 1)-tensor whose local scalar components are defined byL
j

i := ∑
Ljkg ik is obviously a

unimodular affine invariant, which is also known as theaffine shape operator ([5]).
In particular, if we assume ([2, 3]) that the immersionX can be expressed in the

form of Monge, i.e., as a graph immersion, thenX(M) is projectable onto (part of) a
hyperplane, which can be represented, with respect to a suitable affine coordinate system
(t1, t2, . . . , tn, tn+1) of the vector spaceE, by the equation

(1.5) X(t1, . . . , tn) = (t1, . . . , tn, f (t1, . . . , tn)) ,

with the point(t1, . . . , tn) varying in an open, connected subset ofRn. Also, if the mapf is
assumed to be sufficiently differentiable, we have the following expressions for those objects:

(1.6) Iua = F−1/(n+2)

(∑
fij dtidtj

)
,

whereF := | det(fij )|.
Next, if we choose the vector fielden+1 to lie in the affine normal direction, in such a

way that the frame(e1, e2, . . . , en+1) be positively oriented, and write its components in the
ambient space coordinate system asen+1 = (a1, a2, . . . , an+1), then we have that

(1.7) ap = − 1

n + 2
F−(n+1)/(n+2)

∑
f kpFk .

Moreover, the Christoffel symbols of the affine normal connection are given by

(1.8) Γ i
jk = 1

n + 2
fjk

∑
f pi(logF)p ,

and the scalar componentshijk of the unimodular affine second fundamental forms IIua, by

(1.9) hijk = fijk − 1

n + 2
(fij (logF)k + fik(logF)j + fjk(logF)i) .

Finally, for the components of thethird fundamental form we obtain that

(1.10) Lij = − 1

n + 2

(
(logF)ij + 1

n + 2
(logF)i(logF)j − fijpf pk(logF)k

)
.

The properties described in the next proposition, pertaining to the class of hypersurfaces
under consideration, are well-known: they can be deduced from the expressions above. See
also [5], where, as pointed out before, different notation is used.

PROPOSITION 1.1. Let X : Mn → En+1 be a nondegenerate hypersurface with par-
allel second fundamental (cubic) form, ∇(IIua) = 0, which is not a hyperquadric, i.e., with
IIua �= 0. Then the following properties hold:

1) X(M) is an improper affine hypersphere.
2) X(M) is expressible in the form of Monge, i.e., a graph immersion, and with respect

to a suitable affine system of coordinates the graph function f satisfies a Monge-Ampère type
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equation det(fij ) = ±1. Moreover, it is representable as a polynomial function of degree
exactly equal to three.

3) The following geometrical objects associated with X(M) are all vanishing: III ga =
0, R̃ic = 0, R = L = J = 0.

4) The first fundamental form Iua is indefinite.

Finally, we want to stress the fact that the conditions expressed by property 2) in the
above Proposition are characterizing. In fact, we have the following complementary result.

PROPOSITION 1.2. Let X : Mn → En+1 be a nondegenerate hypersurface which is
expressible in the form of Monge, i.e., a graph immersion with respect to some affine sys-
tem of coordinates in the ambient space, such that the graph function f is a polynomial
of degree exactly equal to three and satisfies the Monge-Ampère type equation det(fij ) =
±1. Then, X(M) is an improper affine hypersphere with parallel second fundamental (cubic)
form, ∇(IIua) = 0, which is not a hyperquadric, i.e., with II ua �= 0.

PROOF. We haveF = | det(fij )| = 1, so that by equation (1.7),ap = 0, with p =
1, . . . , n; andX(M) is an improper affine hypersphere. By equation (1.8) all of the Christoffel
symbols for the affine normal connection vanish so that, on one hand, the components of the
second fundamental (cubic) form are equal tohijk = fijk by equation (1.9), and since by
hypothesis some of them is nonvanishing,X(M) is not a hyperquadric; and, on the other
hand, by the same token, the normal covariant derivatives of these components are equal to
hijk;l = fijkl = 0, sincef is a polynomial function of degree three, i.e.,∇(IIua) = 0, and the
second fundamental (cubic) form IIua is parallel with respect to the affine normal connection.
The proposition is proved.

2. An algorithmic sequence of coordinate changes. Since we are interested in
studying nondegenerate hypersurfacesX(M) with parallel second fundamental (cubic) form,
∇(IIua) = 0, which are not hyperquadrics, i.e., with IIua �= 0, we may apply the characterizing
properties described by Propositions 1.1 and 1.2. Thus, by means of a translation, if neces-
sary, we may assume that a linear system of coordinates has been chosen in the ambient space
in such a way that the origin of coordinates lies in the hypersurfaceX(M), that the hyperplane
on whichX(M) is projectable is precisely the tangent hyperplaneT0(X(M)) to X(M) at that
point, and that the last coordinate is chosen in the (constant) direction of the affine normal
vector fielden+1. We denote again, as in the previous section, by(t1, t2, . . . , tn, tn+1) such
an affine system of the vector spaceE, and represent the immersed hypersurface by the equa-
tion (1.5) with the point(t1, . . . , tn) varying in an open, connected subsetU ⊂ T0(X(M)),
which is obviously identifiable withRn. By the choices made we have that

(2.1) f (0, 0, . . . , 0) = f1(0, 0, . . . , 0) = · · · = fn(0, 0, . . . , 0) = 0 .

All of the remaining affine changes of coordinates shall occur in the tangent hyperplane
T0(X(M)) and shall be of a linear nature, i.e., given by a system of linear equations like

t∗i =
∑

ai
kt

k , t∗n+1 = tn+1 .
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Most usually the change shall be unimodular, i.e., with det(ai
j ) = 1, although we may

allow, occasionally, a rescaling in order to make the exposition less involved.
Once such a change is made, in the new coordinate system, conditions expressed by

equations (2.1) remain unchanged, and the Hessian matrixH(f ) := (fij ) changes as indi-
cated by

(2.2) H ∗(f ) = PH(f )P t ,

where the matrixP is nonsingular andP t denotes the transpose ofP . Now, it is well-known
that, sinceP is expressible as a product of elementary matrices, the product to the left by
P is equivalent to performing the corresponding row elementary operations toH(f ), and
the product to the right byP t is obtained by performing the equivalent kinds of column
elementary operations, both in the same order of execution. Thus, to obtainH ∗(f ) from
H(f ) we may do so by means of the following row and column elementary operations, which
we define next:

1) Rij interchanges rowsi andj . Cij interchanges columnsi andj .
2) Ri + ∑

aijRj , with j �= i, substitutes thei-th row by the linear combination as
indicated.

Similarly, the notation for columns shall be indicated byCi + ∑
aijCj .

Obviously, these two kinds of elementary operation are unimodular. The third kind con-
sists of multiplying a row, and the corresponding column, by a nonzero constant. This pro-
duces a rescaling.

LEMMA 2.1. Let X : Mn → En+1 be a nondegenerate hypersurface with parallel
second fundamental (cubic) form, ∇(IIua) = 0, which is not a hyperquadric, i.e., IIua �=
0. Then there exists an affine coordinate system in the ambient space such that X(M) is
expressible in the form of Monge (i.e., by means of a graph function f ) and such that the
corresponding Hessian matrix is given by

H(f ) = (fij ) = Jk + (xij ) ,

where Jk is a matrix with k (≥ 1) blocks of the form[
0 1
1 0

]
,

in diagonal position, occupying the first 2k diagonal entries; the ( possible) remaining di-
agonal elements are equal to 1, and with all of the rest of entries equal 0; while all of the
entries of the matrix (xij ) are linear functions of the (domain) coordinates t1, t2, . . . , tn,

i.e., xij = ∑
aijkt

k . Moreover, the matrix of linear functions (xij ) is everywhere singular,
whose maximal rank r is attained on an open, dense subset of the domain, and we have
1 ≤ r ≤ n − 1.

PROOF. First, we choose the affine coordinate system as indicated at the beginning of
this section so that equations (2.1) hold for the graph functionf . Thus, sincef is a polynomial
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function of degree less than or equal to three, we can write

H(f ) = (fij (0)) + (xij ) ,

wherefij (0) is the value offij at the origin, andxij = ∑
aijkt

k. Now, since by Proposition
2.1 the first fundamental form and hence the matrix(fij ) is indefinite, one can find a nonsin-
gular matrixP such thatP(fij (0))P t = (εiδij ), with εi = ±1. Also, we can assume, by
changing the direction of the affine normalen+1 if necessary, that the number of positive en-
tries in the diagonal is greater than or equal to the number of negative ones, i.e., the signature
of the last matrix is greater than or equal to zero. Next, by the operations indicated previously
we can transform the last matrix into the one havingk blocks of the form[

1 0
0 −1

]
in diagonal position, occupying the first 2k diagonal entries; the (possible) remaining diago-
nal elements being equal to 1, and with all of the rest of entries equal 0. Then, by performing
elementary row and column operations likeR1−R2 andC1−C2, R3−R4 andC3−C4, and so
on, we get(fij (0)) transformed intoJk, k ≥ 1. On the other hand, the same procedure applied
to thecomplementary matrix (xij ) transforms this into a matrix with the same characteristic,
i.e., with all of its entries being linear functions of the (domain) coordinatest1, t2, . . . , tn.
In order to avoid unnecessary complications in notation we shall still denote the transformed
complementary matrix by the same notation. Finally, developing the determinant of the Hes-
sian matrix, we may write

det(fij ) = detJk + P 1 + P 2 + · · · + Pn−1 + Pn ,

where thePd ’s are all homogeneous polynomials of respective degreed in the coordinates
t1, t2, . . . , tn. It is obvious that all these polynomials must vanish, and that the last one is
precisely the determinant of the complementary matrix. Thus det(xij ) = Pn = 0, and the
matrix (xij ) is everywhere singular . However,(xij ) can not be equal to the null matrix at all
points of the domain, because in this case it is easy to see that the graph functionf would
be a polynomial function of degree 2, and then, by equation (1.9), the second fundamental
form would vanish, IIua = 0, contradicting the hypothesis. Thus, we have that 1≤ r ≤
n − 1. Therefore there exists some pointpo ∈ U , and a symmetric minor withr rows andr
columns such that at that point, and hence on aneighborhood of it, it is nonsingular. Since the
mentioned minor can be singular only on the intersection ofU with a finite union of vector
subspaces, the last assertion of the lemma follows immediately.

The two positive integersk, with 1 ≤ k ≤ n/2, andr, with 1 ≤ r ≤ n − 1, are char-
acteristic of, and determined by, each hypersurface with the required geometrical properties
of having parallel second fundamental form with respect to the affine normal connection, i.e.,
∇(IIua) = 0, and not being a hyperquadric, i.e., with IIua �= 0. Thus, these two numbers shall
play an essential role in the classification procedure that we begin next. First we present new
proofs of two results previously obtained by other authors, with methods different to the one
shown here.
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THEOREM 2.2. Let X : M2 → E3 be a nondegenerate surface with parallel second
fundamental (cubic) form, ∇(IIua) = 0, which is not a quadric, II ua �= 0. Then X(M) is
affinely congruent to the Cayley Surface, i.e., expressible as the graph function t3 = t1t2 +
(t1)3.

PROOF (compare to [4, 5]). By Lemma 2.1 we have, in the present case, only one
possibility for the values ofk and r, namely,k = 1, r = 1. Thus, we assume, also by
the lemma, that the surface is expressed in the form of Monge, and that the first step in the
procedure for the algorithmic sequence of coordinate changes has already been taken, so that
we can write the Hessian matrix in the form

H(f ) = (fij ) = J1 + (xij ) =
[

x11 1 + x12
1 + x12 x22

]
.

Since one of the two symmetric minors must be different from zero, we may assume, by
making the elementary operationsR12 andC12 if necessary, thatx11 �= 0 on an open dense
subset. It is then easy to see thatx12 = x22 = 0 everywhere. Hence we have thatf12 = 1,
from which we obtain by integration thatf1 = t2 + A(t1), whereA(t1) is a function which
depends only ont1. From this we obtainf11 = A′(t1) = x11 = a111t

1, and it follows that

f1 = t2 + A(t1) = t2 + 1

2
a111(t

1)2 ,

by using (2.1). Finally, integrating once again, we get that

t3 = f (t1, t2) = t1t2 + 1

6
a111(t

1)3 ,

where, of course, one can absorb the constant, by a suitable transformation, and write

t3 = f (t1, t2) = t1t2 + (t1)3 .

The theorem is proved.

THEOREM 2.3. Let X : M3 → E4 be a nondegenerate hypersurface with parallel
second fundamental (cubic) form, ∇(IIua) = 0, which is not a hyperquadric, IIua �= 0, Then
X(M) is affinely congruent to one of the following graph immersions:

a) t4 = t1t2 + (t3)2 + (t1)3, in this case k = r = 1.
b) t4 = t1t2 + (t3)2 + (t1)2t3, in this case k = 1, r = 2.

PROOF(compare to [6]). Once again we use Lemma 2.1 and have only one possibility
for the value ofk = 1, and two possible values forr = 1, 2.

Let us first takek = r = 1. We assume, also by the Lemma, that the surface is expressed
in the form of Monge, and that the first step in the procedure for the algorithmic sequence of
coordinate changes has already been taken. Then the Hessian matrix can be written as

(2.3) H(f ) = (fij ) = J1 + (xij ) =

 x11 1 + x12 x13

1 + x12 x22 x23
x13 x23 1 + x33


 .

We consider now possible subcases:
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a1) Assume the linear functionx11 �= 0. Then, considering the complementary matrix
(xij ), we can write the (row and column) vectorsX2 := (x12, x22, x23), X3 := (x13, x23, x33),
in terms ofX1 := (x11, x12, x13), asX2 = a21X1, X3 = a31X1. Next, by applying to the
Hessian matrix the elementary operationsR2 − a21R1, R3 − a31R1; C2 − a21C1, C3 − a31C1;
and thenR2 + a31R3, C2 + a31C3, we obtain the original matrix transformed into

x11 1 0
1 c22 0
0 0 1


 ,

with the constant valuec22 = 0, since otherwise the determinant would take the value−1 −
c22x11, and this represents a contradiction. Thus, the Hessian matrix becomes

x11 1 0
1 0 0
0 0 1


 ,

and we proceed to integrate the latter; fromf12 = 1 we obtain thatf1 = t2 + A(t1), since
f13 = 0. Hence,f11 = A′(t1) = x11 = a111t

1, from which it follows, by also using (2.1),
that

f1 = t2 + A(t1) = t2 + 1

2
a111(t

1)2 .

Therefore, integrating once again and observing thatf22 = f23 = 0, whilef33 = 1, we
see that

f = t1t2 + 1

6
a111(t

1)3 + 1

2
(t3)2 ,

and this is, except for the constants whichcan be absorbed, the solution indicated in the
statement.

a2) The casex22 �= 0 can be reduced to a1) by performing the elementary operations
R12 andC12, so that we pass to the final possibility.

a3) Assumex33 �= 0. Then we can write the vectorsX1, X2, in terms ofX3, as
X1 = a13X3, X2 = a23X3. If a13 = a23 = 0, the matrix becomes

0 1 0
1 0 0
0 0 1+ x33


 ,

which, by evaluating the determinant, leads to the contradiction thatx33 = 0. Thus we can
assume thata13 �= 0 or a23 �= 0, and then make the elementary operationsR1 − a13R3,
R2 − a23R3; C1 − a13C3, C2 − a23C3, to obtain the Hessian matrix expressed by

 a2
13 1 + a13a23 −a13

1 + a13a23 a2
23 −a23

−a13 −a23 1 + x33


 .

Evaluation of the determinant gives−1 − x33(1 + 2a13a23), from which we obtain the
condition 1+ 2a13a23 = 0, sincex33 �= 0. Hence we perform in the last expression for the
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Hessian the elementary operationsR2 − 2a2
23R1, R3 − 2a23R1; C2 − 2a2

23C1, C3 − 2a23C1,
to obtain 

a2
13 0 0
0 0 −2a23
0 −2a23 x33


 ,

and the further operationsa13R2, 2a23R1; a13C2, 2a23C1; R13, C13, to reduce this to the case
a1).

We now take the second casek = 1, r = 2. We assume again that the first step in
the procedure has been performed and obtain the Hessian matrix expressed by equation (2.3).
Since the role of the first two rows (and columns) is interchangeable by applying, if necessary,
the elementary operationsR12 andC12, we have two subcases: b1) The vectorsX1 andX3 are
linearly independent (on an open, dense subset of the domain). b2) The linearly independent
vectors are the ones labeled asX1 andX2.

b1) We can write the vectorX2 = a21X1 + a23X3, and apply to the Hessian matrix the
elementary operationsR2 − a21R1 − a23R3 andC2 − a21C1 − a23C3 to obtain

(2.4)


x11 1 x13

1 a2
23 − 2a21 −a23

x13 −a23 1 + x33


 .

If we evaluate the determinant of the latter, the factora2
23 − 2a21 appears multiplied by

the quadratic function represented by the second order determinant∣∣∣∣ x11 x13
x13 x33

∣∣∣∣ ,

which is different from zero on an open, dense subset of the domain. Hence we must have
a2

23 − 2a21 = 0. Next, we apply to the matrix in (2.4) the elementary operationsR3 + a23R1,
C3 + a23C1 and get 

x11 1 x13
1 0 0

x13 0 1+ x33


 ,

where we have labeled the linear functionsx13 andx33 with the same notation for the sake of
simplicity. Finally, evaluating the determinant of the last matrix, we conclude thatx33 = 0,
so that the Hessian becomes

(2.5)


x11 1 x13

1 0 0
x13 0 1


 .

We proceed to integrate this, having (2.1) in mind, as follows:f21 = 1, f22 = f23 = 0,
imply f2 = t1, from which it follows thatf = t1t2 + A(t1, t3). FromA33 = f33 = 1
it follows that A3 = f3 = t3 + B(t1), so thatA31 = f31 = B ′(t1) = a311t

1 andA3 =
f3 = t3 + (1/2)a311(t

1)2. Thusf = t1t2 + (1/2)(t3)2 + (1/2)a311(t
1)2t3 + (1/6)a111(t

1)3.
Finally, by performing a couple of elementary operations to the resulting Hessian matrix, we
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can assume thata111 = 0, and on the other hand absorb the rest of constants to obtain b) in
the statement of the theorem.

b2) We write the vectorX3 = a31X1 + a32X2, and apply to the Hessian matrix the
elementary operationsR3 − a31R1 − a32R2, C3 − a31C1 − a32C2, to obtain

(2.6)


 x11 1 + x12 −a32

1 + x12 x22 −a31
−a32 −a31 b


 ,

where, since the minor determinantx11x22− (x12)
2 �= 0, we must haveb = 1+ 2a31a32 = 0.

Then, by successive elementary operations wecan transform the above matrix, first into
 x11 1 + x12 −a32

1 + x12 c22 + x22 0
−a32 0 0


 ,

from which we observe that we must havex22 = 0, then into
 x11 1 + x12 1

1 + x12 1 0
1 0 0


 ,

afterwards into 
x11 x12 1

x12 1 0
1 0 0


 ,

and finally, into the form indicated in (2.5). Thisshows that the present case is reduced to the
previous one labeled as b1). The theorem is now proved.

3. The classification of the four dimensional case.

THEOREM 3.1. Let X : M4 → E5 be a nondegenerate hypersurface with parallel
second fundamental (cubic) form, ∇(IIua) = 0, which is not a hyperquadric, II ua �= 0. Then
X(M) is affinely congruent to one of the following graph immersions:

a) For k = r = 1: t5 = t1t2 + (t1)3 + (t3)2 + (t4)2.
b) For k = 1, r = 2: t5 = t1t2 + (t3)2 + (t1)2t3 + (t4)2.

c) The case where k = 1, r = 3 is not possible, i.e., there does not exist any non-
degenerate hypersurface immersion with the required geometrical properties in the case where
k = 1 and r = 3.

d) For k = 2, r = 1: t5 = t1t2 + (t1)3 + t3t4.

e) For k = r = 2, we have the following subcases:

e11) t5 = t1t2 + a

6
(t1)3 + b

2
(t1)2t3 + c

2
t1(t3)2 + t3t4 + d

6
(t3)3 ,

with the condition that the minor determinant of the complementary matrix be different from
zero, i.e., det(xij ) = (at1 + bt3)(ct1 + dt3) − (bt1 + ct3)2 �= 0.

e12) t5 = t1t2 + c

2
t1(t3)2 + β

c

2
t2(t3)2 + t3t4 + d

6
(t3)3 ,
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with the condition c �= 0.

f) For k = 2, r = 3:

t5 = t1t2 + a

2
t2(t3)2 + t3t4 + b

2
(t1)2t3 + c

2
t1(t3)2 + d

6
(t1)3 + e

6
(t3)3 ,

with the condition that (at3)2(bt3 + dt1) �= 0, i.e., a �= 0, and b �= 0 or d �= 0.

PROOF. From Lemma 2.1 we have, as possible values fork andr, k = 1, 2 andr =
1, 2, 3, respectively.

a) Let us first takek = 1, r = 1. After the first step in the procedure, the Hessian
matrix is reduced to

(3.1)




x11 1 + x12 x13 x14
1 + x12 x22 x23 x24

x13 x23 1 + x33 x34
x14 x24 x34 1 + x44


 .

By making suitable elementary operations, this can be reduced to two subcases to be
labeled as: a1) x11 �= 0; a2) x44 �= 0.

We observe that, in both subcases, the proof may follow an argument similar to that in
the proof of Theorem 2.3, case a), to obtain the solution as stated above. Thus, we can shorten
this part of the argument and proceed to the following case.

b) We now takek = 1, r = 2. Again, by means of suitable elementary operations, this
is reduced to three subcases that we shall label as b1), b2) and b3), considered below.

b1) In the display (3.1), the vectorsX1, X3 are linearly independent (on an open, dense
subset of the domain) and we may writeX2 = a21X1 + a23X3, X4 = a41X1 + a43X3. Then,
by performing the elementary operations suggested by the latter equalities, i.e.,Ri − ai1R1 −
ai3R3 andCi − ai1C1 − ai3C3, for i = 2, 4, the Hessian matrix is transformed into


x11 1 x13 0
1 b22 −a23 b24

x13 −a23 1 + x33 −a43
0 b24 −a43 b44


 .

It is easy to see that the 2× 2 submatrix(bij ) must be singular, since by the Laplace
development of the determinant, according to rows 2 and 4, its value appears multiplied by
the determinantx11x33 − (x13)

2, assumed to be�= 0. Moreover, sinceb44 = 1 + a2
43, we

may write(b22, b24) = c(b24, b44), for somec ∈ R, and perform the elementary operations
R2 − cR4 andC2 − cC4, followed byR3 + a23R1 andC3 + a23C1, so that the Hessian matrix
is transformed into 


x11 1 x13 0
1 0 0 0

x13 0 1+ x33 −a43
0 0 −a43 b44


 .
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By evaluating the determinant of the latter we conclude thatx33 = 0; and, by making
further elementary operations, we obtain that the Hessian matrix reduces to

(3.2)




x11 1 x13 0
1 0 0 0

x13 0 1 0
0 0 0 1


 .

Therefore, by Theorem 2.3, subcase b), we canintegrate (and absorb the constants) to
obtain

(3.3) f = t1t2 + (t3)2 + (t1)2t3 + (t4)2 .

b2) Let us now assume that the vectorsX1, X2 are linearly independent and writeXi =
ai1X1+ai2X2, with i = 3, 4. Then, we perform the elementary operationsRi −ai1R1−ai2R2

andCi − ai1C1 − ai2C2, for i = 3, 4, so that the Hessian matrix is transformed into


x11 1 + x12 −a32 −a42
1 + x12 x22 −a31 −a41
−a32 −a31 b33 b34
−a42 −a41 b34 b44


 ,

where the submatrix(bij ) must be singular, for the same reason as in the previous case. But,
on the other hand,(bij ) �= 0, because otherwise the determinant of the Hessian matrix would
equal to(a32a41−a31a42)

2 = −1, a contradiction. Thus, we can assume thatb44 �= 0, and by
making some further elementary operations, which are easy to determine, transform the latter
into 


b11 + x11 b12 + x12 b13 0
b12 + x12 b22 + x22 b23 0

b13 b23 0 0
0 0 0 b44


 ,

where we must haveb13 �= 0 orb23 �= 0. We may assume the latter, and then further transform
the Hessian matrix into 


b11 + x11 x12 0 0

x12 x22 b23 0
0 b23 0 0
0 0 0 b44


 .

Then, by evaluating its determinant(= −(b11 + x11)b
2
23b44), we conclude thatx11 = 0.

Finally, by making some further elementary operations, we transform the Hessian into the
form (3.2), so that this subcase is equivalent to the previous one, b1).

b3) Assume now that the vectorsX3, X4 are linearly independent, writeXi = ai3X3 +
ai4X4, for i = 1, 2, and perform the elementary operationsRi − ai3R3 − ai4R4 andCi −
ai3C3 − ai4C4, for i = 3, 4. Then, the Hessian matrix is transformed into


b11 b12 −a13 −a14
b12 b22 −a23 −a24

−a13 −a23 1 + x33 x34
−a14 −a24 x34 1 + x44


 ,
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where, again, the submatrix(bij ) must be singular but�= 0, so that we can assumeb11 �= 0
and, by means of elementary operations, easily determined, transform the latter, first into


b11 0 0 0
0 0 b23 b24
0 b23 b33 + x33 b34 + x34
0 b24 b34 + x34 b44 + x44


 ,

and then, since one can further assume thatb23 �= 0, into


b11 0 0 0
0 0 b23 0
0 b23 x33 x34
0 0 x34 b44 + x44


 .

Finally, it follows thatx44 = 0 and, by further elementary operations, we can also reduce
the latter to the form (3.2); i.e., this subcase is also equivalent to the first one b1).

c) The third possible case corresponds to the valuesk = 1, r = 3. It is easy to see, by
means of suitable elementary operations, that this is reduced to two subcases: c1) and c2).

c1) First, let us assume that the vectorsX1, X2, X3 are linearly independent on an open,
dense subset of the domain. Represent the remaining one byX4 = a41X1+a42X2+a43X3 and
perform on the Hessian matrix defined by equation (3.1) the elementary operations suggested
by this equality, i.e.,R4 −a41R1 −a42R2 −a43R3 andC4 −a41C1 −a42C2−a43C3, to obtain


x11 1 + x12 x13 −a42

1 + x12 x22 x23 −a41
x13 x23 1 + x33 −a43

−a42 −a41 −a43 b44


 ,

where, since the 3× 3 principal minor of the complementary matrix det(xij ) �= 0, we must
haveb44 = 1 + 2a41a42 + a2

43 = 0. From this we have thata42 �= 0, so that, by applying
further elementary operations, the latter expression of the Hessian matrix can be reduced to


x11 x12 x13 1
x12 b22 + x22 x23 0
x13 x23 1 + x33 0
1 0 0 0


 ,

and since the determinant of the latter must equal to−1, it is easy to see that we must also
haveb22 = 1 andx22 = x23 = x33 = 0. But then, the maximal rank of the complementary
matrix isr < 3, which contradicts our hypothesis. Thus, this subcase is not possible.

c2) Second, let us assume that the linearly independent vectors are the ones labeled as
X2, X3, X4. Then, represent the first one byX1 = a12X2 + a13X3 + a14X4 and perform on
the Hessian matrix defined by equation (3.1) the elementary operationsR1−a12R2−a13R3−
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a14R4 andC1 − a12C2 − a13C3 − a14C4. We then get the Hessian matrix transformed into


b11 1 −a13 −a14
1 x22 x23 x24

−a13 x23 1 + x33 x34
−a14 x24 x34 1 + x44


 ,

where we must haveb11 = −2a12 + a2
13 + a2

14 = 0. Further elementary operations transform
the latter into 


0 1 0 0
1 x22 x23 x24
0 x23 1 + x33 x34
0 x24 x34 1 + x44


 ,

from which it follows, by evaluating its determinant, thatx33 = x34 = x44 = 0. Then we
would have that the maximal rank of the complementary matrix is againr < 3, a contradic-
tion. Therefore, this second subcase is not possible, and so is the whole casek = 1, r = 3.

d) We now consider the casek = 2, r = 1. Then, by making suitable elementary
operations, it is easy to see that this can be reduced to a single case:x11 �= 0. Hence, by the
first step in the procedure, the Hessian matrix is reduced to

(3.4)




x11 1 + x12 x13 x14
1 + x12 x22 x23 x24

x13 x23 x33 1 + x34
x14 x24 1 + x34 x44


 ,

where we can writeXi = ai1X1, for i = 2, 3, 4. Then, after some elementary operations,
easily determined, the Hessian matrix is transformed into


x11 1 0 0
1 b22 0 0
0 0 0 1
0 0 1 0


 ,

with b22 = −2(a21 + a31a41) = 0, since the evaluation of the determinant gives 1+ b22x11,
and we assumed thatx11 �= 0.

Hence, also by using Theorem (2.2), we can integrate straightforwardly to obtain, in the
last system of coordinates on which the Hessian matrix is represented by the above:

f (t1, t2, t3, t4) = t1t2 + (t1)3 + t3t4 .

e) Next, we consider the casek = 2, r = 2. It is easy to see, by means of elementary
operations, that this contains two subcases: e1) the vectorsX1 andX3 are linearly independent
(on an open, dense subset of the domain);e2) X1 andX2 are linearly independent.

e1) We may writeXi = ai1X1 + ai3X3, i = 2, 4, and perform on the Hessian matrix
(3.4), the elementary operationsRi − ai1R1 − ai3R3 andCi − ai1C1 − ai3C3, i = 2, 4, to
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obtain

(3.5)




x11 1 x13 0
1 b22 0 b24

x13 0 x33 1
0 b24 1 b44


 ,

Now, since the determinant of the 2×2 submatrix labeled(xij ) is assumed to be different
from zero we must have that the determinant of the complementary 2×2 submatrix(bij ) must
vanish, i.e., det(bij ) = b22b44 − b2

24 = 0. Hence, we have two possibilities:(bij ) = 0 or
(bij ) �= 0.

e11) Let us first assume that(bij ) = 0. Then the Hessian matrix becomes

(3.6)




x11 1 x13 0
1 0 0 0

x13 0 x33 1
0 0 1 0


 ,

and straightforward integration allows to compute the solution as

(3.7) f (t1, t2, t3, t4) = t1t2 + a

6
(t1)3 + b

2
(t1)2t3 + c

2
t1(t3)2 + t3t4 + d

6
(t3)3 .

Now, since the Hessian matrix for this is


at1 + bt3 1 bt1 + ct3 0
1 0 0 0

bt1 + ct3 0 ct1 + dt3 1
0 0 1 0


 ,

the constants appearing in the solution must satisfy the natural condition that the value of
the minor determinant of the complementary matrix be det(xij ) = (at1 + bt3)(ct1 + dt3) −
(bt1 + ct3)2 �= 0.

e12) The second possibility is to have det(bij ) = 0, and(bij ) �= 0. In this case we may
assume thatb22 �= 0. Hence there existsα ∈ R such that(b24, b44) = α(b22, b24), and we
may apply to the matrix in (3.5) the elementary operationsR4 −αR2 andC4 −αC2, followed
by R1 + αR3 andC1 + αC3 in order to obtain the Hessian matrix represented by


x11 1 x13 0
1 b22 0 0

x13 0 x33 1
0 0 1 0


 .

By evaluating the determinant of the latter it follows thatx11 = 0. Then, by making the
further elementary operationsR2 + βR1 andC2 + βC1, β = −(b22/2), the Hessian matrix
can be written as 


0 1 x13 0
1 0 βx13 0

x13 βx13 x33 1
0 0 1 0


 .
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By integrating, we obtain the solution represented by

(3.8) f (t1, t2, t3, t4) = t1t2 + c

2
t1(t3)2 + β

c

2
t2(t3)2 + t3t4 + d

6
(t3)3 .

We observe that this solution is, in a sense, comparable to the one obtained previously.
In fact, if we puta = b = 0 in (3.7) andβ = 0 in (3.8), then they do coincide . Besides, in
(3.8) we may always maked = 0, by means of elementary operations.

e2) In case thatX1 andX2 are linearly independent, we may writeXi = ai1X1+ai2X2,
i = 3, 4, and apply the elementary operationsRi − ai1R1 − ai2R2 andCi − ai1C1 − ai2C2,
i = 3, 4, to transform the Hessian matrix (3.4) into the form


x11 1 + x12 −a32 −a42

1 + x12 x22 −a31 −a41
−a32 −a31 b33 b34
−a42 −a41 b34 b44


 ,

where we must have det(bij ) = 0. Then, we consider two subcases: e21) (bij ) = 0; e22)

(bij ) �= 0.
e21) If (bij ) = 0, we conclude thata32a41 �= 0 or a31a42 �= 0, since the evaluation of

the determinant of the latter matrix gives the quantity(a32a41 − a31a42)
2 = 1. Thus, in any

case, it is easy to see that we can make a finite number of elementary operations to transform
the above, first into 


x11 x12 1 0
x12 x22 0 1
1 0 0 0
0 1 0 0


 ,

and, afterwards, into the form described by (3.6), case e11).
e22) If (bij ) �= 0, we may assume thatb44 �= 0, and transform the Hessian matrix, by

means of successive elementary operations into


x11 1 x13 0
1 0 0 0

x13 0 0 1
0 0 1 0


 ,

which is a special case of (3.6).
f) Finally, let us consider the casek = 2, r = 3. Then, we may assume thatX1,X2,X3

are linearly independent (on an open, dense subset of the domain), and writeX4 = a41X1 +
a42X2 + a43X3. Then, perform on the Hessian matrix represented by equation (3.4) the
elementary operationsR4 − a41R1 − a42R2 − a43R3 andC4 − a41C1 − a42C2 − a43C3 to
obtain 


x11 1 + x12 x13 −a42

1 + x12 x22 x23 −a41
x13 x23 x33 1

−a42 −a41 1 b


 ,
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where, in order to avoid a contradiction, we must haveb = 2(a41a42 − a43) = 0. Next, by
applying further elementary operations, we may transform the above into the form


x11 1 + x12 x13 0

1 + x12 x22 x23 0
x13 x23 x33 1
0 0 1 0


 ,

and by evaluating the determinant of the latter(= 1+ 2x12 + x2
12− x11x22), we conclude that

the Hessian is written as 


x11 1 x13 0
1 0 x23 0

x13 x23 x33 1
0 0 1 0


 .

Now, a straightforward process of integration allows to write the solution as

(3.9) f (t1, t2, t3, t4) = t1t2 + a

2
t2(t3)2 + t3t4 + b

2
(t1)2t3 + c

2
t1(t3)2 + d

6
(t1)3 + e

6
(t3)3 ,

with the condition that(at3)2(bt3+dt1) �= 0, i.e.,a �= 0, andb �= 0 ord �= 0. This completes
the proof of the theorem.

Since some of the solutions listed in the last theorem contain constant parameters, it is
quite appropriate to make the following comments and observations:

1) The solution obtained as subcase e11), equation (3.7), is the limit of that correspond-
ing to the case f), equation (3.9), when the parametera tends to zero. However, whena �= 0
in the latter, we can perform further elementary operations to make the coefficient represented
by parametere equal to zero.

2) As we have observed, the solutions given by (3.7) and (3.8) are comparable. They
do coincide if we takea = b = β = 0; and in the latter, one can always maked = 0.

3) In solution e11), equation (3.7), the natural condition to be satisfied, i.e., det(xij ) =
(at1+bt3)(ct1+dt3)−(bt1+ct3)2 �= 0, can give rise to the consideration of various, further
subcases. For example, if we takeb = c = 0, one can absorb the remaining constant parame-
ters, by means of rescaling, and obtain an expression without parameters at all. However, we
have left the solution expressed as it is, because this represents the most general form.

Apart from these considerations, and the further possibility of performing rescalings, the
solutions obtained are inequivalent for different values of the parameters, i.e., they do belong
to different classes under the action of the unimodular affine groupASL(n + 1, R).
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