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ON AFFINE HYPERSURFACESWITH PARALLEL
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Abstract. We investigate the classificationgialem of hypersurfaces with affine nor-
mal parallel second fundamental (cubic) for’A new method of approaching the solution
to this problem is here presented; it consists in showing and using the equivalence of the
mentioned problem with the classification of a certain class of solutions to the equation of
Monge-Ampére type déi;; f) = £1.

Introduction. An interesting open problem in affine differential geometry is that of
classifying hypersurfaces with affine normal el second fundamental (cubic) form, which
are not hyperquadrics. The first instance of this classification was achieved by Nomizu and
Pinkall, for dimensiom = 2, i.e., for surfaces immersed in affine 3-space, in [4]. See also
the book by Nomizu and Sasaki [5], where a different proof is presented. For dimensions
n > 3, the only known result so far is the article by Vrancken= 3) [6]. It does not seem,
or at least it is not apparent to the present author, that the methods employed in any of the
mentioned articles are reasonably extendible to other cases of higher dimensions. Thus, it is
the object of this paper to present a new method of approaching the solution to the problem
which is, very seemingly, extendible to every case of higher dimensional hypersurfaces.

Among all of the geometrical properties of hypersurfaces satisfying the given condition
of parallelism there is one which is very remarkable: the hypersurface can be represented in
the form of Monge, i.e., as a graph immersion and, with respect to a suitable affine system of
coordinates in the ambient space, such a graph functionf sastisfies a partial differential
equation of Monge-Ampere type: d&f /) = 1. Thus, it is not merely a coincidence that
the method exposed here is intimately related to the classification of certain kinds of solutions
of this type of equation. For the same reason, we expect that the method shall be useful
to solve other kinds of problems, mostly those which can be expressed, or are equivalent, to
existence and properties of solutions of such a partial differential equation. Roughly speaking,
the method consists of finding a special kind of coordinate system in which the given equation
can be integrated fairly easily.

This article is organized as follows: in Section 1 we summarize notation, and main prop-
erties for dimensions greater than or equal to twe, 2, related mostly with the topic under
consideration here. In Section 2, we present the so-caiétiabd of algorithmic sequence of
coordinate changes, for every case of dimensiongreater than or equal to two, and use it to
furnish new proofs of the previously known, classificatory results by Nomizu, Pinkall, Sasaki
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(n = 2), and Vranckerin = 3). Finally, in Section 3, we obtain the classification of the given
family for the case of dimension = 4.

1. Affine hypersurface geometry: Notation and summary of known properties.
Let X : M* — E™+1 be a differentiable, codimension-one immersion of the real, oriented,
dimensional, abstract differentiable manifadttiinto the(n + 1)-dimensional real vector space
E. (We could take, for exampleé = R"*1, by considering only the real vector space structure
of R"*1)) Under suitable geometrical and analytical conditions one can develop from the
above the so-called Affine Differential Geometry of Hypersurfaces ([1, 2, 3, 5]), where in the
first three of these references it is used, for notation, the method of moving frames, while in
the last it is developed by means of the “structural point of view", first considered for the topic
by K. Nomizu, i.e., the language of Koszul for connections. We shall consider in this work the
geometrical theory of invariants under the action of the unimodular affine grosip(n +
1, R), as acting on the hypersurfa&e M). We keep notation as in our previously mentioned
works to describe the main geometrical objects, i.e., we use the methodviofg frames,
with the following ranges for indices: Small Latin letters shall run from Lte- dim(M),
e, 1<1i,j,k p,q,... < n. Small Greek letters shall run from 1 to+ 1 = dim(E):
1<a4B,y,... <n+1 Thus, if(fi, fo,..., fn) denotes a positively oriented frame
field, locally defined on an open subgétof M, and(ol, 02, ..., 0" is the corresponding
dual coframe, we can introduce a general affine frame {i#ld(e1, e2, ... , e,41)) On the
image hypersurfac& (U), by writing e; = d X (f;) and prescribing that, 1 be a non-zero
differentiable vector field, transversal ¥(U) at each point. For this purpose it is enough to
require thatles, e2, ... , e,4+1] # 0. Here we have denoted by square brackets. , ] the
choice of a non-zero exterign + 1)-form in E, or determinant function.

Then, thefirst fundamental form |5 of unimodular affine geometry is denoted by

(1.1) lia:=Y_gyo'ol, g, = IHITY"Ph;,
whereH := dei(h;;) # 0.

The local expression of the unimodular affine noriNa4 is given by
(12) Nua:=H[Y "¢, 1.

While the affine normal connection V is defined by projecting the ambient space co-
variant derivativeD, along the affine normal direction, onto the corresponding image tangent
space, and then pulling back Aé.

FromV one constructs theecond fundamental form of the geometry, whose correspond-
ing local expression is given by

(L3) Nua:= V() = Y gipo'olo" . gy = HIT " 2y,

where the scalar components; are symmetric in all of their indices. Let us observe that
the second fundamental form is also known as it form” in the terminology of other
authors ([4, 5, 6]).



AFFINE HYPERSURFACES 497

Thethird fundamental form, represented locally by the expression
(14) llga= Y Lijo’o/,
whereL;; = Lj;, is invariant under the action of tfiell general affine group. Similarly, the
(1, 1)-tensor whose local scalar components are definetl/by= Y Li*g,, is obviously a
unimodular affine invariant, which is also known as #féne shape operator ([5]).

In particular, if we assume ([2, 3]) that the immersidncan be expressed in the
form of Monge, i.e., as a graph immersion, th&rM) is projectable onto (part of) a

hyperplane, which can be represented, with respect to a suitable affine coordinate system
(t1, 12, ..., 1", ") of the vector spacé&, by the equation

(1.5) Xt ..o =0 et YY),

with the point(sL, ... , #*) varying in an open, connected subseRbf Also, if the mapf is
assumed to be sufficiently differentiable, we have the following expressions for those objects:

(L6) lua = F7Y/042 ( 2. ﬁjdfidfj> ,

whereF := | del(f;;)|.

Next, if we choose the vector fielg 1 to lie in the affine normal direction, in such a
way that the framées, e, ... , e,41) be positively oriented, and write its components in the
ambient space coordinate systemeas, = (al, d?, ..., a"*t1), then we have that

— 1 —otb/m+2) k
(1.7) ap_—mF / Zf PFy .
Moreover, the Christoffel symbols of the affine normal connection are given by

. 1 .
(1.8) Tje= =5 fk D " (0gF)p,

and the scalar componerits; of the unimodular affine second fundamental forms, liby

1
(1.9 hijk = fijk — n—+2(fij(|09 F)x + fix(log F); + fix(logF);) .

Finally, for the components of thiird fundamental formwe obtain that

1 1
(1.10 Lij= —n—_i_2<(|09F)ij + n—H(|09F)i(|09 F)j — fijp fP*(log F)k) .

The properties described in the next proposition, pertaining to the class of hypersurfaces
under consideration, are well-known: they can be deduced from the expressions above. See
also [5], where, as pointed out before, different notation is used.

PrOPOSITION 1.1. Let X : M* — E"*+1 be a nondegenerate hypersurface with par-
allel second fundamental (cubic) form, V(llyg) = 0, which is not a hyperquadric, i.e., with
[lya # O. Then the following properties hold:

1) X (M) isanimproper affine hypersphere.

2) X(M)isexpressibleintheformof Monge, i.e., a graphimmersion, and with respect
to a suitable affine system of coordinates the graph function f satisfiesa Monge-Ampere type
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equation det(f;;) = 1. Moreover, it is representable as a polynomial function of degree
exactly equal to three.

3) Thefollowing geometrical objects associated with X (M) are all vanishing: Il ga =
0,Ric=0,R=L=1J=0.

4) Thefirst fundamental form Iy isindefinite.

Finally, we want to stress the fact that the conditions expressed by property 2) in the
above Proposition are characterizing. In fact, rave the following complementary result.

PROPOSITION 1.2. Let X : M" — E"*1 be a nondegenerate hypersurface which is
expressible in the form of Monge, i.e., a graph immersion with respect to some affine sys-
tem of coordinates in the ambient space, such that the graph function f is a polynomial
of degree exactly equal to three and satisfies the Monge-Ampére type equation det(f;;) =
+1. Then, X (M) isanimproper affine hyperspherewith parallel second fundamental (cubic)
form, V(llya) = 0, whichisnot a hyperquadric, i.e., with Il ;5 # 0.

PROOF We haveF = |det(f;;)| = 1, so that by equation (1.7)/ = 0, with p =
1,...,n;andX (M) is an improper affine hypersphere. By equation (1.8) all of the Christoffel
symbols for the affine normal connection vanish so that, on one hand, the components of the
second fundamental (cubic) form are equahtq = fijx by equation (1.9), and since by
hypothesis some of them is nonvanishidg(M) is not a hyperquadric; and, on the other
hand, by the same token, the normal covariant derivatives of these components are equal to
hij;i = fiju = 0, sincef is a polynomial function of degree three, i.€(llya) = 0, and the
second fundamental (cubic) form,ilis parallel with respect to the affine normal connection.

The proposition is proved.

2. An algorithmic sequence of coordinate changes. Since we are interested in
studying nondegenerate hypersurfa&&d/) with parallel second fundamental (cubic) form,
V(lya) = 0, which are not hyperquadrics, i.e., withdE~ 0, we may apply the characterizing
properties described by Propositions 1.1 and 1.2. Thus, by means of a translation, if neces-
sary, we may assume that a linear system of coordinates has been chosen in the ambient space
in such a way that the origin of coordinates lies in the hypersuXa@é), that the hyperplane
on whichX (M) is projectable is precisely the tangent hyperpl@ne (M)) to X (M) at that
point, and that the last coordinate is chosen in the (constant) direction of the affine normal
vector fielde,1. We denote again, as in the previous section(tbyr?, ... , ", 1"*t1) such
an affine system of the vector spaEeand represent the immersed hypersurface by the equa-
tion (1.5) with the poini(r1, ... , ") varying in an open, connected subseic To(X (M)),
which is obviously identifiable witlR". By the choices made we have that

2.1) £(0,0,...,0)= f1(0,0,... ,0)=--- = £,(0,0,...,0) = 0.

All of the remaining affine changes of coordinates shall occur in the tangent hyperplane
To(X (M)) and shall be of a linear nature, i.e., given by a system of linear equations like

t*i — Zali(tk , t*n—i—l — tn+1 .
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Most usually the change shall be unimodular, i.e., with(df;] = 1, although we may
allow, occasionally, a rescaling in order to make the exposition less involved.

Once such a change is made, in the new coordinate system, conditions expressed by
equations (2.1) remain unchanged, and the Hessian nf(j% := (f;;) changes as indi-
cated by

(2.2) H*(f)=PH(f)P',

where the matrix? is nonsingular and’ denotes the transpose Bf Now, it is well-known
that, sinceP is expressible as a product of elementary matrices, the product to the left by
P is equivalent to performing the corresponding row elementary operatiofq f9, and
the product to the right byP’ is obtained by performing the equivalent kinds of column
elementary operations, both in the same order of execution. Thus, to dbtaif) from
H (f) we may do so by means of the following row and column elementary operations, which
we define next:

1) R;; interchanges rowsandj. C;; interchanges columnsand;.

2) R; + ) aijR;, with j # i, substitutes the-th row by the linear combination as
indicated.

Similarly, the notation for columns shall be indicated®@y+ > a;;C;.

Obviously, these two kinds of elementary operation are unimodular. The third kind con-
sists of multiplying a row, and the corresponding column, by a nonzero constant. This pro-
duces a rescaling.

LEMMA 2.1. Let X : M* — E™*! be a nondegenerate hypersurface with parallel
second fundamental (cubic) form, V(lly ) = 0, which is not a hyperquadric, i.e., Il a #
0. Then there exists an affine coordinate system in the ambient space such that X (M) is
expressible in the form of Monge (i.e., by means of a graph function ) and such that the
corresponding Hessian matrix is given by

H(f) = (fij) = Je + (xij) ,

where J;, isamatrix with k (> 1) blocks of the form

o

in diagonal position, occupying the first 2k diagonal entries; the (possible) remaining di-
agonal elements are equal to 1, and with all of the rest of entries equal 0; while all of the
entries of the matrix (x;;) are linear functions of the (domain) coordinates R L
ie, xj; = Zaijk[k. Moreover, the matrix of linear functions (x;;) is everywhere singular,
whose maximal rank r is attained on an open, dense subset of the domain, and we have
1<r<n-1

PROOF First, we choose the affine coordinate system as indicated at the beginning of
this section so that equations (2.1) hold for the graph fungtionhus, sincef is a polynomial
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function of degree less than or equal to three, we can write

H(f) = (fij(0) + (xij) ,

where f;;(0) is the value off;; at the origin, and;;; = " a;;xt*. Now, since by Proposition

2.1 the first fundamental form and hence the matyix) is indefinite, one can find a nonsin-
gular matrix P such thatP(f;; (0)) P" = (;8;;), with &; = £1. Also, we can assume, by
changing the direction of the affine normegl, 1 if necessary, that the number of positive en-
tries in the diagonal is greater than or equal to the number of negative ones, i.e., the signature
of the last matrix is greater than or equal to zero. Next, by the operations indicated previously
we can transform the last matrix into the one havirgocks of the form

b

in diagonal position, occupying the first 2liagonal entries; the (possible) remaining diago-
nal elements being equal to 1, and with all loé rest of entries equal 0. Then, by performing
elementary row and column operations liRe— Rz andC1—C2, R3— R4 andC3—C4, and so

on, we get f;; (0)) transformed intd/, k > 1. On the other hand, the same procedure applied
to thecomplementary matrix (x;;) transforms this into a matrix with the same characteristic,
i.e., with all of its entries being linear functions of the (domain) coordinateg, ... , .

In order to avoid unnecessary complications in notation we shall still denote the transformed
complementary matrix by the same notation. Finally, developing the determinant of the Hes-
sian matrix, we may write

det(fij) —dety + P+ P2+ ...+ P L4 P,

where theP?’s are all homogeneous polynomials of respective degreethe coordinates
1,12, ..., 1" Itis obvious that all these polynomials must vanish, and that the last one is
precisely the determinant of the complementary matrix. Thuscget= P* = 0, and the
matrix (x;;) is everywhere singular . Howevér; ;) can not be equal to the null matrix at all
points of the domain, because in this case it is easy to see that the graph fufetioud
be a polynomial function of degree 2, and then, by equation (1.9), the second fundamental
form would vanish, I}z = 0, contradicting the hypothesis. Thus, we have that ¥ <
n — 1. Therefore there exists some pojnt € U, and a symmetric minor with rows andr
columns such that at that point, and hence arighborhood of it, it is nonsingular. Since the
mentioned minor can be singular only on the intersectioty afith a finite union of vector
subspaces, the last assertion of the lemma follows immediately.

The two positive integerk, with 1 < k < n/2, andr, with 1 < r < n — 1, are char-
acteristic of, and determined by, each hypeistefwith the required geometrical properties
of having parallel second fundamental form with respect to the affine normal connection, i.e.,
V(lya) = 0, and not being a hyperquadric, i.e., withalk~ 0. Thus, these two numbers shall
play an essential role in the classification procedure that we begin next. First we present new
proofs of two results previously obtained by other authors, with methods different to the one
shown here.
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THEOREM 2.2. Let X : M2 — E3 be a nondegenerate surface with parallel second
fundamental (cubic) form, V(llya) = 0, which is not a quadric, llyg # 0. Then X (M) is
affinely congruent to the Cayley Surface, i.e., expressible as the graph function 3 = 1112 +
(h3.

PROOF (compare to [4, 5]). By Lemma 2.1 we have, in the present case, only one
possibility for the values ok andr, namely,k = 1,r = 1. Thus, we assume, also by
the lemma, that the surface is expressed in the form of Monge, and that the first step in the
procedure for the algorithmic sequence of coordinate changes has already been taken, so that
we can write the Hessian matrix in the form

H(f)y=(fij)) =N+ &)= |:

x11 l+x12
l+x10  x22 |°

Since one of the two symmetric minors must be different from zero, we may assume, by
making the elementary operatioRs, and C12 if necessary, that1; # 0 on an open dense
subset. It is then easy to see that = x22 = 0 everywhere. Hence we have thap = 1,

from which we obtain by integration thay = 1% + A(t1), whereA(t1) is a function which
depends only ont. From this we obtairnfi; = A’(t!) = x11 = a111¢%, and it follows that

1
fr=12 4 AGY =12 + Samh?,
by using (2.1). Finally, integrating once again, we get that
1
2= (01 = % 4 Zann(rh’,
where, of course, one can absorb the constant, by a suitable transformation, and write
B = £t 2 = 42 + (1Y)3.
The theorem is proved.
THEOREM 2.3. Let X : M3 — E* be a nondegenerate hypersurface with parallel
second fundamental (cubic) form, V(Ilya) = 0, which isnot a hyperquadric, Ilya # 0, Then
X (M) is affindly congruent to one of the following graph immersions:
a) =112+ 32+ (13 inthiscasek = r = 1.
b) t* =112+ 32+ (1123, inthiscasek = 1,r = 2.
PROOF(compare to [6]). Once again we use Lemma 2.1 and have only one possibility
for the value ot = 1, and two possible values for= 1, 2.
Let us first také = r = 1. We assume, also by the Lemma, that the surface is expressed

in the form of Monge, and that the first step in the procedure for the algorithmic sequence of
coordinate changes has already been taken. Then the Hessian matrix can be written as

X11 1+ x12 X13
(2.3 Hf)Y=(fij)=N+ )= |1+x12 x22 x23
X13 X23 1+ x33

We consider now possible subcases:
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a;) Assume the linear functiom 1 # 0. Then, considering the complementary matrix
(x;;), we can write the (row and column) vectdfs := (x12, x22, x23), X3 1= (x13, X23, X33),
in terms of X1 := (x11, x12, x13), 8SX2 = a21X1, X3 = az1X1. Next, by applying to the
Hessian matrix the elementary operatidys— a21R1, R3 — a31R1; C2 — a21C1, C3 — a31C1;
and thenR, + az1R3, C2 + a31C3, we obtain the original matrix transformed into

x11 1 O
1 ¢ 0Of,
0 0 1

with the constant valuey> = 0, since otherwise the determinant would take the vallie-
c22x11, and this represents a contradiction. Thus, the Hessian matrix becomes

x11 1 O
1 0 0f,
0 0 1

and we proceed to integrate the latter; frga = 1 we obtain thatf; = 12 + A(t1), since
f13 = 0. Hence,fi1 = A'(t1) = x11 = a111t%, from which it follows, by also using (2.1),
that

1
fi=r2+ A0 =2+ Ealll(fl)Z.

Therefore, integrating once again and observing fhat= f>3 = 0, while f33 = 1, we
see that

661111(t1)3 + %(fg)z,
and this is, except for the constants whicdin be absorbed, the solution indicated in the
statement.

&) The caserpz # 0 can be reduced tg pby performing the elementary operations
R12 andC12, so that we pass to the final possibility.

ag) Assumexzz # 0. Then we can write the vectors;, X», in terms of X3, as
X1 = a13X3, X2 = a»3X3. If a13 = a»3 = 0, the matrix becomes

1
f=? 42

0 1 0
10 0 ,
0 O 1+ x33

which, by evaluating the determinant, leads to the contradictionxtaat 0. Thus we can
assume thati;z # 0 orazz # 0, and then make the elementary operati®s— a13R3,
Ry — ap3R3; C1 — a13C3, C2 — ax3C3, to obtain the Hessian matrix expressed by

azg 1+aizazs  —a13
14+aiazs  ad —az3
—ai3 —azs3 1+ x33

Evaluation of the determinant givesl — x33(1 + 2a13a23), from which we obtain the
condition 1+ 2aj13a23 = 0, sincexssz # 0. Hence we perform in the last expression for the
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Hessian the elementary operatiaRis— 2a35,R1, R3 — 2a23R1; C2 — 2a54C1, C3 — 2a23C1,
to obtain
az, 0 0
0 0 —2az3 | ,
0 —2a23 x33
and the further operationg 3R>, 2a3R1; a13C2, 2a23C1; R13, C13, to reduce this to the case
a).
We now take the second cake= 1, r = 2. We assume again that the first step in
the procedure has been performed and obtain the Hessian matrix expressed by equation (2.3).
Since the role of the first two rows (and columns) is interchangeable by applying, if necessary,
the elementary operatiog > andC12, we have two subcasesi)irhe vectorsX; and X3 are
linearly independent (on an open, dense subset of the domajnhb linearly independent
vectors are the ones labeledX@sand X».
b;) We can write the vectak, = a21X1 + a23X3, and apply to the Hessian matrix the
elementary operation®; — ap1R1 — azzR3 andCy — ap1C1 — ap3C3 to obtain

X11 1 X13
(2.4) 1 a%S —2ap1 —az3
X13 —as3 1+ x33

If we evaluate the determinant of the latter, the fao@’— 2a1 appears multiplied by
the quadratic function represented by the second order determinant

X11 X13
X13 X33

9

which is different from zero on an open, dense subset of the domain. Hence we must have
a§3 — 2a21 = 0. Next, we apply to the matrix in (2.4) the elementary operatRnsg az3R1,
C3 + a23C1 and get

x11 1 xi3

1 0 0 ,

x13 0 1+ x33
where we have labeled the linear functiong andxz3 with the same notation for the sake of
simplicity. Finally, evaluating the determinant of the last matrix, we concludexthat O,
so that the Hessian becomes

x11 1 x3
(2.5 1 0 0
x13 0 1

We proceed to integrate this, having (2.1) in mind, as folloyisi = 1, fo2 = foz3 = 0,
imply fo = 1, from which it follows thatf = 12 + A(t1,3). FromAss = fa3 = 1
it follows that A3 = fz = 13 + B(t1), so thatAz; = f31 = B'(t}) = as1¢t! and A3z =
fa =134 (1/2)az11(th?. Thusf = 1112 + (1/2)(t3)? + (1/2)az11(tH?13 + (1/6)a111(11)3.
Finally, by performing a couple of elementary operations to the resulting Hessian matrix, we
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can assume that 11 = 0, and on the other hand absorb the rest of constants to obtain b) in
the statement of the theorem.

by) We write the vectorXs = a31X1 + az2X>2, and apply to the Hessian matrix the
elementary operation®3 — az1R1 — az2R2, C3 — a31C1 — a32C2, to obtain

X11 14+x12 —a3
(2.6) 1+x12  x22  —az1],
—as2 —az1 b

where, since the minor determinantxzz — (x12)2 # 0, we must havé = 1+ 2a31azp = 0.
Then, by successive elementary operationsaretransform the above matrix, first into

X11 l+x10 —az
l4+x120 co2+x22 0 |,
—aso 0 0

from which we observe that we must haye = 0, then into

x11 l4x2 1
1+ x12 1 0],

1 0 0
afterwards into
x11 x12 1
x12 1 0},
1 0 O

and finally, into the form indicated in (2.5). Thétilows that the present case is reduced to the
previous one labeled ag) The theorem is now proved.

3. Theclassfication of the four dimensional case.

THEOREM 3.1. Let X : M* — E® be a nondegenerate hypersurface with parallel
second fundamental (cubic) form, V(Ilya) = 0, which is not a hyperquadric, Il ya # 0. Then
X (M) is affinely congruent to one of the following graph immersions:

a) Fork=r=1  ®=1124+H3+ 32+ tH2

b) Fork=1r=2  ®=1%2+ (3% + H%3 + 2

c) Thecasewherek = 1, r = 3 isnot possible, i.e., there does not exist any non-
degenerate hypersurfaceimmersion with therequired geometrical propertiesin the casewhere
k=1landr = 3.

d Fork=2r=1 °=24+ H3+ 534

e) For k =r = 2, we have the following subcases:

o) S=l2y %(t1)3+ g(tl)2t3+ %tl(t3)2+t3t4+ %(ts):&’
with the condition that the minor determinant of the complementary matrix be different from
zero, i.e., detx;;) = (at + b3 (ctt + dt®) — (bt + cr3)? £ 0.

3 3 d
ern) 1°=142+ %tl(t3)2 + ,B%tz(ﬁ)z +3%* 4 €(t3)3,
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with the condition ¢ # 0.
fy Fork=2r=3

5_ 12,9232 34, ,b 103 €135 d 13 € 33
t_tt+2t(t)+tt+2(t)t+2t(t)+6(t)+6(t),

with the condition that (az3)2(bt3 + dtt) # 0, i.e., a # 0, andb # 0or d # 0.

PrROOF From Lemma 2.1 we have, as possible valuesfandr, k = 1,2 andr =
1, 2, 3, respectively.

a) Let us first takék = 1,r = 1. After the first step in the procedure, the Hessian
matrix is reduced to

x11 l4+x12  xi3 X14
1+x X X X
3.1) + x12 22 23 24
X13 x23  l+x33 x34
X14 X24 x34 1+ xaa

By making suitable elementary operations, this can be reduced to two subcases to be
labeled as: 8 x11 # 0; &) x44 # 0.

We observe that, in both subcases, the proof may follow an argument similar to that in
the proof of Theorem 2.3, case a), to obtain the solution as stated above. Thus, we can shorten
this part of the argument and proceed to the following case.

b) We now tak& = 1,r = 2. Again, by means of suitable elementary operations, this
is reduced to three subcases that we shall label abp and Ix), considered below.

b1) Inthedisplay (3.1), the vectopr§;, X3 are linearly independent (on an open, dense
subset of the domain) and we may wrke = a21X1 + a23X3, X4 = a41X1 + a43X3. Then,
by performing the elementary operations suggested by the latter equalitie®; ez;1 R1 —
ai3R3 andC; — a;1C1 — a;3C3, fori = 2, 4, the Hessian matrix is transformed into

X11 1 X13 0
1 by —az3  bpg
x13 —a23 1+x33 —aa3
0 boa —as3  ba

It is easy to see that the 2 2 submatrix(b;;) must be singular, since by the Laplace
development of the determinant, according to rows 2 and 4, its value appears multiplied by
the determinanii1xaz — (x13)%, assumed to bet 0. Moreover, sincéss = 1+ a§3, we
may write (baz, b24) = c(b24, basg), for somec € R, and perform the elementary operations
R2 — cRgq andCy — cCy, followed by R3 + a23R1 andC3 + a23C1, so that the Hessian matrix
is transformed into

x11 1 x3 0
1 O 0 0
x13 0 1+4x33 —aa3
0 O —asz bus
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By evaluating the determinant of the latter we conclude #3at= 0; and, by making
further elementary operations, we obtain that the Hessian matrix reduces to

x11 1 x13 O

1 0 0 0
(3.2) x3 0 1 0
0 0 0 1

Therefore, by Theorem 2.3, subcase b), we icéegrate (and absorb the constants) to
obtain

(3.3) f =+ 3%+ H%3 + 1H?.
by) Letus now assume that the vectdrs X, are linearly independent and wrikg =

ai1X1+ai2X2, withi = 3, 4. Then, we perform the elementary operati®s - a;1 R1—a;2R2
andC; — a;1C1 — a;2C>, fori = 3, 4, so that the Hessian matrix is transformed into

x11  l4+x10 —az —as

14+x12 x22 —as1 —a41
—asz —az1 b3z bag |’
—a42 —as1  bzs  bya

where the submatrig; ;) must be singular, for the same reason as in the previous case. But,
on the other handp;;) # 0, because otherwise the determinant of the Hessian matrix would
equal to(azpaa — aziasr)? = —1, a contradiction. Thus, we can assume that£ 0, and by
making some further elementary operations,chtare easy to determine, transform the latter
into

bii+x11 biz+x12 b1z 0

bio+x12 bap+x220 b2z 0

b13 bo3 0 (O
0 0 0 b

where we must haviziz # 0 orba3 # 0. We may assume the latter, and then further transform

the Hessian matrix into
biz+x11 x12 0 O

X12 X2 bz O
0 bz O 0
0 0 0 by

Then, by evaluating its determinatt —(b11 + xll)b§3b44), we conclude thaky; = O.

Finally, by making some further elementary operations, we transform the Hessian into the

form (3.2), so that this subcase is equivalent to the previous ahe, b

b3) Assume now that the vectoks, X4 are linearly independent, writé; = a;3X3+

aiaXy, fori = 1, 2, and perform the elementary operatidt}s— a;3R3 — aj4R4 andC; —

a;3C3 — a;aCy4, fori = 3, 4. Then, the Hessian matrix is transformed into
b1 b1z —aiz  —ais
b1z b2 —a23 —az4
—ai3 —a23 1l+x33  x34
—ais —aza X34 1+ x44
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where, again, the submatrik;;) must be singular bug 0, so that we can assurhg; # 0
and, by means of elementary operations, easily determined, transform the latter, first into

b11 O 0 0
0 O b23 bos
0 b23 b3z+x33 b3s+ x34
0 boa b3a+x3a baa+ xaa

and then, since one can further assume#bat~ 0, into

b11 O 0 0
0 0 bo3 0
0 b23 x33 X34

0O O x31 bas+ xa4

Finally, it follows thatx44 = 0 and, by further elementary operations, we can also reduce
the latter to the form (3.2); i.e., this subcase is also equivalent to the firsone b

¢) The third possible case corresponds to the vatuesl, » = 3. It is easy to see, by
means of suitable elementary operations, that this is reduced to two subgasex ¢).

c1) First, letus assume that the vectdrs X2, X3 are linearly independent on an open,
dense subset of the domain. Represent the remaining akig byaa1X1+a42X2+a43X3 and
perform on the Hessian matrix defined by equa(i®.1) the elementary operations suggested
by this equality, i..R4 — a41R1 — as2R2 — aazR3 andCys — a41C1 — a42C2 — aa3C3, to obtain

X11 l+x12 x13 —aq2

1+x12  x22 X23  —aq

X13 x23  1l4+2x33 —a43
—ag —as —a43  baa

where, since the X 3 principal minor of the complementary matrix det) # 0, we must
havebas = 1+ 2aa1a42 + a§3 = 0. From this we have thats> # 0, so that, by applying
further elementary operations, the latter expression of the Hessian matrix can be reduced to

xX11 X12 x13 1

x12 bop+x22  x23 O

X13 X23 l+x33 0]’
1 0 0 0

and since the determinant of the latter must equal19it is easy to see that we must also
haveby,; = 1 andx22 = x23 = x33 = 0. But then, the maximal rank of the complementary
matrix isr < 3, which contradicts our hypothesis. Thus, this subcase is not possible.

c2) Second, let us assume that the lineangependent vectors are the ones labeled as
X2, X3, X4. Then, represent the first one By = a12X> + a13X3 + a14X4 and perform on
the Hessian matrix defined by equation (3.1) the elementary oper&ionsioR> —ai13R3 —
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a14R4 andCy — a12C2 — a13C3 — a14C4. We then get the Hessian matrix transformed into

by 1 —ai3 —ai4
1 x22  x23 X24
—a13 x23 l+x33  x34 |’
—ai14 x24  x34 1+ 2xs4

where we must have 1 = —2a12 + af3 + af4 = 0. Further elementary operations transform
the latter into

0 1 0 0

1 x22  x23 X24

0 x23 1+4+x33 x32 |°

0 xp4 X34 1+ x44

from which it follows, by evaluating its determinant, thas = x34 = x44 = 0. Then we
would have that the maximal rank of the complementary matrix is again3, a contradic-
tion. Therefore, this second subcase is not possible, and so is the wholetdse = 3.

d) We now consider the cage= 2, r = 1. Then, by making suitable elementary
operations, it is easy to see that this can be reduced to a singlexgasé:0. Hence, by the
first step in the procedure, the Hessian matrix is reduced to

x11 l4+xi2 x13 X14
1+x X X X
(3.4) + x12 22 23 24
X13 x23 x33 l+x3a
X14 X24 14 x38  x44

where we can writeX; = a;1X1, fori = 2,3, 4. Then, after some elementary operations,
easily determined, the Hessian matrix is transformed into

x11 1 0 O
1 b2 0 O
0 0o 0 1f-
0 0 1 0

with boo = —2(a21 + az1a41) = 0, since the evaluation of the determinant gives Aoox11,
and we assumed that; # O.

Hence, also by using Theorem (2.2), we can integrate straightforwardly to obtain, in the
last system of coordinates on which the Hessian matrix is represented by the above:

PGt 28 = A2 4 (Y3 4+ 34

e) Next, we consider the cage= 2,r = 2. Itis easy to see, by means of elementary
operations, that this contains two subcaseythee vectorsy, andX 3 are linearly independent
(on an open, dense subset of the domaiy));X1 and X are linearly independent.

e1) We may writeX; = a;1X1 + a;3X3,i = 2,4, and perform on the Hessian matrix
(3.4), the elementary operatio®s — a;1R1 — a;3R3 andC; — a;1C1 — a;3C3,i = 2,4, 10
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obtain

x11 1 x13 O
1 by 0 bpa
35 x13 0 x33 1

0 boa 1  bu
Now, since the determinant of the<2 submatrix labeledy;;) is assumed to be different
from zero we must have that the determinant of the complementag/stibmatrix(b;;) must
vanish, i.e., déb;;) = boobas — b§4 = 0. Hence, we have two possibilitiegh;;) = 0 or
(bij) # 0.
e11) Letusfirst assume thab;;) = 0. Then the Hessian matrix becomes
x11 1 x13 O
1 0 0 O

x13 0 x33 1
0O 0 1 O

and straightforward integration allows to compute the solution as

(3.6)

b d
3.7) Fat 2,3, =% + %(tl)3 + E(tl)2t3 + %tl(t?’)z + 534+ 6(t3)3.
Now, since the Hessian matrix for this is
at*+ b3 1 bl
1 0 0
btl+ct® 0 el +drd
0 0 1
the constants appearing in the solution must satisfy the natural condition that the value of
the minor determinant of the complementary matrix bexdgt = (ar + b3)(ct + dr3) —
(bt + ¢13)2 £ 0.
e1p) The second possibility is to have dgt) = 0, and(b;;) # 0. In this case we may
assume thaby2 # 0. Hence there exists € R such that(boa, bag) = a(b22, b24), and we

may apply to the matrix in (3.5) the elementary operatiBas- « R, andC4 — «C2, followed
by R1 + ¢ R3 andC1 + «C3 in order to obtain the Hessian matrix represented by

ok o9

x11 1 =x13 O
1 b2 0 O
x13 0 x33 1
0 0 1 0

By evaluating the determinant of the latter it follows tha§ = 0. Then, by making the
further elementary operatio® + SR1 andCz + 8C1, B = —(b22/2), the Hessian matrix
can be written as
0 1 X13
1 0 PBxi3
x13 pBxiz X33
0 0 1

ok OO
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By integrating, we obtain the solution represented by
c c d
(3.8) Fat 2,8, =% + Etl(t3)2 + ﬂitz(ts)z +13% + 6(r3)3.

We observe that this solution is, in a sense, comparable to the one obtained previously.
In fact, if we puta = b = 01in (3.7) and8 = 0 in (3.8), then they do coincide . Besides, in
(3.8) we may always makeé = 0, by means of elementary operations.

e) Incasethak; andX; are linearly independent, we may wriXe = a;1X1+a;2X2,
i = 3,4, and apply the elementary operatia®s— a;1R1 — a;2R2 andC; — a;1C1 — a;2C>,
i = 3, 4, to transform the Hessian matrix (3.4) into the form

X11 14+x12 —a3z2 —as

14+x12 x22 —as1 —as1
—asz —az1 b3z bas |’
—a4p —as1  bzs  bya

where we must have dét;) = 0. Then, we consider two subcasesy)eb;;) = 0; &)
(bij) # 0.
e1) If (bij) = 0, we conclude thatzoasy # 0 orasiasr # 0, since the evaluation of
the determinant of the latter matrix gives the quantitypas; — az1as2)® = 1. Thus, in any
case, it is easy to see that we can make a finite number of elementary operations to transform
the above, first into

x11 x12 1 O
x12 x22 0 1
1 0 0 of”
0 1 0 O

and, afterwards, into the form described by (3.6), case e
ep) If (bij) # 0, we may assume thak4 # 0, and transform the Hessian matrix, by
means of successive elementary operations into

x11 1 x13 O

1 0 0 O
x13 0 0 1}°
0 0 1 O

which is a special case of (3.6).
f) Finally, let us consider the cage= 2,r = 3. Then, we may assume that, X, X3
are linearly independent (on an open, dense subset of the domain), and yeteis1 X1 +
aa2X2 + aa3X3. Then, perform on the Hessian matrix represented by equation (3.4) the
elementary operationBs — a41R1 — a42R2 — a43R3 andC4 — a41C1 — a42C2 — as3C3 to
obtain
x11 l4x12 xi13 —as
1+xi12  x22  x23 —aa
X13 x23 x3z3 1 |~
—a4 —agn 1 b
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where, in order to avoid a contradiction, we must have 2(asg1a42 — as3) = 0. Next, by
applying further elementary operations, we may transform the above into the form

x11 l+4+x12 x13 O

1+x12  x220  x23 O
X13 x23  x33 1)’

0 0 1 O

and by evaluating the determinant of the latterl + 2x12> + xfz — x11x22), we conclude that

the Hessian is written as
x11 1 x13 O

1 0 xx23 O
x13 x23 x33 1
0 0 1 O

Now, a straightforward process of integration allows to write the solution as
b d
(3.9 fr 2,3, =M%+ %tz(t3)2 +34 4 E(tl)2t3 + %tl(t3)2 + g(tl)?’ + %(r3)3 ,

with the condition thatar®)?(br3+drt) # 0,i.e.,a # 0, andb # 0 ord # 0. This completes
the proof of the theorem.

Since some of the solutions listed in the last theorem contain constant parameters, it is
quite appropriate to make the following comments and observations:

1) The solution obtained as subcasgg eequation (3.7), is the limit of that correspond-
ing to the case f), equation (3.9), when the parametends to zero. However, when£ 0
in the latter, we can perform further elementary operations to make the coefficient represented
by parametee equal to zero.

2) As we have observed, the solutions given by (3.7) and (3.8) are comparable. They
do coincide if we take = b = 8 = 0; and in the latter, one can always make- 0.

3) In solution g1), equation (3.7), the natural condition to be satisfied, i.e(xggt=
(att+b13) (et +dr3) — (bt1+c13)2 # 0, can give rise to the consideration of various, further
subcases. For example, if we take= ¢ = 0, one can absorb the remaining constant parame-
ters, by means of rescaling, and obtain an expression without parameters at all. However, we
have left the solution expressed as it is, besesathis represents the most general form.

Apart from these considerations, and the further possibility of performing rescalings, the
solutions obtained are inequivalent for diffatealues of the parameters, i.e., they do belong
to different classes under the action of the unimodular affine gaotip(n + 1, R).
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