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VORTEX FILAMENT EQUATION IN A RIEMANNIAN MANIFOLD
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Abstract. We define a riemannian version of the vortex filament equation. Using per-
turbation to a parabolic equation, we prove the short time unique existence of a solution for
any initial closed curve.

1. Introduction and preliminaries. The vortex filament equation is an equation of a
curvey (x, t) in the three-dimensional euclidean space:

V) Vi=Vx XVex, Ivxl=1,

wherex is the exterior product. Hasimoto [H] showed that this equation can be transformed
to a standard nonlinear Schrédinger equation. However, his transformation was not mathe-
matically well-defined.

The existence of a solution of (V) was first proved by Nishiyama and Tani [NT] using a
perturbation to a fourth order parabolic equati®he present author gave another proof using
a perturbation to a second order parabolic equation, and justified mathematically Hasimoto’s
transformation [K].

For a solutiony (x, t) of (V), & := y, satisfiest, = & x &,. Moreover, the nornj|
is preserved along time. Therefore, the equatio§ becomes an equation in the standard
spheres? in the euclidean three-spacEhis is a key point of the proofs in both [NT] and [K].
We can perturb the equation &to a parabolic equation .

In this paper, we consider the vortex filament equation in a general oriented three-
dimensional Riemannian manifold/, g):

(VM) Vi=vx X Vevx,  Iwxl =1,

whereV is the covariant differentiation. Whe1, ¢) is homogeneous, we can generalize
the above technique, and obtain the existence of a short time solution [K].

Our main interest is the stability of Equation (V) under the most natural generalization
from a point of view of Riemannian geometry.

In the euclidean space, Hasimoto’s transfation reduces Equation (V) of three un-
known functions to an equation of two unknown functions. However, in a general Riemann-
ian manifold, such a transformation converts Equation (V) to an equation of five unknown
functions, because the equation contains position variables.
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Therefore, we have to take more diregproach. We perturb the equationoftself to
a parabolic equation:

(P) Ve =¥x X Vavx + Vv

Nishiyama [N] took this approach in a different setting. He proved the existence of a solution,
but did not show its uniqueness. The difficulty is caused by the variation of the pQim
along time. We will overcome this difficulty by estimatipgandw := |y, |? simultaneously,

and prove

THEOREM 3.1. The equation (VM) has a unique short time solution for any C*
closed initial curve yp(x) with |V yo| = 1.

We here summarize our notation. We denotesjyhe pointwise norm, by the covari-
ant differentiation, byR the curvature tensor, and by the exterior product on each tangent
spacel’, M, respectively. Partial derivation is denoted by subscri@o6;:

-0 on' 0
ﬁu=3uni=3uﬁlﬁ=aiuﬁ-
The manifoldM, its structure and all functions avf are supposed to be of clag8°. We may
assume that the curvature and its derivatives are boundéfl decause we only consider the
short time existence.

For convenience, we recall relevant bafsicts from Riemannian geometry. For a map
n=nu,v): R> > M, n, is a vector field along the map The covariant derivative, X of
a vector fieldX alongn for u-direction is given by

VX = (VX) = = (8,X0 + T s - B’ - X}
ox! dx!
whereFjik are Christoffel's symbols. We sée,n, = V,n, by definition, but higher co-
variant differentiations do not commut&’,V, X — V,V,X = R(ny, n,)X. The curvature
tensorR has many symmetries, but we will not use them. The Riemannian metial the
exterior productx are parallel with respect to the covariant differentiatiopf{g (X, Y)} =
gV X, Y)+g(X,V,Y), V,(X xY)=(V,X) xY + X x (V,7).

We may assume, by rescaling, that the initial length of the curve is 1. Therefore, we may
considery as a map fronfR/Z) x R>o to M.

We will take function norms only far-direction. More precisely, we define tlie inner
product(x, ) and theL, norm||x|| as follows.

1 n
(o, B) :=/0 g, Bydx, Nal® = (@), leli=) IVia|?.
i=0

Also, ||«||c» measures only-derivatives and is a function in By integration by parts, we
have(V, X,Y) = —(X, V,Y).

2. Existence. Inthis section we consider Problem (P) with a closed initial cyp(e)
such thatyo,| = 1. We assume that@ ¢ < 1. Then (P) becomes parabolic, and a short time
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solutiony (x, r) exists for each (see, e.g., [E, Theorem 6.3]. We apply it to periodic functions
onR). In the following, we denote by, C;, K andT positive constants independentsof

LEMMA 2.1. w; = e(wyex — 2|Veyx|d.

PrRooF It follows from a simple calculation that

wr =29 (v, %ive) = 29 (e, Veve) = 29 (va, VeV X Vava 4+ vx X Vipx +€V2yy)
= 2e{d: (g (yx. Varn)) — [Veral?) = e(wex — 2V [?) .

LEMMA 2.2. Itholdsthat maxw < land ||Viyll, lwell < C.

PrROOFE By the maximum principle, Lemma 2.1 implies that max 1, i.e.,

1 1
lim sup—-{maxw(x, 1) — maxw(x, t — h)} < limsup—{w(x,t) — w(x,t — h)}
hl0 h 110 h
= wy(x, 1) < ewyx(x, 1) <0,

wherex is the maximum point ofv atz. For ||V, yx ||, using integration by parts, we have

d
Envxyxnz = 2(Vi ¥, ViVeva) = 2(Vava, Re, v vx + V201

= 2(Veye, R(vx X Vieva 4 6V va, Yo)Va) — 2(0V2)0, va X V2 + eV2yy)
< C1l|Veye | = 2¢6[V2y4 12,

which means thatV, y, || increases at most exponentially. Consequently, we se@¢dhdt—=
129 (vx, Veyo) | < 2[Veyxll < Coa. O

LEMMA 2.3. There exists a positive constant 7' such that w > 1/2 holds for any
solution y (x, ¢) defined on a subinterval [0, T7) of [0, T).

PROOE By Lemma 2.2, we havigV, v, |, lwy| < C1. Hence, from

%nwn2 = 2(w, w;) = 2&(w, wry — 2| Veyx|?) = —2e|lw|? — de(w, [Veyx|?)
> —Co — 4| Viyxl? = —Cs,
we see thafjw||2 > 1 — C3T holds on 0< r < T, and that
11— w|® < 11— w|®+ [lw|® — 14 C3T < 2(w, w — 1) + C3T < C3T .
Therefore, by the Sobolev imbedding theorem,

max1— w)? < |1 — w||/(|1 — w| + [wy ) < Cav'T (VT + Cs),

and the result holds for a smail O
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LEMMA 2.4. Lety(x,t) beasabove Thereexistsa positive constant C such that

. d
e 1Enwxn2 < —Jwxl? + CA+ V21D

. d
e lEnwmn2 < —werl®+ CA+ V2|3 .

PrROOFR

d
Enwxn2 = 2(wy, Wiy) = —26(Wyx, Wy — 2| Vayal|?)

= —2ellwix|? + de (war, [Veysl?) < —elwsall® + Cre | Veya 121 Veysl 20 .

d
E ||wxx||2 = 2{Wxx, Wixx) = —28(Wxxx, Wxxx — 49 (Mevy, szyx»

= —2¢||wyrx |1 + 86 (Wirx, g (Veya, Vivr))
< —elweax | + C2e | Vv |20 V2yx 12 .

|

PROPOSITION 2.5. Thereexist positive constants T and C suchthat || V2y, || < C and
lwy || co < C4/& hold for any solution defined on a subinterval [0, T’) of [0, T).

PROOFE We consider in a small time interval such thg2lk w < 1 holds by Lemma

2.3. We calculate the time derivative [p¥2y, ||? to get

%nvxzyxnz = 2(V2ye, Vi)

= 2(V2¥x. Ryt vo) Veve + Ve (R, v ve) + Vi) -
The curvature terms are bounded by
CallVEvs Ve ? + 1V2yxlll < Cal+ 1Vl -

For the remaining term(¥?2y,, V3y,), we have

202y, Vi) = =2(Vyx, Vv

= —Z(Vx3yx, Vivx X szyx + yx X Vx3yx + 8Vx3)/x)
= —2e[|V3pell? — 2(V3yx, Viyx X V).

We decompose each factor ﬁffyx, Viyx X szyx) to they, part and the component
perpendicular tg, to get

_2<Vx3)/x, Veyx X Vx27x> = _2<w_lg (Vx3VX7 V) Vxs VaVx X sz)/x)
— 2<Vx37/x, w_lg (Meve, Vo) vx X vxzyx>
- 2<Vx37/x: wilg (szym Vo) VeV X Vx) -
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For the first term, we use the equalityy Wx3yx, Yx) = Wyrx — 30 (|Veyx|?). Then
—z(wflg (ngyxs Yx) Vx> VaVx X szyx>
= —(w Hwyer — 30: (Ve D yes Vev X V)
< Cs(lwxaxll + Ve vallcolV2y DI Ve vl co | V2yx
< llwexxl? + Co(L+ IV2y: %) .
For the second term, we use the equality(¥; yx, yx) = wy. Then
—2(V3ye, w g (Veye, vo)ve X V2y2) = = (V3 w ey x V2y,)
< C7llwll ol V23 lIV2yell < Calllwi || + llwxx DIVEye V2 vzl
< el V32112 4+ Coe L(lwy |12 + llwax 1P I V2yx I
For the last term, we use the equality; ¥y, yx) = wyr — 2|Veyx |2 Then
—2(V3, w g (V2ye, vo) Ve X va) = 2(V2px, 0 {w ™ g (V2pe, v} Ve X 1) s
which has bounds similar to the first term.
Summing up these, we have
d
Envxzyx 12 < =&l V32112 + 2 wrx I?
+ Crof1 + V2, I3 + e llwe 1 + lwax 1D 1V2yx 12} -

Combining it with Lemma 2.4, we see th&i(t) := e~ 2||w, ||+ & wyx |2+ (1/2) | V22 |2
satisfiesX'(r) < C11(1 + X (1))?. Therefore e Y|w, %, e Lwyy |2 and | V2y, | are uni-
formly bounded on a certain finite time interval. O

LEMMA 2.6. Let T be asin Proposition 2.5 and n a nonnegative integer. For any
positive number K, there exists a positive constant C such that if ||yx[l,+2 < K, then

1d

8dt

82 Bw)? < — a7 wl + CA+ VI3 yll?)
PrROOR
S arul? = 2<8§Z+3w, 0 wn = =20 (0w, 97w - 2|vxyx|2>>>
< =27 w||% + del| a7 w1072 (| Ve yx D) -
Here, we also have

187 2(1Ve v DI < 21V 2yl Ve vl co + CoIV 2yl Ve vl or + Ca
< C3(1+ V" By,
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LEMMA 2.7. Let T beasin Proposition 2.5 and n a nonnegative integer. For any
positive number K, there exists a positive constant C such that if ||yx[l,+2 < K, then

d
o IV 3012 < —e |V 4y + CA+ IV By 4 100 w])?) .
PrROOE

d
Envx"”yxnz = 2(V'" 3y, ViV 3y

n+2

— 2<Vxn+3)/Xa Z V; (R(yh yx)vaneri yx) + Vxn+4yt>
i=0

< CillyrllZys + 20V 3y, VI (e x Veyr + eViy))

n+4

n+4 ; _
= Cilly:lZ s — 261V el +2) ( l. ><Vx”+3yx, Viye x Vit3yy)
i=0

In the last summation termiVi v, x Vvl < IViyellcoll VW yxll < C2if i < j <n+2,
and cancels if = 2 orn + 3. Therefore, we have to measure only terms wigh 0, 1, n + 4.
Moreover, the term withi = 0 equals to—(VX”+3yx, Vivx X Vx”+4yx), and is reduced to the
case = 1.
As in the proof of Proposition.8, we decompose each factor of the term with 1 and
n + 4 to they, part and the component perpendiculayto
(VI3 Ve x Vi) = (w g (VI By, vove, Vers x Vi)
H (VB w g (Vv v ve x V)
+ (Vxn+3)/x, w_lg (Vx"+4yx, V) Viyx X vx) .
We know thatg (V' +3y,, yy) = (1/2)87 3w — C3g(V'"* 2y, Vi y:)+(lower derivatives).
The first term is estimated as
(W™ (Vi 3y v ve, ey x Vi)
= —(3x{w_lg (Vxn+3yx’ Y)Y Ve Veyxe X Vxn+3)/x>
— (W g (Ve v v Ve x V)
< Ca(l7 M wll + Iyxllass + 1072wl co + Iyl enr2) V7 2y
< Cs(L+ 07wl + 19 Py DIV Byl
< Co(L+ 137 wl® + IV 3y.l1?) .

The last term(Vx”+37/x, wlg (Vx”+4yx, yo)Viyx X yx) can be estimated similarly. Since
lg (Ve ¥x, vo)| = (1/2)|wy| < C74/¢, the second term is estimated as
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(Vi whg (Veve, vy x Vi) < Cavell V! Byl H sl
< ae|| VI y|? + Coa VI 3y )12,
wherea is an arbitrary positive number.
Summing up these with sufficiently small we get the result. O

THEOREM 2.8. Let T beasinProposition 2.5. There existsa C* solution y of (VM)
on0<t<T.

PROOF By Lemmas 2.6 and 2.7X (1) := [|[V/"3y, |12 + Ce~1||8"3w||? satisfies
X'(t) < C1(1 + X (1)), whereC is as in Lemma 2.7. Therefore, by induction, each solu-
tion is smoothly bounded. Since the bound is uniform with respect tee can continue
the solution up td". Moreover, since the bounds are independent af subsequence ¢f
(¢ 4 0) converges smoothly. The limit is a solution of (VM). O

3. Unigueness. Once proving the existence of a solution, to show the uniqueness is
standard. We take a tubular neighbourhadaf the initial datayo, and embed it irR%. In
other words, we consider the vortex filament equatioR3nvith a curved Riemannian metric
¢. With the coordinate oR®, we express the covariant differentiation and the exterior product

by
Vea = V(@' ;) = () + Tjikyla®)or, ax = (ald;) x (B*) = x;'xa’ B*0; ,

whered; are the coordinate vector fieIdEjik are the Christoffel symbols, ar)q-"k are the
coordinate expression of the exterior product. Using this, (VM) is written as

vl = X vl + Thaviv .

Letn be another solution with theme initial data. By ignoring in Section 2 satisfies
the same estimation 3s We usey andI” the corresponding coefficients alongand put
¢hi=n' —y'. Then¢' satisfies
(B-1) & = x'wrd @y + 20yt + 1k v + Dy + x5l e + P

whereP is a sum of terms that contaifig’s — x s, I'j'x — I'jix orziz{. Sincey and¢ = n—y
are smoothly bounded, we know tha&|, | P,| < C1(|Z]| + |&x]).
We identify¢ with a vector field;?d; alongy. Then we obtain

V¢ = (& + Tyl ¢9a;,
Vil = L+ vl cha;,
| i Jsk 0o JN sk i Jprk lemyq.
ng = ({xx—i_zrj kVx &y +(F] kVi)x& +Fj 13228 m¥xC )0;.
Substituting these to (3.1), we get
Vit = ye X V2 4+ Vel x Vieye + Vil x V2L 4+ 0,

where Q is a sum of P and terms that contaig’ or g;';){. Note that|Q|, |[V; Q0| <
Co(1¢| + [V D).



318 N. KOISO

Therefore, we have

d
Encnz = 2(¢, VL) = 2(L, yx X V2L + Vil X Vayy + Vil X V¢ + Q)

= —2(¢, Veyx X Val) + 202, Vil X Veyx) + 2(C, Vil x V2¢) +2(¢, Q)
< G3llIE I + 1V:¢ID

becausé’?¢ is bounded. Also, we have

%nvx;nz = 2(V, ViVel) = 2(VL, R(yr, v)¢ + Vi Vi)
< Callg VeS|l = 2(V2¢, Vig)
= Call¢ Vet Il — 2092, Vet x Veyx + Q)
= CallC VS | — 2092, Vi % Veyx) + 2(Vet, V2 O)
< CslCIAIE I+ IVEC 1) — 2092, Ve X Viy) -

To estimate the remaining term, we use the equality;, y») = 1. By the same way
as the case of" and x, it implies thatg (yx, Vx¢) can be expressed as a sum of terms that

containg;; — g;;, ¢ or ¢iz!, and we haveg (y.. Vi O)l, 10:(g (v, V), 19 (v VEO! <
Cs(|¢] + Vi Z]). SinceV, yy is perpendicular to,,

(V2C, Vil X Vieye) = (9(V28, o) Ve, Vel X Vieya) 4 (V22, g (Nl o) ve X Vavs)
= <9(Vx2§7 Yo)Vxs Ve & X Vevx) — (V8 Vi {g (Ve 8L v v X Vieva))
< CAIVRCIAIE I 4 IV -

Therefore X (1) := || |2+ || Vi ¢ || satisfiesX’ (1) < CgX (1), which implies that identically
vanishes. We have proved

THEOREM 3.1. (VM) has a unique short time solution for any closed initial curve
yo(x) with [yo,| = 1.

4. Appendix. In Section 2, we heavily used the fact that the time derivative of
is bounded by. There is another method of estimation, which we did not use because it
is lengthier than the proof given in Section 2. The method uses a weighted norm that has
resemblance to [N]. Therefore, there may be some interest to the method. Here, we give its
key point.

Since thes-parts are easy to estimate by usual parabolic equation’s argument, we can
ignore such terms. Also, we can ignore curvatterms, because they contain only lower
derivatives.

Let ¢ be the part ofvxzyx perpendicular tg/,. Namely,

@ i=V2y —uye;  ui=w tg(Viy, ) = wH(we/2) — (Ve l?)
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By Lemmas 2.2 and 2.3, we know thg¥, v, || and|w, | are bounded from above, and
thatw is bounded from below. Therefore,
0| Vevx 12 = 29 (Veyx, V2yy) = 29 (Veyr, @ + uyy)
10x [Veyxlll < llell + llull < Calllell + lwxxll + Ve yxllco)
1

=< §||ax|vx7/x||| + Ca(lloll + lwexll + 1),

Viyzllico < Ca(llell + lwaxll + 1),
2. 12 _ 2 2 2 2
IVEyelle = llell + lluyc 1€ < Callloll® + lwex1© + Vi Yxllco)
< Cs(llell + llwex |2+ 1) .

which imply that we can usgy|| instead OﬂIsz)/x I. Note also thatv,, contains third deriva-
tives ofy, and is comparable tp. From

w; = [e terms],
Ve = Vx X Viyx +&Veyx = ¥x X Viyx + [e terms],
Vivi = ¥x X V2yy + [ terms]= y; x ¢ + [e terms],
we have
Vip = ViViye — uiye —uNeys
= V2(yx X @) — uryx — uyy x ¢ + [&, lower terms}

For a constant, we putX (1) := [[w’¢||? + ||w..|I?. Then we have
d
E||w“go||2 = 2(w¥ g, V;p) + [¢ terms]= 2(w? ¢, V2(y, x ¢)) + [¢, lower terms]

= —2(0; (W) g + WPV, Veyy X @ + yx X Vi) + [&, lower terms]
= —4a(w2”71wx(p, Ve X Ve) — 2(w2”ng0, Vieyx X @) + [&, lower terms]

Here,
—2(w* Ve, Viyx X @)
-2 2a—1 _2 2a—1
=—-2(w gV, Yo) v, Ve Vx X @) (w Ve, g (Ve Vx, Vi) Yx X @)
= 2w* g (0, ey vr. Vevx X 9) — (Wt Ve, vx x @) .
Therefore,

d _
T wel? = (4a = D™ FunVep, v x ¢) + 2@ 121 Veye Igo + e, lower terms]
< (4a — D(w? Tw, Vi, ye x @) + Ce(1+ X (1)?) + [ terms].

Fora = 1/4, we haveX'(t) < C7(1+ X (1)), and X (r) is bounded on a certain fi-
nite time interval[O, 7). For higher derivatives, we can check by a similar calculation that
X, (1) := lwtD/Avn |12 4 |87+ 2y |2 satisfiesX’ (1) < Ca(1+ X, (1)), whereCg depends
on X,_1. Thus, by induction, we can estimate all derivatives@r).
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