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Abstract. We generalize Roberts’ counterexplem to the fourteenth problem of
Hilbert, and give a sufficient condition for ceianvariant rings not to be finitely generated.
It shows that there exist a lot of counterexamples of this type. We also determine the initial
algebra of Roberts’ counterexample for some monomial order.

1. Introduction. The fourteenth problem of Hilbert asks whether fhalgebral. N A
is finitely generated. HereX is a field, A is a polynomial ring ovek, andL is a subfield of
the quotient field ofA containingK . The first counterexample to this problem was found by
Nagata in 1958. It was given as the invariant subring of a polynomial ring in 32 variables for
a linear action of the 13-dimensional additive group (cf. [12]). Recently, Mukai [11] showed
that there exists a similar counterexample which is the invariant subring of a polynomial ring
in 18 variables for a linear action of the three-dimensional additive group.

In 1990, Roberts gave a simple new counterexample of different type as follows.

THEOREM 1.1 (Roberts [14, Theorem 1])Let A = K|[x1, x2, x3, V1, y2, ¥3, y4] be a
polynomial ring in seven variablesover afield K of characteristic zero. For each nonnegative
integer ¢, let L, be the subfield of the quotient field of A generated by

(1.2) X1, X2, X3, X1ya—Xpxhy1, Xxoya—xixbys, x3ya—xjxbys
over K. Ift > 2,then the K-algebra L, N A is not finitely generated.

Following this result, Deveney and Finston [2] showed that this counterexample can be
obtained as the invariant subring affor a nonlinear action of the one-dimensional additive
groupG,. Kojima and Miyanishi [6] generalized Roberts’ counterexample. They constructed
a G,-invariant subring of the polynomial ringf @ach dimension greater than or equal to
seven which is not finitely generated. Furthermore, Freudenburg [4] gave a counterexample
in dimension six, while Daigle and Freudenburg [1] gave one in dimension five.

In the present paper, we will generalize Robecbunterexample further, and show that
there exist a lot of counterexamples of this type. We give in Theorems 1.3 and 1.4 sufficient
conditions for a certain kind of; ,-invariant subring of a polynomial ring not to be finitely
generated. In Section 3, we will discuss Roberts’ counterexamplel in terms of the theory
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of SAGBI (Subalgebra Analogue to Grébner Bases for Ideals) bases. As a consequence, we
determine a generating set of it in Theorem 3.3. We also remark on a sufficient condition for
finite generation in Section 4.

Throughout this paper, l&k denote a field of characteristic zero. Assume tRas a
commutativek -algebra, andi is a commutativeR-algebra. AnR-homomorphisnD : A —
A is called anR-derivation on A if D(ab) = D(a)b + aD(b) holds for anya, b € A. Then,
its kernel

AP ={a e A| D(a) =0}

is an R-subalgebra ofA. An R-derivationD on A is said to bdocally nilpotent if, for each
a € A, there exists: € Z-¢ such thatD"(a) = 0. Here, we denote bf o the set of
nonnegative integers. We remark that a locally nilpotRrderivation D on A defines an
actionA — A ®p R[t] of the one-dimensional additive group schefhge= SpecR|[t] over
RonAbya— Y ,.,D"a)® (t*/k!). The invariant subringt S« of A for this action ofG,
is equal toA? (cf. [10]).

Let R = K[x] = K[x1,...,x,] be the polynomial ring inn variables overk, and
A = K[x][y] = K[x][y1, ..., yx] that inn variables oveK[x]. A K[x]-derivationD on
K(x][y] is said to beclementary if D(y;) is in K[x] for eachj. Note that an elementary
K[x]-derivation is locally iipotent. An elementar¥ [x]-derivationD on K [x][y] is said to
bemonomial if eachD(y;) is a monomial, i.e.x{* - - - x; for some(ay, ..., an) € (Z=0)".
In this paper, we discuss the problem of finite generation of the keshel[y]P of an el-
ementary monomiak [x]-derivationD. As we remarked above, it is equal to the invariant
subring of K [x][y] for an action ofG,, sinceD is locally nilpotent. Note thak [x][y]” is
finitely generated ovekK if and only if it is so overK [x].

In the case ofi = m + 1, theK [x]-derivation

_ 141 0 t+1 9 t d
(12) Dt’m - a_yl e o ay—m * (xl N ‘xm) Bym+1
on K[x][y] is elementary and monomial. The kern&[x][y]?» of this K [x]-derivation
has been studied well. Deveney and Finston [2] showed that Rolierdgebral, N A in
Theorem 1.1 is equal to the kern€lx][y]”» for m = 3 (see also Maubach’s result found
in [3, Section 9.6]). Furthermore, Kojima and Miyanishi showed the following.

THEOREM 1.2 (Kojima-Miyanishi [6]). Assumethatn = m + 1. Ift > 2andm > 3,
then the kernel K [x][y]” of the K [x]-derivation D, isnot finitely generated over K.

We will study the kerneK [x][y]” of an elementary monomia [x]-derivationD on
K[x][y] of more general form. LeD(y;) = x% for eachi = 1,...,n. Here, we denote
by x¢ the monomialej® - - - x;" for a = (a1, ...,an) € Z™. Similarly, we denote by’
the monomialyi’l . --yf{" forb = (by,...,by) € Z". Pute;; = 6; — ¢ for i, j, and for
k=1,...,m, letef ; ands} be thek-th components of; ; ands;, respectively.

In Sections 1 and 2, we deal with the case where 4,m > n — 1 andgff,j > 0 for
anyl<i<n-1,1<j <nwithi # j. The derivationD; ,, satisfies this condition with



A GENERALIZATION OF ROBERTS' COUNTEREXAMPLE 503

e, =1+1if j #m+1, ands] ; = 1 otherwise. We define

1

_ €1n
13 T mingel (=2 -1
and
(1.4) ki = nmin{maxe} ;. €5, }, 0}
fori=2,...,n—1andk=3,...,n— 1. Foreaclk =3,...,n — 1, we set’; ,_» to be

the system of linear inequalities

ul+.'.+un—2=l
ur=n, u; =00 =2...,n-2)

(15) n—2
> omin{el . jduj i =06 =2.....n—1)
j=1

inthen — 2 variablesty, ..., u,—2.

Here is our main result.

THEOREM 1.3. Assumethatn > 4,m > n — 1andgff,. > O0foranyl <i <n-—1,
1< j<nwithi # j. If thesystem £y ,—2 of linear inequalities has a solution in R"2 for
eachk = 3,...,n — 1,then K[x][y]? isnot finitely generated over K.

By this theorem, we get the following simple criterion foe 4.

THEOREM 1.4. Assumethatm > 3,n = 4and eff_j >0foranyl<i<3,1<j<4
withi # j. If

1 2 3
(1.6) €14 €24 €34
' min{el ), el .} min{e2 ., ¢2.}  min{e3,, 3.} ~
120 €13 23 %21 31° 832

3

then K [x][y]? isnot finitely generated over K.

The examples of Roberts are included as special cases of this theorem=08. In
case(m,n) = (3,4), there exist 2450001 derivations @f[x][y] which satisfy (1.6) and
gedx®, x%2, x%3, x%} = 1 even if we impose the restricti@4 < 10 for alli, k.

In the following corollary, the case where > 4 and: = 1 is new, while the case > 3
andr > 2 was proved in [6].

COROLLARY 1.5. Assumethatn =m + 1. Ifm > 3andr > 2,orm > 4andr =1,
then the kernel K [x][y]P of the K [x]-derivation Dy, isnot finitely generated over K.

We will prove Theorems 1.3, 1.4 and Corollary 1.5 in Section 2.

We remark that, it = 0, then the kerneK[x][y]” of D, is finitely generated
for any m by Weitzenbtck’s theorem (cf. [12, Chapter 1V]). In fact, it is isomorphic to a
polynomial ring in 2n variables ovek by the remark after Lemma 4.2 belowusif < 2, then
K[x][y]P is also isomorphic to a polynomial ring in/2variables overk for anyr > 0
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by [5, Theorem 3.1]. Fotr, m) = (1, 3), Kurano [7] showed thak [x][y]”~" is generated
by nine elements ovek [x].

The author would like to thank Professor Masanori Ishida for helpful comments and
encouragement. He alsbanks Professor Kazuhiko Kurano for informing him of the result
on the kernel oDy 3.

2. Construction of invariants. In this section, we prove Theorem 1.3, and show The-
orem 1.4 and Corollary 1.5 as its consequences. Throughout this section, we assuine that
4, m > n — 1andthatD satisfiesf,j >0foranyl<i<n—1,1<j<nwithi# j. We
denotek [x, x; %, ..., x; Yyl = K[x1[y] ®K(xy....xn] KlXns s Xm, X735, ..., x-2]. Note
that D is uniquely extended to K [x]-derivation on eaclX [x]-subalgebra oK [x, x Nyl

Theorem 1.3 follows from the following two lemmas.

.....

LEMMA 2.1. If a monomial of the form x“y! with I > O appears in an element of
K[x][y]?, then at least one of the first n — 1 components of a € (Z=0)™ ispositive.

PROOF. Suppose to the contrary that there appearg i K[x][y]® a monomial
x“y! with the firstn — 1 components of zero with nonzero coefficient. Then, the mono-
mial x“x% y!=1 appears inD(f). SinceD(f) = 0, its coefficient inD(f) is zero. Hence,
x“x%yl=1 appears as a monomial iB(x?y”") for some monomiak®y?" # x4yl of f.
Suchx“’y?” must be equal ta?x*i y;y/~1 for somei < n. Sinces’ . < 0fori < n, we

n n,i
havex®y? ¢ K[x][y]. This contradictsf € K[x][y]. Thus, at least one of the firgst— 1
components of € (Z>o)™ is positive. O

The lemma below asserts the existence of an infinite system of invariants.

LEMMA 2.2. Under the assumption in Theorem 1.3, there exists a positive integer o
such that a Laurent polynomial of the form

(2.1) xfy,l1 + (terms of lower degree in,)

belongsto K [x, x; L, ..., x, ][y]” for each/ > O.

First, we show Theorem 1.3 by assuming these lemmas. Supposlé[ﬂﬂi{iy]’) is gen-
erated by a finite number of elemenys ..., g,. Then, by Lemma 2.1, there exists> 0
such that each monomial appearinggirof the formxfxbyf, with [ > 0 and the first — 1
components ob zero satisfied/8 < r for everyi. Since every element & [x][y]? is
written as a sum of products of, . . ., g,, a monomial appearing in an elementiofx ][ y]?
is a product of monomials contained 4, ..., g,. Hence, any monomial appearing in an
element ofK [x][y]? of the formxthyf1 with [ > 0 and the firsk — 1 components ob zero
also satisfie$/p < r. By Lemma 2.2, there appears in soffies K[x, x; %, ..., x, [yl
a monomialeyf, with [/ > r. Sincex?®f is in K[x][y]” for somea e (Z>0)™ whose
firstn — 1 components are zero, we are led to a contradiction. Tkips)[y]” is not finitely
generated.



A GENERALIZATION OF ROBERTS' COUNTEREXAMPLE 505

Let us denote by [y]; the K-vector subspace & [y] = K[y1, ..., y»] of homoge-

neousl-forms iny1, ..., y,. For eachf = Y, ,. Ay’ € K[y], we define thesupport
supp(f) of f by
(2.2) supff) ={b e Z" | 1y # 0}.
For eachu € Z", we define thek -linear maprye : K[y] — K[x,x 1[y] by txa (y?) =
x"/yb. Here,b = (b1,...,b,) anda’ = a + 27:1 bjen ;. We define an elementark -
derivationE on K [y] by

0 0
2.3 E=—+4 4+ —.
23) dy1 Oyn

Then, it follows thatD (t,a ( f)) = x% 1« (E(f)) for eacha € Z™ and f € K[y]. We set
(2.4) B =Kl[y2—y1, 3= Y1, .-+, Yu — y1l.

Then,zxa (B) C K[x, x~H[y]" fora e 2. Actually, D(txa (f)) = ¥ tea (E(f)) = O for
f € B, sinceE(f) = 0. We defineR-linear maps; : R" — R by

n—1
(2.5) (b1, ... by)) =&y b1+ min{ey ;| j=2.....n—1) ij
j=2
and
n—1 ' -
(2.6) Li((b1,...,by)) = Z min{e!, ;. ] ;1b;
j=1

fori=2,...,n—1. We putB; = BN K[y], foreach € Zo.
We reduce Lemma 2.2 to the following lemma.

LEMMA 2.3. Under the assumption in Theorem 1.3, there exists a positive integer «
such that, for each positive integer 7, we may find f € B; suchthat (0,...,0,/) € supaf)
and every b € supp f) satisfies/1(b) + @« > 0andl;(b) > 0fori =2,...,n — 1.

Lemma 2.2 is proved by this lemma as follows. As we mentioned abgyef) is in
K[x,x~1[y]”. Ithas the form of (2.1). We show that itis Ki[x, x;L, ..., x-1][y]. By def-
inition, every monomial appearing 'u;uf (f) is written anfx“’yb, whereb = (by, ..., by) €
supp f) anda’ = Zf}zl bje,, ;. By assumption, we have

n
ijsi)j +a>li(b)+a=>0
j=1

and

n
Zb.,-s,’;’j > 1;(b) > 0
j=1
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fori=2,...,n—1. Hence,xi“x“/y” does not have negative poweraip, . .., x,—1. Thus,
T (f)isin K[x xL o, xt[y]P. This proves Lemma 2.2.

s

Let Pp bethe setob = (b1, ..., by) € (R>0)" With
2.7) b1=b,=0 byp+---+b,_1=1, L(b)>0 (=2,....,n—-1).

Here, we denote bR -q the set of nonnegative real numbers. For daeh(by, ..., b,—2) €
R"2, we set(b) = (0, by, ..., b,_2,0). Note that, ifb € (R=0)" 2 is a solution ofL; ,,_»,
thenl; («(b)) +nr; = Ofori =2, ..., n—1. This condition is equivalent to the condition that

t(b), t(b) +n(ex — e2) € Pp, whereeq, ..., e, are the coordinate unit vectors Bf . Indeed,
if 8;’,( < 8; 1 then

ki = nmin{maxey ;. &5}, 0}
= npmin{sl , —min{e! ,, & .}, 0
(2.8) n - { %k - { n,1 n,?} } -
= nmin{min{e,, ;. &, 1} — minfe; 1, €, 5}, 0}
= min{nl; (ex — e2), 0} .
If &} , > €, 1, thene} , > 0. The equalityy ; = min{rl;(ex — e2), 0} also holds in this case,
since the right hand sides of the first and the third equality in (2.8) are zero.
For a convex subse? C R", we denote'P = {rb | b € P} forr € R>o.

LEMMA 2.4. Under the assumption in Theorem 1.3, there exists o’ > 0 such that, for

anyr > o’ andus, ..., u,—1 > Owith Zz;éuk <n(r—a),thereexist p3, ..., pn—1 € Z>0
such that
n—1
(2.9) rez+ Y (scux + pi)(ex — €2) € rPp
k=3
foranyss, ..., s,—1 € [0, 1].

PROOF. SinceL; ,—2 has a solution, there exisbg € Pp with by + n(ex — e2) € Pp
foreachk = 3,...,n — 1. Let P be the convex hull of

{br, by +n(ex —e2) | k=3,....,n—1}

in R", andd a positive number such that tlleneighborhood of a point € P is contained
in P. Here, we consider the Euclidean topology induced from that on the affine subspace
H =ex+ Y725 R(ex — e2). Then, define’ = (1/d)y/(n — 2)(n — 3). We show that this’
satisfies the desired property.

Take any- > o'. Note that it suffices to show (2.9) fog, . . ., u,—1 > Owith Y7 —3 uy =
n(r —a'). We setu; = ui/(n(r —a')) for eachk. Then,

n—1

(2.10) > ui(bi + sinex — e2)) € P
k=3
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foranyss, ..., sy,—1 € [0, 1]. Actually, sinceP is convex,
by + sgn(ex — e2) = (1 — sp)by + s (bi + n(ex — e2))

is in P for eachk. SinceYj_3u} = 1, we get (2.10).

For eachy € H, defineamafd, : P — rH by Ty(c) = o'q + (r — &')c. Since
0<da <r,wehavel,(P) CrPif g € P. Puth’ = Ta(ZZ;é u}by), and choosg), € R-o
so thath! = res + ZZ;% pi(ex — e2). Then, letp; be the nonnegative integer we obtain by
adding an element in—1/2,1/2] to p; for eachk. Puth = rez + ZZ;% pr(ex — e2) and
a =a+ @) 1b-0b"). Then,

n—1

n—1 2
—-2)(n—3
b — b =J (Z(pk —p@)) +Y (k= p?< %
k=3

k=3
So, we have
la—da|= @) b-b|<d/2.
By the choice ot, the pointe’ is in P. Hence,T,/(P) C r P. Moreover,
Ty(c)—Tyc)=0d'(a’ —a)=b—-b

forc € P. Thus, we get

(2.12) (b—b)+Tu(P)CrP.
On the other hand, we have
n—1 n—1
b-b)+Ta ( > u by + sin(ex — ez))) =b+ ) siur(er — e2)
k=3 k=3
n—1
=rez+ Y _(pk + skur)(ex — €2) .
k=3
Itisin (b — b') + T, (P) for anys; € [0, 1] by (2.10). Then, (2.9) follows from (2.11), since
r P is contained inr Pp. Thereforeq’ satisfies the desired property. i

Now, let us prove Lemma 2.3. First, we show that the assumption that&ach has
a solution implies thaat,’;’l >0 ande}m > 0fori = 2,...,n — 1. Suppose to the contrary

thate! ; < 0 for some 2< i < n — 1. Then, for any(uy, ..., u,—2) € (R>0)"~2 with
2
>i_fuj =1, we have

n—2
Z min{e,, 1, 8;’j+1}uj + ki <€, +mei <0.
j=1

This contradicts the assumption thgt,—» has a solution. Thus;,’;’l >0fori =2,...,
n — 1. Suppose thai}l)i < 0forsome 2<i <n — 1. Then, it implies that > 1, since

e, —minfel ;| j=2....n—1=-minfe; | j=2....n—1}>—&, >0.
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If L n—2 has a solutiom = (u1,...,u,—2), theny = uy = landu; =0forj =2,...,
n — 2. For thisu, it follows that

n—2

Z min{sil, 8,21’.”1}14.,' + k2 = min{sil, 83!2} +nr2 < s,zl!z <0.

j=1

This is a contradiction. Thus;.; > 0fori =2,....n — 1.

Takea’ > 0 as in Lemma 2.4, and setto be an integer greater than or equadxtein.
Let! be an arbitrary positive integer, arftthe set off € B; suchthatO, ..., 0, /) € supff)
and every e suppf) satisfied;(b) > 0fori =2,...,n — 1. Since

li jer+ (I — j)en) = jeh 1 >0

fori=2,...,n—1andj =0,...,[, we have(y, — y1)! € F. Hence,F # {. We show

that there existép € F such thaf1(b) +« > 0 for eachh € supf Fp). Suppose the contrary.

Then, for eachf € F, an elemenO(f) = (d, ¢) in Z2 is defined by setting to be the

maximum among the-th components ob € supp f) with I1(b) + @ < 0, ande to be the

maximum among the first componentsiofe supf f) whosen-th components aré. We

define the total ordex on Z2 by (d1, e1) < (d2, e2) if di < do Ord1 = do, e1 < e3. For

v1, v2 € Z2, we denoter; < vy if v1 < vp andvy # vp. ChooseF € F with O(F) = (d, e)

such thaid, e) < O(h) foranyh € F, and setf € K[y, ..., y,—1] to be the coefficient of

e.d ;
Yiyp INF.
Forb € sup F) whose first ana-th components areandd, respectively, we have
hb)+a=ere+minfe, | j=2....n—Ul-d—e)+a

=gty +min{er; |j=2...n—1)(-d-e) +a

(2.12) =minfer; | j=2...n—-1(—-d—e)—¢e],(l—d)+a
>minfey; | j=2....n—Ul—-d—e) —¢1,(0—d—d)
=minfer; | j=2....n=1((—d—e)—nl—d—a)).

Sinceeij > 0 for j # 1, the right hand side of the third equality in (2.12) is negative by the
maximality ofe. By the last equality in (2.12) we get
(2.13) l—d—e<nl—d—d).

LEMMA 2.5. Intheabove notation, E(f) = 0.

PROOF. Suppose thaE(f) # 0. Let y» be a monomial appearing ifi(f) with
nonzero coefficient. Lex’j be the coefficient o&jyb in f, andb; the j-th component of

b for eachj. Then, the coefficient’ of y? in E(f) is written as

n—1

W= (bj+ DA

j=2
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Let).; be the coefficient of;y*(y{y;}) in F for eachj. Then,.; = &/ for j =2,...,n 1.
The coefficients of y?(y$y?) in E(F) is written as

n—1
p=(e+Drr+Y (b + DA+ @+ Dry = (e + Drx + 4 + (d + Dy -
j=2

SinceE(F) = 0, we haveu = 0. Moreover; = 0 by the maximality ok. Sinceu’ # 0,
we havehr, # 0, that is,

b'=b+ee1+ (d+ De,
isin supgF). Note that1 (b’ + e2 — e;,) + « is negative, since it is equal to the left hand side
of the first equality in (2.12). Hence,
L) +a=101(b"+e2—e,) + o +l1(e, —e2)
< l1(e, — €2) =—min{s,},j |j=2,....,n—1} <0.
This contradicts the maximality af. Thus, we ge (f) = 0. O

We claim thatk[y]? ¢ B. This is a special case of Lemma 4.2 which we shall prove
later. By Lemma 2.5, this fact implies thétis in Bj_4_e.

LEMMA 2.6. Inthe above notation, there exists G € B; of theform G = fy{yd + g,
where g € K[y]; such that every b € supfg) satisfies the following. /;(b) > O for i =
2,...,n— 1 If ¢ and d’ are thefirst and n-th components of b, respectively, then (d’, ') <
d,e).

PrOOF. Sincefisin Bi_4—. N K[y2, ..., yo—1], we have
n—1
£=Y o [J2 =y
u k=3
for somei, € K. Here, the sum in the equality above is taken avet (uz,...,u,-1) €
(Z>0)" 3 with Y'3uy =1 — d — e. By (2.13), we geb "2 ux < n(l —d — o) for each
u. Hence, there exists, . .., p,—1 € Z>¢ such that
n—1
(2.14) (I —d)ez+ Y (scur + p)(ex — €2) € ( —d)Pp
k=3
foranyss, ..., s,—1 € [0, 1] by Lemma 2.4. We set
n—1
=y "] (G2 =y eyl
k=3

wherep = Zz;l pk. Note that each element of sup) is written as the left hand side of
(2.14) for somss, ..., s,—1 € [0, 1]. So, supgh),) is contained inl — d) Pp. In particular,
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e —p > 0. We set

n—1
hy = (y1—y2) 7 l_[ (2 = y)"™ (y1 — y)™*)
k=3

for eachu, and define
G = (Z )Luhu>()’n - Yl)d .

Putg = G — fyfyff. Then, the first ana@-th componentg’ andd’, respectively, of each
b € supfy) satisfy(d’, ¢’) < (d, e). So, we verify thai;(b) > Ofori =2,...,n — 1 for
eachb € suppg). Each element of supf, ) is contained irc + Z’};% Z-o(e1—ej) for some
¢ € (I —d)Pp. Indeed},, is equal to the polynomial obtained frakf) by substitutingys — yk
for yi for eachk, and supg),) C (I — d) Pp. Therefore, we may write eadhe supfg) as

n—1
b = die1 + doey +C+Zvj(el_ej)»
=2

whereds, dp, v2, ..., v,—1 € Z>pandc € (I —d) Pp. Note that; (e,) = 0 and/;(e1), /i (c) >
Ofori =2,...,n— 1. Moreover,

n—1 n—1 n—1
I; Z vier—ej) | =— Z min{e,’;’l, Si,j}vj + min{e,’;’l, 8;,1} Z vj
j=2 j=2 j=2
n—1
= (&}, —min(el ;. &} Hv; = 0.
j=2
Thus,we getl;(b) > 0fori =2,...,n — 1. O

We setH = F — G. Then,H is in F. Moreover,0(H) < O(F) by the definition of
H . This contradicts the choice @f. Hence, there existBy € F such thaf1(b) + « > 0 for
eachb e supp(Fop). We have thus proved Lemma 2.3. Therefore, the proof of Theorem 1.3 is
completed.

Now, assume that > 3 andn = 4. Then, we set
85,4

Y i
mln{si’j, si)k}

(2.15) § =& (D) =

for distinct integers X i, j, k < 3, and put (D) = &1(D) + &2(D) + &3(D).

We show Theorem 1.4 as a consequence of Theorem 1.3. We verifylthaty, &2)
is a solution ofL32. Note that§; > Ofori = 1,2,3,n = &1, n32 = 0 andnz3z =
—& min(e3 . £3,). S0,& > 0. By (1.6), we have - & > £ + &3 > & = 5. Moreover, it
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follows that

min{e 1. 5 2}(1 — &2) + min{ed 1, 64 3}62 + 132
= min{e3 1, £3 5} + (Min{e 1, €5 5} — Min{e 1, €5 &2 + 132
=2, min(e3 1, €3 362 = 0,
and

min{e3 1. &3 o}(1 — &2) + min{e3 1, 63 3}62 + N33
= min{e3 1, &3 5} + (Min{e] 1, €3 3} — Min{e 1. €3 D& + 133
= (82,3 + min{eg,l, 8%2}) - min{eg,l, 8%2}52 + 13,3
=min{e3;. 635} (~&3+1—£2—£1) > 0.

Therefore,(1 — &, &) is a solution ofL3 2. Hence,K[x][y]” is not finitely generated by
Theorem 1.3.

Finally, we show Corollary 1.5. As mentioned in Sectiomff_lf > 0 foranyi # j, since
g, =t+1if j #m+ 1, ande] ; = 1 otherwise. Assume that = 3 and: > 2. Then,
EDim)=3/t+1) <1 Hence K [x][y]?3 is not finitely generated by Theorem 1.4.

Assumethatn > 4andr > 1. Fork =3,...,m — 1, we defingy, = (u,{, e uZ”fl) €
(R>0)""1 as follows. Sew3,u] = 1/2 for j,k with j = L ork = j + 2, and set] =
0 otherwise. We show tha#; is a solution ofLy ,,—1 for eachk. Sincem > 4, we have
Z’;’z‘llu-,f = 1. Sincer > 1, we getu,} =1/2 > 1/t + 1) = 5. Clearly, ui > 0 for
j=2,....m—1.Fori =2,...,m — 1, it follows that

m—1
(2.16) > o min{el, 1. ehg jpadul e =1 — @+ Dl
j=1
Note thaty,; = —1if i = k, andnx; = O otherwise. Ifi = k, then the right hand side of

(2.16) is equal to — 1, sinceu; ' = 0. If i # k, then it is not less thatr — 1)/2, since
uf{‘l < 1/2 for anyi, k. So, it is nonnegative for evetiy k. Thereforeu; is a solution of
Lim-1fork =3,...,m —2. By Theorem 1.3K[x]?» is not finitely generated. Thus, we
complete the proof of Corollary 1.5.

3. A SAGBI basis for the counterexample of Roberts. In this section, we consider
the counterexample of Roberts. Recall thasibbtained as the kernel of the derivatibp,,
on K[x][y] for (m,n) = (3,4) andt > 2 by the result of Deveney and Finston [2]. We
determine its initial algebra for some monomial orderfofx][y]. Consequently, it will turn
out that the infinite system of invariants appearing in Roberts’ proof of [14, Lemma 3] is a
generating set ok [x][y]?"3.

First, we review the notion of an initial algebra and a SAGBI (Subalgebra Analogue to
Grobner Bases for Ideals) basis. I.ebe a monomial order oK [x][y], i.e., a total order on
Z" x Z" such thata < b impliesa + ¢ < b+ ¢ foranya, b,c € Z™ x Z" and the zero



512 S. KURODA

vector is the minimum amon@ >0)™ x (Z>o)" for <. We denote: < b if a # b anda < b.
We sometimes denotefy? < x'y?" instead of(a, b) < (a’,b'). For f € K[x][y]\ {O}, we
define thanitial termin<(f) of f by ax?y”. Here,(a, b) is the maximal element of supp)
for <, andu is the coefficient ok“y” in f. Note that the maximum of supp) always exists,
since it is a nonempty finite set. ff = 0, then we define in(f) = 0. Then, it follows that

(3.1) in<(fg) =in<(f)inz(g)
forany f, g € K[x][y]. Assume thati is a K-subalgebra oK [x][y]. We define thenitial
algebrain<(A) of A as theK -vector space generated fig<(f) | f € A}. Then, ink(A)isa
K -algebra by (3.1). We say that a generating$ef A is aSAGBI basisif the initial algebra
in<(A) is generated byin<(f) | f € S} overk.

The following is a basic property of a SAGBI basis.

LEMMA 3.1 (Robbiano-Sweedler [13, Proposition 1.16Det < be a monomial order
on K [x][y]. Assumethat A isa K-subalgebraof K[x][y], and S isasubset of A. If {in<(f) |
f € S} generates the initial algebra in<(A) over K, then S is a SAGBI basis for A. In
particular, S generates A over K.

For any elementary monomi&l[x]-derivationD on K [x][y], we sets:f,. to be the+vector
we obtain from; ; by replacing the negative components by zero, and défine= x“/ y; —
xgiffy.,- for eachi, j. Then,L; ; isin K[x][y]? fori, j.

Now, let us consider the kern&[x][y]P-" of D, on K[x][y] for (m,n) = (3,4).
Note that thetiree elements

t+1 t+1 t+1 t+1 t+1 t+1
(3.2) Py =iy, xTya—xgthyr, xh Ty — xi

are contained irk [x][y]?3. Indeed, they are equal .1, L31 and Lz 2. Moreover, we
know the following (see also [6, Lemma 2.1]).

THEOREM 3.2 (Roberts [14, Lemma3])For each d € Z-o and i = 1,2, 3, there
exists an element of theformxiyf{ + (terms of lower degreein y4) in K[x][y]?"3.

We take an arbitrary, ; € K[x][y]”+3 of the form in Theorem 3.2 for eadH, /). Note
that Ip; = x; for eachi. Let <|ex be the monomial order oK [x][y] for (m,n) = (3,4)
which is the lexicographic order with
(3.3) X1 <lex X2 <lex X3 <lex Y1 <lex Y2 <lex Y3 <lex Y4 -

Namely, we definer <jex b if the last nonzero component éf— a is positive fora, b €
Z3 x Z* where we regard, b as elements of’.
The following is the main result of this section.

THEOREM 3.3. Assumethats > 2. Then, theinitial algebra of K [x][y]P:3 for <jex iS
generated by

(3.4) ey, xihys, xbThys) Ulxivd | d € Zso, i = 1,2, 3}
over K. The set
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(3.5)
Pty — x5y, xitys — x5y, x5thys — x5y} Uil [ d € Z20,i =1,2,3)

isa SAGBI basisfor K [x][y]”:3 for <jex. In particular, it generates K [x][y]”:3 over K.

To analyzeK [x][y]? in greater detail, we define a grading structure on it. Ddie any
elementary monomiak [x]-derivation onK [x][y]. We set

n
= (Z" x Z”)/ZZ(S,',L e1—e;),
i=2

and K[x,x*l][y]), the K-vector space generated by monomialéy® for (a,b) €
Z" x (Zs0)" with the image of(a,b) in I equal toy for eachy e I'. Then, it
defines ar-grading onK[x, x *l[y], i.e,, K[x,x 'lly] = @, r Klx,x*1lyl, and
Klx,x Y[yl K[x, x Y[y], C K[x,x ][y],, foranyy,u € I". Moreover, it follows
that

K[x,x_l][y]D = @ K[x, x 1

yel’

Here, for ak -subalgebrat of K [x, x][y], we setd,, = ANK[x, x*][y], for eachy. We
say thatf € K[x, x*][y]is I"-homogeneous if isin K [x, x~*][y], for somey e I'. This
y is denoted by deg(f). Note that eacly € I" is expressed as the image(of /e, ) for some
a € Z™andl € Z-o. Then, we have,«(K[y]) = K[x, x1][y],. Actually, rxa (¢ (f)) = f
for f € K[x,x 1[yl,, where¢ : K[x,x ![y] — KI[y] is the homomorphism which
substitutes one for each. SinceE o ¢ = ¢ o D, we haveg(f) € K[y]lE = B for
£ € Klx,xY[y], . Hencegw (B) = Klx, x [y, .

We remark that, forf € K[yl, r € Z-o anda € Z™, the condition thaty; — y;)"
divides f implies thatLr is a factor oftya (f) in K[x, x~1][y]. Thisis proved as follows.
Note thatrea (f) = x 'L’]_(f) forany f € K[yl, andzi(y; — y;) = x™'~ s,,L” for i, j.
Assume thatf = (y; — y;)" f’ for somef’ € K[y]. Then,

—et) o,
T (f) = x40 — y)' f) = X110 — yp) w(f) = xTETEILE a (f)

sincer; preserves multiplication. Thuﬁ;’j is a factor oftye (f) in K[x, x ][ y].
Assume that = 3. Then, eacly € By is written as
u
f=02=-yD 03—y Y_ailyz—yD) (33— y»" .
i=0
Here,s, t,u € Z=qWwith s + ¢ +u = [ ande; € K with ag, a, # 0. If B1,..., B8, € K are
the solutions of the equation’’_, o; X' = 0, then we get

u

(3.6) f=a0(y2—yD) (33— yD)' [ [v2— Biva+ (B — Dy1).,
i=1

whereK is the algebraic closure & .
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PROPOSITION 3.4. Assume that n = 3, and D is any elementary monomial K [x]-
derivation on K [x][y]. Then,

(3.7) {x1,...,xm, L21,L31, L3 2}
isa SAGBI basisfor K [x][y]? with respect to any monomial order on K [x][y].

PROOF. Let < be any monomial order oK [x][y]. By Proposition 3.1, it suffices to

show that inc (K [x][y]?) is equal to
R = K[x][in<(L21),in<(L31),in<(L32)].

First, we note that, since’r1(y; — y;) € K[x][y], its initial term is inR fora € Z"
andi, j. Indeedx“t1(y; — yj) = xo+eai—eg; L; j, which is inK [x][y] if and only if a +
3. —ejfl. € (Z>0)". We show thak“z1(g) € K[x][y] impliesthatin(x“t1(g)) € R®x K
fora € Z™, whereg = y» — y1 — B(y3 — y1) With 8 € K. If B is zero or one, then we are
done. Assume that # 0, 1. Then, there appears if71(g) each monomial which appears
inx%(t1(y; — y1)) fori = 2, 3. Hence, ifx?11(g) isin K[x][y], thenx?t1(y; — y1) is also in
K[x][y] fori = 2, 3. Since ink(x“7r1(g)) is equal to in(x*r1(y; — y1)) for somei € {2, 3}
up to scalar multiplication, it is iR ®x K.

To show ini(K[x][y]D) = R, it suffices to verify that the initial term in(F) of every

I'-homogeneous elemeft € K[x][y]? \ {0} isin R. Put f = ¢(F). Then, itis inB; for
somel € Z=o. So, f is expressed as in (3.6). Since (f) = F for somea € Z™, we get

u
(3:8)  F=tu(f) =aox'ti(y2— y0'miya — y)' [ [ ra(v2— Biva+ (B — Dyo) -
i=1
SinceF is in K[x][y], there exisu’, a”, a; € Z™ with sa’ + ta” + >_{_; a; = a such that

x“wi(y2 =y, x* 1a(ys — y1) andx“ri(y2 — Biy3 + (B — Dyu) are inK[x][y]. Hence,
their initial terms are inR ®k K, as noted in the preceding paragraph. This implies that
in<(F) € R by (3.8) and (3.1). ]

In particular, we have the following.

COROLLARY 3.5 (Khoury [5, Corollary 2.2]). Assume that n = 3, and D is any ele-
mentary monomial K [x]-derivation on K [x][y]. Then,
(3.9) K[x1[yl” = Kix1[L21, L31, L32].

As we mentioned before Bposition 3.4, each elemelfite B, is factored into the prod-
uct of/ elements inK ®x B1. We note that, if- is the maximal integer such thats — y2)”
divides f, then the expansion of involves the monomial;fryg, yfryg and does not in-

volve yf”yg’, yi”/yg/ forO<+ <r.
LEMMA 3.6. Assume that (m,n) = (3,3) and sf’j > Oforany 1l < i,j < 3with

i # j.Ify =deg-(L5,L] 1L% ) for p,q,r € Zxo, then K[x][y]]? is equal to the one-
dimensional K -vector space generated by L5 L%, L% ,.
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PROOF. Take any 0# F € K[x][y]}l,), and putf = ¢(F). Then, f is in B; and
Tva(f) = F,wherel = p+q+randa = p(82,3+812)+q8f’3+r8;’3. If (y2—y1)?, (y3—y1)?
and(y3— y2)" divide f, thenF isin K (L5 , L} L% ,). Actually, itimplies that.5 ,, L ; and
Ly,are factors ofF. Suppose, say, that the maximal integesuch thai{ys — y2)" divides f
is less tham. Then,y} ™" y5" andy|™" y4 appear inf with nonzero coefficient, as mentioned
above. Hence, so dg. (v, ™ y5) andzya (y,™"'y4) in F. By definition, the first component
of 55 0re5, is zero. If that of; 4 is zero, then the power afy in zx« (y, ™" y4) is negative.
In fact, txa (yi " y5 ) = x* Y1 y5 , where

ad=a+ - r/)£3,1 = pszl + qsé':l + r823 —(r — r/)81_3.
Since the first components ef ;. £3 ;. £3 ; are zero, that o’ is equal to—(r — r')e1 5 < 0.
Similarly, the power ofv1 in 7« (y™"y4) is negative if the first component ef , is zero.
This is a contradiction. Thereforg,is in K (Lj L% ;L% ). O

Assume that = 4. We define a homomorphisin Z4 — Z of additive groups by
(3.10) I((b1. b2, b3, bs)) = baet , + bzel 3.

LEMMA 3.7. Assumethatn = 4,61, > e] 5 > Oand F isan element of B; for some
l € Z>o. Ifevery b € supp(F) satisfies [(b) > p for some p € Z -0, then (y3 — y2)? divides
F for theminimal ¢ € Z-o with p < ge7 5.

PROOF. Write

F = folya—yD' + filya = y0)' "+ + fi,

wheref; € K[y2 — y1, y3 — y1l; for eachi. Suppose thatys — y2)? did not divideF. Then,
there exists such that(ys — y2)? does not dividef;. Leti be the minimum among such
indicesi, andq’ the maximal integer such thags — yz)q/ divides f;. Then, f; involves the
monomialyi_q/yg/, as we noted before Lemma 3.6. We Bet (i — ¢’,0,4’,1 —i). Then,
I(b) = q'e1 5 < q¢1 5. Itimplies that/(b) < p by the minimality ofg. Hence ¢ SupgF).

On the other handf; (y4 — y1)!~" involves y®. If j > i, then fj(ya — y1)'~/ does
not involve y”, since the exponent of; in each monomial of it is less thdn- i. Suppose
that f;(ya — y1)!=/ involved y” for j < i. Then, f; containSy{_"/yg/. Sinceq’ < gq,
this contradicts the assumption thas — y»)? divides f; by the note above. Therefore,
fiva — y1)!~7 does not involvey? if j # i. Henceb € supgF). This is a contradiction.
Therefore(yz — y2)? dividesF. O

We remark that, ifF € K[x][y]? is expressed as
F = foyh+ fayh b4+ f
for f; € K[x]1[y1, ..., yu—1l, thenD(fo) = 0. Actually, we get
0= D(F) = D(fo)y,l1 + (terms of lower degree in,) .
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The following is the key proposition.

PrRoOPOSITION 3.8. Assume that (m,n) = (3,4) and sjfj > Oforanyl <i,j <4
with i # j. Then, the monomial x“y} yd*"y! is not contained in in<,, (K [x][y]”) for any
p.q.r, 1 € Z=o, Whereweseta = peirz + qeir?, + r823.

PROOF. Suppose that there existéde K[x][y]” such thatin,, (F) = x“yé’yg”yfl.

Then, without loss of generality, we may assume thad I"-homogeneous. Write
F=foyh+ fiyy '+ + A

where f; € K[x][y1, y2,y3] fori = 0,...,1. Then, fo is in K[x][y1, y2, y3]”, as we
remarked above. Moreoveyp is I'-homogeneous and dgdfo) = deq(LizL‘ingﬁ).
Hence, fo is equal toL] ,L{ 5L} 5 up to scalar multiplication by Lemma 3.6.

It suffices to show that each ﬁﬁ)l, Lg)l andLj , must be a factor of in K [x, x iyl
Indeed, it will imply thatF = Li’,zLZ,ger,gF/ for someF’ € K[x, x1][y], sinceLy 1, L31
andL3 2 are pairwise prime. Ther’ is an element irk [x]1[y]°. However,F’ involves the
monomialy}. This contradicts Lemma 2.1.

Since the arguments are similar, we only show mgg is a factor of F. We assume
thatsi2 > si3. The proof is similar for the other case. We get= ¢ (F), and claim that
everyb = (b1, ba, b3, bs) € Supf f) satisfies/(b) > rsi?,. This implies that(yz — y2)"
divides f by Lemma 3.7. HenceLg)’2 is a factor of F in K[x,x 1][y], and the proof is
completed. By straightforward computation, we may verify that-dé9 is equal to the image
of (¢, (d +1)es), whered = p + g +r and

c= pezl+q8§fl+r823+d81,4+r83,1.

Thus, it follows thatF = 1.c(f), as mentioned above. Hendg,involvest.(y?) for b €
supf f). By simple computation, we getc(y?) = x?y?, where

d = pey,+qeg,+regq+ (I —ba)ear+rezn+ bae12+bae13.

Note that the first components pt7,. ge3,. re3 5 are zero ands < [. Sincex?y” is in
K[x][y], the first component af is nonnegative. Thus, we have

0<(I—ba)egq+regq+boel,+baetg=(—ba)es,—re1z+I(b) < —rej5+1b).
Therefore/(b) > rel 5. O

Now, let us prove Theorem 3.3. By Lemma 3.1, the last statement is a consequence of
the first part. So, we will prove the first part.

We setR to be thek -algebra generated by (3.4). Clearlyﬁlg;(K[x][y]Dfﬁ) contains
R. For the converse, it suffices to show that,if( F) is in R for any I"-homogeneous element
F € K[x][y]P3. The remark before Proposition 3.8 implies thatf(F) = in<,, (F')y} for
someF’ € K [x][y1, y2, y3]P:3 andl € Z-o. By Proposition 3.4, the sét1, x2, x3, L2.1, L3 1,
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L3} is a SAGBI basis foK [x][y1, y2, y3]”3 with respect to any monomial order. In par-
ticular,

in< (K[x1[y1, y2, y3123) = K[x][x] o, xiTys, xbys) .

Hence, there existy, a, as, p, q,r € Z>o such that

N~ (F) = (7 y2) (6 ya) (5" ya) x 1y
Obviously, in, (F) isin R if [ = 0. Assume that > 0. Then,a; + a2 + a3z > 0 by
Proposition 3.8. Hence, itis also @ Therefore, il}lex(K[x][y]Dfﬁ) is contained inR. This
completes the proof of Theorem 3.3.

4. A condition for finite generation. In this section, we investigate a condition for
the finite generation ok [x][y]°, whereD is an elementary monomi&l[x]-derivation. The
main result of this section is the following.

THEOREM 4.1. Assumethat (m,n) = (3,4), and there exist i # j and k such that
8:((,']())10) < Oand o(k) = (i) for every pair of permutations o and t on {1, 2, 3} and
{1, 2, 3,4}, respectively. Then, K [x][y]” is generated by Ly, , for i = 1,2,3, 4 over K[x]

for someintegers1 < k;, [; < 4.

First, we look at general properties) the kernel of an elementary monomi&lx]-
derivation. For each, j, we setl:,»,.,- = y; — x%Jiy;. Itis contained inK[x,x*l][y]D. To
avoid confusion, we sometimes denote itﬁné%j to emphasized.

LEMMA 4.2. Thekernd K[x][y]? iscontained in K[x1[L1,j, ..., L, ;] for each ;.

PrROOF. Take anyF € K[x][y]?, and letf be the polynomial obtained frori by
replacingy; by zero. Then, define an elemehtof K[x1[L1,;, ..., L, ;] as the polynomial
which we obtain fromf by replacingy; by ik,.,- for eachk. We show that” = F’. Suppose
thatF # F’. Write

F — F' = (terms of higher degree in;) + gy]e- )

whereg is an element ok [x, x ~1][y]\ {0} not involvingy;. SinceF — f andF’ — f arein
K[x,x 1[yly;, we havee > 0. However,

0= D(F — F') = (terms of higher degree i) + egx y¢ ™",

a contradiction, sincegx® = 0. ThereforeF = F'. O

Assume thas; = 0 for some;. Then,I:k,j is in K[x][y]” for eachk. By Lemma 4.2,
it implies thatK [x1[y]” = K[x1[L1j, ..., L, ;1. If this is the case, theK [x][y]” is iso-
morphic toK [x1[y1, ..., ¥j-1, ¥j+1. - - - » y»] Via the homomorphism which substitutes zero
for y;. In particular, the kerneK [x][y]P of the derivationD; ,, for r = 0 is generated

by L1m+1, ..., Lm.m+1 OverK[x], and is isomorphic to the polynomial ring imi2variables
overk.
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Now, we fix1<i <mand 1< j < n. Assume thab,"(’j > Oforeveryk =1,...,n.
Then, put x = min {s;'(j |k # j}, and setx®:j = x; "xfei for eachk. Let D' be an
elementary monomiak [x]-derivation onK [x][y] such thatD’ (yx)/D’(y;) = x‘gfw' for each

k. For f € K[x][y]?, we defineT; ; (f) to be the polynomial obtained frorfi by replacing
yj byx; "y;. Then, it follows that

Tji (LY ) =y — x5 (x; " yj) =y —xhiy; = L,
for eachk.

LEMMA 4.3. Leti, j beintegerswithl <i <mand1l < j <n. Ife;'w. > 0O for every
k=1,...,n,then T;; isaninjective homomorphismwith theimage K [x][y]"".

PROOF. Suppose thaf;;(f) were not inK[x][y]” for somef e K[x][y]”. By
Lemma 4.2,f is in K[xI[{LP, | k}]. SinceT;; sendsL?; to i,?, we haveT;;(f) €
K[x][{I:,Q; | k}1. In particular,D’(T; ; (f)) = 0. Hence, there appearsih; (/) a monomial
with negative power in some variable. By the definition7of ( /), the variable must be;.
However,i,?:,. does not have negative poweninfor eachk. Hence, such a monomial cannot
appear irl;; (/). This is a contradiction. Thug;; ; (f) is in K[x][y]D'.

Conversely, a homomorphisii[x][y]?" — K[x][y]? is defined by the substitution
yj = x!'yj. Indeed, it sends each’; to LY. Itis the inverse off;; : K[x][y]® —
Klx]y”" O

We use the following proposition to reduce problems on the kerneéb ad a lower
dimensional case.

PrROPOSITION 4.4. Let D be any elementary monomial K[x]-derivation on K [x][y],
and 1 < j,k < m distinct integers. For each 1 < i < m, we assume that either s;)k >0or
g, = Oforall [l # j. Then,

(4.1) K[x1[y1°? = K[*1[y1, -y ¥j—1, Yjtds - - - 2l P (L]

PrRoOOF. Clearly, the right hand side of (4.1) is contained in the left hand side. We show
the converse. Lef be the set of elements @& [x][y]” not contained in the right hand side of
(4.1). Suppose that were not empty. Takg e S with the minimal degree iry;, and write

+ +
(4.2) f=0ax iy + gaa(x iyt 4+ go,

whereg, € K[x,x [y, ..., Yj-1,Yj+1, ..., ¥ul With gz # 0. To complete the proof, it
suffices to show thajy is in K [x][y]?. Indeed, it implies thay — g,(L; )¢ isin S, but the
degree off — gd(Lj)k)d in y; is less thani. This is a contradiction, and we gét= ¢.
Similarly to the remark before Proposition 3.8, we hagy,;) = 0. We show that every
monomial appearing igy does not have negative poweninfor eachi. First, assume that the
i-th component ot,jj is not zero. Then, itis equal n;j > 0, and scxj,k is negative. Hence,

¢, = 0foranyl # j by assumption. Since ; = ¢, + & ;, we have O< ¢ , < ¢ ;
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for I # j. Thus, the substitution; — x,»’eiwfyj sendsf to T;;(f). If there appeared
in gs a monomialxy” with negative power inx;, then T;i(f) would have the monomial
x"y”y;?. It also has negative power ip. This is a contradiction, sincg; ; (f) is in K [x][y]
by Lemma 4.3. If the-th component ot,ij is zero, then the expression (4.2) also implies
that no monomial appearing iy has negative power . Thereforeg, is in K[x][y]. O

As a corollary to Proposition 4.4, we have the following.

COROLLARY 4.5 (Khoury [5, Theorem 3.1]).If m = 2, thenthereexist 1 </ < n and
1<kj <nwithk; # j for each j # [ such that

(4.3) KIx1y)? = KIxWL1gys -+ Li—iky g » Li2kiens - - Lk -

PROOF We prove this by induction on. If n = 1, thenK [x][y]® = K[x] by
Lemma 4.2. Hence, the assertion is true. Assumerthat 1. Then, by change of indices
if necessary, we may assume tiat< --- < §1. If there exist 1< k < j < n such that
82 < 3,2., thene",.’k > 0fori = 1, 2. Hence,

KIx1y1? = K[*1[y1, -, Yj—1, Yjt1s - - -5 YulP[L k]

by Proposition 4.4. Thus, the assertion follofnam the induction assumption. Assume that
suchk, j do notexist, i.e.§2 < --- < 62. Then,e?, _; > 0 foranyl # n. Sinces}, | >0,

we havek [x][y]” = K[x][y1. ..., ya—1]1°[Ln.n—1] by Proposition 4.4. Hence, the assertion
follows similarly. O

Let ¢1 : K[x][y] — Kl[x2,...,x,][y] be the homomorphism which substitutes one
for x1, and D1 the elementaryK[x», ..., x,;]-derivation onK|[xo, ..., x,;1[y] defined by
D1(f) = ¢p1(D(f)) for eachf. Then,D; is a monomial derivation. By definition, it follows
that¢1 o0 D = D1o¢1 0onK|[x][y]. Recall thel"-grading structure o [x][ y] defined in Sec-
tion 3. LetI1 be the set of the images @i, le,,) in I" forl € Z anda = (as, ..., ay) € Z™
with a1 = 0. Then, I'1 is a subgroup ofl", and @yerlK[x][J’]y is aKlxo,...,x,]-
subalgebra oK [x][ y].

LEMMA 4.6. Assume that e,}_j > 0for j = 1,...,n. Then, ¢1 induces an isomor-
phism

(4.4) P KixliylD > Klxa. ... xnlly1”r.
yel

PROOF. SetR = @yerlK[x][Y]y andR' = K|[x2,...,x,][y]. It suffices to show
that¢; induces an isomorphistR — R’. Indeed, it implies tha#(R?) = (R")P1, since
¢10D = Djyoé¢r.

First, we show the injectivity. Suppose that there exigtedl R\ {0} such thaty1(f) = 0.
Then, f = (x1 — 1) f’ for somef’ € K[x][y] \ {0}. Let p andq be the maximal and the
minimal integerd with deg- (x’lf”) € Iy for some nonzerd’-homogeneous componefit
of f/, respectively. Clearly, we have > 1 org < 0. If p > 1, then deg(f") ¢ I
for a I"-homogeneous componeit’ of f’ with deg-(x{ f”) € I'n. However,—f” is a
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I'-homogeneous component @gfby the maximality ofp. Hence,— f” is in R. This is a
contradiction. Similarly, we get a contradictiongf < 0. Thereforegp1(f) # O for any

f e R\ {0}
For the surjectivity, it suffices to show thai(R) contains every monomial iR’. Take
any monomial®y? € R’, and put/ = }}:lbjei"j, whereb = (b1,...,b,). Then,l is

nonnegative, since,},j > 0 for all j by assumption. Hence}x%? is in K [x][y]. Note that

degp(x:llxayb) — de% (x:llxayb l_[(xsj,nyjlyn)bj) — de% <xcynz:j1bj> ,

Jj=1
wherec = (1,0,...,0) +a + Z;?:l bje;j . Since the first component afis zero, that of
cis equal tol + 3 ;_y bjet, = 0. Thus,xjx“y’ isin R. Sincex?y” = ¢1(xjx“y"), the
surjectivity is proved. ]

LEMMA 4.7. Assumethat n = 4 and ¢1 5,61, > 0,61, = 0. Then, K[x][y]” is
generated by x; and L3 2 over @, ., K[x1[y12.

PROOF. Without loss of generality, we may assume tbﬁg > 8%,2' It suffices to

show that eacti’-homogeneous elemeft e K [x][y]? is written asF = fog’zF’, where
p.q € Z=pandF’ € K[x]ly], for somey’ € I'y. Indeed, it also implies thad(F’) = 0,
since 0= D(F) = fog)zD(F’).

Assume that deg(F) is equal to the image df, les), Wwherea = (a1, ..., an) € Z™
and! € Z-o. We setf = ¢(F). Then,F = t«(f), as we noted before Proposition 3.4.
Take anyb = (b1, b2, b3, bg) € supff). Then, by straightforward computation, we get
Tea (y?) = x°y?, where

(4.5) c=a+ (I —ba)ea1+ bre12+ bze13.

Sinceeil = 0, the first component aof is equal toa; + I(b). On the other hand, we have
I(b) > 0, sincesiz, 8%,3 > 0. Hence,x; “tx°y? does not have negative power. Thug;*F

is in K[x][y]. Clearly, degu(xl_“lF) is in I'1. Therefore, ifay > 0, then we are led to the
desired expressiofl = x*(x; “*F).

Assume thati; < 0. Letq be the minimal integer such thqt:i3 > —aj. Since the
first component of (4.5) is nonnegative, we hage > —a for everyb e supg f). Hence,
(y3 — y2)? divides f by Lemma 3.7. It implies that’ = F/Lg’2 for someF’ € K[x][y]”.
Note that deg(Lg’z) is equal to the image crj(g{3 + €34, €4) in I". Hence, deg(F’) is
equal to that ofa’, (I — g)es), Where

a'=a—q(e33+¢e32) =a+qerz—qlezz3+e1a).

Since the first components @53 andej 4 are zero, that of’ is equal toa; + qsi3. By
the choice ofy, this is nonnegative. Hence, we haié = x] F” for somep € Z-o and
F" € K[x]lyl, with y’ € I'1, as we showed in the preceding paragraph. Therefore, we get a
desired expression. ]
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Now, let us prove Theorem 4.1. Note that the assumption fails if and only if we can
exchange the rows and columns of the ma(Si-}o,-,j S0 thataff is the maximum among the
components of thé-th column for eachi. Under the assumption, we are reduced to one of
the following two cases by such operations:

(i) & <éfands? <s2fori=1,23 4.

(i) o} <of=o1fori=23.

In fact, if we are not reduced to (ii), then there exists:k; < 4 for eachj = 1, 2, 3 such
thatS’ < ak foranyi # k;. If further we were not reduced to (i), thén 5 k; forany j # I.
In this case, we can exchange the rowsa;h), j sothatk; = j for j = 1,2, 3. This implies
thats! < 8! for anyi # j.

First, consider the case (i). By exchanging the row vecigrsés andé§, of ((Sl.j),-,j if
necessary, we may assume thiai< 8%, thatis,s$ , > 0 for j = 2,3, 4. Sinces; < 6] and
85 < 87 by assumption, we havd ,. £2 , > 0. Hence K [x1[y]” = K[x1[y1. y2. y3]°[La1]
by Proposition 4.4. Therefor&[x][y]? is generated by. 1, L3.1, L3.2 andL4 1 overK[x]
by Corollary 3.5.

Now, consider the case (ii). Sineg . 3, < 0 ande} ; = 0 follow from the condition,
K[x1[y]? is generated by, L:?,z over @yerlK[x]D’];I/) by Lemma 4.7. By Lemma 4.6,
@yerlK[x][YJ;[/) is isomorphic tok [x2, x3][y]?’ via ¢1, sinceeij > 0 for anyj. Then, by
Corollary 4.5, thereexist ¥ [ < 4,and 1< k; < 4 withk; £ i fori € {1,2,3,4}\ {l}
such thatk [xo, x3][y]?" is generated by,,f’?fi fori e {1, 2, 3,4} \ {I} over K[x», x3]. Since
¢1(L{?j) = L{?} for i, j, the K[xp, x3]- algebra@yerlK[x][y]D is generated b)L,’il. for
i €{1,2 3,4\{l}. ThereforeK [x][y]? is generated bﬂ32andLD fori € {1, 2,3, 4}\{l}
over K [x]. This completes the proof of Theorem 4.1.

Let D be any elementary monomi&l[x]-derivation onK [x][y] for (m, n) = (3, 4). By
Theorems 1.4 and 4.1, we settled the problem of finite generatidfoff y]° except in the
cases] ; > Oforanyi # j andg(D) > 1.

CONJECTURE 4.8. Assume that (m,n) = (3, 4), and gff,j > Oforanyi # j. If
£(D) > 1, then K[x][y]? isfinitely generated.

Note that the conjecture is true if there exist distinct € {1, 2, 3} such that, (D) > 1
andég (D) > 1. We show this fo(r, s) = (2, 3). The conditiong>(D) > 1 andés(D) > 1
imply, respectively, that , > 0 oreZ , > 0, ande? , > 0 ore3 , > 0. Furthermore, we have
e1,> 0,63, > 0ande3, > 0 by assumption. Hence, for eaick= 1, 2, 3, we haves} , > 0
oref_4 > 0forl = 2,3,4. Thus,K[x][y]” = K[x][y2, y3, yalP[L4.1] by Proposition 4.4.
Therefore K [x][y]? is generated by.3 2, L4 1, La2 andLy 3 over K [x] by Corollary 3.5.

There exists an example of an elementary monorKigt]-derivation onK[x][y] for
(m, n) = (3, 4) whose kernel is finitely generated, ahdD) < 1 fori = 1, 2, 3. Kurano [7]
showed that the kernel dd, 3 is finitely generated. In fact, he showed that it is generated by
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x1,x2,x3, Lijfor(i,j)e Zx Zwithl<j <i<4and
(4.6) XiVG = 2XX0yiya + XiXyiyj + XiX2yiyk — x5 vk
for (i, j, k) = (1,2,3), (2,3, 1), (3,1, 2) overK. Moreover, [7, Lemma 3.2] implies that the

set of these polynomials is a SAGBI basis for the lexicographic oxggmwith (3.3). For this
derivation, we havé;(D1,3) = 1/2fori = 1,2, 3.
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