Tohoku Math. J. 56 (2004), 367–370

THE RANK OF THE GROUP OF RELATIVE UNITS OF A GALOIS EXTENSION II

YOSHITAKA ODAI AND HIROSHI SUZUKI

(Received November 28, 2002)

Abstract. In the previous note [2] we calculated the rank of the group of relative units for a Galois extension of number fields. In this note the calculation is concluded.

1. Introduction. A finite extension of the rational number field in the complex number field will be called a number field. For a number field F, we denote by E_F (resp. W_F) the group of units of F (resp. the group of roots of unity in F). For an extension of number fields $L \supseteq K$, we define

$$E_{L/K} = \{ \varepsilon \in E_L \mid N_{L/M}(\varepsilon) \in W_M \text{ for all } M \text{ such that } K \subseteq M \subsetneq L \},\$$

where $N_{L/M}$ is the relative norm mapping for L/M. The elements of $E_{L/K}$ are called relative units of *L* over *K*. The quotient group $\mathcal{E}_{L/K} = E_{L/K}/W_L$ is a free module over the rational integer ring **Z**. In [2] we calculated the **Z**-rank of $\mathcal{E}_{L/K}$ when L/K is a Galois extension. We denote by *G* the Galois group of L/K and by **R**[*G*] the group ring of *G* over the real number field **R**. For a subgroup *H* of *G*, we denote by Tr_H the element $\sum_{h \in H} h$ of **R**[*G*]. The left *G*-endomorphism $x \mapsto x \cdot \operatorname{Tr}_H$ of **R**[*G*] is also denoted by Tr_H . We put

$$n_G = \dim_{\mathbf{R}} \bigcap_{\{1\} \neq H \subseteq G} \operatorname{Ker} \operatorname{Tr}_H.$$

Then we have

$$\operatorname{rank}_{\mathbf{Z}}\mathcal{E}_{L/K} = s_{L/K} n_G,$$

where $s_{L/K}$ denotes the number of infinite prime spots of *K* which are unramified in *L* (Proposition 1 of [2]).

In Theorem of [2], we have calculated n_G except when $G \cong SL(2, F_p)$ and p is a Fermat prime bigger than 5 (cf. Remark in Section 3 of [2]), where $SL(2, F_p)$ is the special linear group of degree 2 over the field F_p of p elements.

In this note we deal with this exceptional case and show the following:

THEOREM. If G is isomorphic to $SL(2, \mathbf{F}_p)$ and p is a Fermat prime bigger than 5, then

 $n_G = 0$.

²⁰⁰⁰ Mathematics Subject Classification. Primary 11R27; Secondary 20D99.

Y. ODAI AND H. SUZUKI

2. Preliminaries. For a finite group *G*, we denote by \mathfrak{T}_G the left ideal of R[G] generated by {Tr_{*H*} | {1} \neq *H* \subseteq *G*}. Then \mathfrak{T}_G is a two-sided ideal because Tr_{*H*} $\cdot g = g \cdot \text{Tr}_{g^{-1}Hg}$ for $g \in G$. Furthermore, we have:

LEMMA 1 (Corollary to Proposition 1 of [2]).

$$n_G = |G| - \dim_{\mathbf{R}} \mathfrak{T}_G.$$

The following fact about conjugate classes of $SL(2, \mathbf{F}_p)$ is well known (e.g. Section 1 of Part I of [1]).

LEMMA 2. Let p be an odd prime. For an element α of \mathbf{F}_p , we denote by $C(\alpha)$ the set of elements of $SL(2, \mathbf{F}_p)$ of trace α . If $\alpha \neq \pm 2$, then $C(\alpha)$ is a conjugate class of $SL(2, \mathbf{F}_p)$ and contains p(p + 1) or p(p - 1) elements according as $\alpha^2 - 4$ is a square or not in \mathbf{F}_p .

When p is a Fermat prime bigger than 5, we can write $p = 2^{2^m} + 1$ with $m \ge 2$. It implies p is congruent to 2 modulo 3, 1 modulo 4, and 2 modulo 5. Then the following calculation of Legendre's symbols is obtained:

$$\left(\frac{-3}{p}\right) = \left(\frac{3}{p}\right) = \left(\frac{p}{3}\right) = -1, \quad \left(\frac{5}{p}\right) = \left(\frac{p}{5}\right) = -1.$$

Therefore we have:

LEMMA 3. Let p be a Fermat prime bigger than 5. Then neither -3 nor 5 is a square in \mathbf{F}_p .

3. Poof of the Theorem. Let G be $SL(2, \mathbf{F}_p)$ and p a Fermat prime bigger than 5. We denote by T the subgroup of G generated by

$$\left(\begin{array}{rrr} -1 & -1 \\ 1 & 0 \end{array}\right) \,.$$

Then we have

$$\operatorname{Tr}_T = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) + \left(\begin{array}{cc} -1 & -1 \\ 1 & 0 \end{array}\right) + \left(\begin{array}{cc} 0 & 1 \\ -1 & -1 \end{array}\right).$$

Because the second and third terms are of trace -1 and $(-1)^2 - 4 = -3$ is not a square in F_p , Lemma 2 implies

(1)
$$\frac{1}{|G|} \sum_{g \in G} g^{-1}(\operatorname{Tr}_T)g = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{2}{p(p-1)} \sum_{a \in C(-1)} a.$$

Because Lemma 3 implies -15 is a square in F_p , we denote by $\sqrt{-15}$ a square root of -15. Then the matrix

$$g_0 = \begin{pmatrix} \frac{1+\sqrt{-15}}{4} & \frac{3+\sqrt{-15}}{4} \\ 0 & \frac{1-\sqrt{-15}}{4} \end{pmatrix}$$

368

RANK OF THE GROUP OF RELATIVE UNITS

is an element of G and we have

$$g_0 \operatorname{Tr}_T = \begin{pmatrix} \frac{1+\sqrt{-15}}{4} & \frac{3+\sqrt{-15}}{4} \\ 0 & \frac{1-\sqrt{-15}}{4} \end{pmatrix} + \begin{pmatrix} \frac{1}{2} & -\frac{1+\sqrt{-15}}{4} \\ \frac{1-\sqrt{-15}}{4} & 0 \end{pmatrix} + \begin{pmatrix} -\frac{3+\sqrt{-15}}{4} & -\frac{1}{2} \\ -\frac{1-\sqrt{-15}}{4} & -\frac{1-\sqrt{-15}}{4} \end{pmatrix}.$$

The first and second terms are of trace 1/2 and the third term is of trace -1. Because $(1/2)^2 - 4 = -15/4$ is a square in F_p , Lemma 2 implies

(2)
$$\frac{1}{|G|} \sum_{g \in G} g^{-1}(g_0 \operatorname{Tr}_T)g = \frac{2}{p(p+1)} \sum_{a \in C(1/2)} a + \frac{1}{p(p-1)} \sum_{a \in C(-1)} a.$$

We denote by P the subgroup of G generated by

$$\left(\begin{array}{cc}1&1\\0&1\end{array}\right).$$

Then we have

$$g_0 \operatorname{Tr}_P = \sum_{\alpha \in F_p} \left(\begin{array}{cc} \frac{1+\sqrt{-15}}{4} & \alpha \\ 0 & \frac{1-\sqrt{-15}}{4} \end{array} \right) \,.$$

Because all terms are of trace 1/2, Lemma 2 implies

(3)
$$\frac{1}{|G|} \sum_{g \in G} g^{-1}(g_0 \operatorname{Tr}_P)g = \frac{1}{(p+1)} \sum_{a \in C(1/2)} a.$$

Now we put

$$x_0 = \mathrm{Tr}_T - 2g_0\mathrm{Tr}_T + \frac{4}{p}g_0\mathrm{Tr}_P \,,$$

which is an element of \mathfrak{T}_G . Then (1), (2) and (3) imply

$$\frac{1}{|G|} \sum_{g \in G} g^{-1} x_0 g = \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right) \,.$$

Because the left side is an element of the two-sided ideal \mathfrak{T}_G , so is the right side. It implies $\mathfrak{T}_G = \mathbf{R}[G]$. Therefore we see from Lemma 1 that $n_G = 0$. The proof of the Theorem is complete.

369

Y. ODAI AND H. SUZUKI

References

- [1] H. E. JORDAN, Group-characters of various types of linear groups, Amer. J. Math. 29 (1907), 387–405.
- [2] Y. ODAI AND H. SUZUKI, The rank of the group of relative units of a Galois extension, Tohoku Math. J. 53 (2001), 37–54.

Faculty of Humanities and Social Sciences Iwate University Morioka 020–8550 Japan Graduate School of Mathematics Nagoya University Nagoya 464–8602 Japan

370