THE RANK OF THE GROUP OF RELATIVE UNITS OF A GALOIS EXTENSION II

Yoshitaka Odai and Hiroshi Suzuki

(Received November 28, 2002)

Abstract

In the previous note [2] we calculated the rank of the group of relative units for a Galois extension of number fields. In this note the calculation is concluded.

1. Introduction. A finite extension of the rational number field in the complex number field will be called a number field. For a number field F, we denote by E_{F} (resp. W_{F}) the group of units of F (resp. the group of roots of unity in F). For an extension of number fields $L \supsetneq K$, we define

$$
E_{L / K}=\left\{\varepsilon \in E_{L} \mid N_{L / M}(\varepsilon) \in W_{M} \text { for all } M \text { such that } K \subseteq M \subsetneq L\right\},
$$

where $N_{L / M}$ is the relative norm mapping for L / M. The elements of $E_{L / K}$ are called relative units of L over K. The quotient group $\mathcal{E}_{L / K}=E_{L / K} / W_{L}$ is a free module over the rational integer ring \boldsymbol{Z}. In [2] we calculated the \boldsymbol{Z}-rank of $\mathcal{E}_{L / K}$ when L / K is a Galois extension. We denote by G the Galois group of L / K and by $\boldsymbol{R}[G]$ the group ring of G over the real number field \boldsymbol{R}. For a subgroup H of G, we denote by Tr_{H} the element $\sum_{h \in H} h$ of $\boldsymbol{R}[G]$. The left G-endomorphism $x \mapsto x \cdot \operatorname{Tr}_{H}$ of $\boldsymbol{R}[G]$ is also denoted by Tr_{H}. We put

$$
n_{G}=\operatorname{dim}_{\boldsymbol{R}} \bigcap_{\{1\} \neq H \subseteq G} \operatorname{Ker} \operatorname{Tr}_{H}
$$

Then we have

$$
\operatorname{rank}_{Z} \mathcal{E}_{L / K}=s_{L / K} n_{G},
$$

where $s_{L / K}$ denotes the number of infinite prime spots of K which are unramified in L (Proposition 1 of [2]).

In Theorem of [2], we have calculated n_{G} except when $G \cong S L\left(2, \boldsymbol{F}_{p}\right)$ and p is a Fermat prime bigger than 5 (cf. Remark in Section 3 of [2]), where $S L\left(2, \boldsymbol{F}_{p}\right)$ is the special linear group of degree 2 over the field \boldsymbol{F}_{p} of p elements.

In this note we deal with this exceptional case and show the following:
THEOREM. If G is isomorphic to $S L\left(2, \boldsymbol{F}_{p}\right)$ and p is a Fermat prime bigger than 5, then

$$
n_{G}=0 .
$$

[^0]2. Preliminaries. For a finite group G, we denote by \mathfrak{T}_{G} the left ideal of $\boldsymbol{R}[G]$ generated by $\left\{\operatorname{Tr}_{H} \mid\{1\} \neq H \subseteq G\right\}$. Then \mathfrak{T}_{G} is a two-sided ideal because $\operatorname{Tr}_{H} \cdot g=g \cdot \operatorname{Tr}_{g^{-1} H g}$ for $g \in G$. Furthermore, we have:

Lemma 1 (Corollary to Proposition 1 of [2]).

$$
n_{G}=|G|-\operatorname{dim}_{R} \mathfrak{T}_{G} .
$$

The following fact about conjugate classes of $\operatorname{SL}\left(2, \boldsymbol{F}_{p}\right)$ is well known (e.g. Section 1 of Part I of [1]).

Lemma 2. Let p be an odd prime. For an element α of \boldsymbol{F}_{p}, we denote by $C(\alpha)$ the set of elements of $\operatorname{SL}\left(2, \boldsymbol{F}_{p}\right)$ of trace α. If $\alpha \neq \pm 2$, then $C(\alpha)$ is a conjugate class of $\operatorname{SL}\left(2, \boldsymbol{F}_{p}\right)$ and contains $p(p+1)$ or $p(p-1)$ elements according as $\alpha^{2}-4$ is a square or not in \boldsymbol{F}_{p}.

When p is a Fermat prime bigger than 5, we can write $p=2^{2^{m}}+1$ with $m \geq 2$. It implies p is congruent to 2 modulo 3,1 modulo 4 , and 2 modulo 5 . Then the following calculation of Legendre's symbols is obtained:

$$
\left(\frac{-3}{p}\right)=\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right)=-1, \quad\left(\frac{5}{p}\right)=\left(\frac{p}{5}\right)=-1 .
$$

Therefore we have:
Lemma 3. Let p be a Fermat prime bigger than 5. Then neither -3 nor 5 is a square $\operatorname{in} \boldsymbol{F}_{p}$.
3. Poof of the Theorem. Let G be $S L\left(2, \boldsymbol{F}_{p}\right)$ and p a Fermat prime bigger than 5. We denote by T the subgroup of G generated by

$$
\left(\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right)
$$

Then we have

$$
\operatorname{Tr}_{T}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
-1 & -1 \\
1 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right)
$$

Because the second and third terms are of trace -1 and $(-1)^{2}-4=-3$ is not a square in \boldsymbol{F}_{p}, Lemma 2 implies

$$
\frac{1}{|G|} \sum_{g \in G} g^{-1}\left(\operatorname{Tr}_{T}\right) g=\left(\begin{array}{cc}
1 & 0 \tag{1}\\
0 & 1
\end{array}\right)+\frac{2}{p(p-1)} \sum_{a \in C(-1)} a
$$

Because Lemma 3 implies -15 is a square in \boldsymbol{F}_{p}, we denote by $\sqrt{-15}$ a square root of -15 . Then the matrix

$$
g_{0}=\left(\begin{array}{cc}
\frac{1+\sqrt{-15}}{4} & \frac{3+\sqrt{-15}}{4} \\
0 & \frac{1-\sqrt{-15}}{4}
\end{array}\right)
$$

is an element of G and we have

$$
\begin{aligned}
g_{0} \operatorname{Tr}_{T}= & \left(\begin{array}{cc}
\frac{1+\sqrt{-15}}{4} & \frac{3+\sqrt{-15}}{4} \\
0 & \frac{1-\sqrt{-15}}{4}
\end{array}\right)+\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1+\sqrt{-15}}{4} \\
\frac{1-\sqrt{-15}}{4} & 0
\end{array}\right) \\
& +\left(\begin{array}{cc}
-\frac{3+\sqrt{-15}}{4} & -\frac{1}{2} \\
-\frac{1-\sqrt{-15}}{4} & -\frac{1-\sqrt{-15}}{4}
\end{array}\right) .
\end{aligned}
$$

The first and second terms are of trace $1 / 2$ and the third term is of trace -1 . Because $(1 / 2)^{2}-$ $4=-15 / 4$ is a square in \boldsymbol{F}_{p}, Lemma 2 implies

$$
\begin{equation*}
\frac{1}{|G|} \sum_{g \in G} g^{-1}\left(g_{0} \operatorname{Tr}_{T}\right) g=\frac{2}{p(p+1)} \sum_{a \in C(1 / 2)} a+\frac{1}{p(p-1)} \sum_{a \in C(-1)} a \tag{2}
\end{equation*}
$$

We denote by P the subgroup of G generated by

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Then we have

$$
g_{0} \operatorname{Tr}_{P}=\sum_{\alpha \in \boldsymbol{F}_{p}}\left(\begin{array}{cc}
\frac{1+\sqrt{-15}}{4} & \alpha \\
0 & \frac{1-\sqrt{-15}}{4}
\end{array}\right) .
$$

Because all terms are of trace $1 / 2$, Lemma 2 implies

$$
\begin{equation*}
\frac{1}{|G|} \sum_{g \in G} g^{-1}\left(g_{0} \operatorname{Tr}_{P}\right) g=\frac{1}{(p+1)} \sum_{a \in C(1 / 2)} a . \tag{3}
\end{equation*}
$$

Now we put

$$
x_{0}=\operatorname{Tr}_{T}-2 g_{0} \operatorname{Tr}_{T}+\frac{4}{p} g_{0} \operatorname{Tr}_{P}
$$

which is an element of \mathfrak{T}_{G}. Then (1), (2) and (3) imply

$$
\frac{1}{|G|} \sum_{g \in G} g^{-1} x_{0} g=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Because the left side is an element of the two-sided ideal \mathfrak{T}_{G}, so is the right side. It implies $\mathfrak{T}_{G}=\boldsymbol{R}[G]$. Therefore we see from Lemma 1 that $n_{G}=0$. The proof of the Theorem is complete.

References

[1] H. E. Jordan, Group-characters of various types of linear groups, Amer. J. Math. 29 (1907), 387-405.
[2] Y. Odai and H. Suzuki, The rank of the group of relative units of a Galois extension, Tohoku Math. J. 53 (2001), 37-54

Faculty of Humanities and Social Sciences Iwate University

Graduate School of Mathematics
Nagoya University
Morioka 020-8550
NAGOYA 464-8602
JAPAN
JAPAN

[^0]: 2000 Mathematics Subject Classification. Primary 11R27; Secondary 20D99.

