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Abstract

We present an existence theorem for at least one continuous solution for a coupled system of
nonlinear functional (delay) integral equations of Urysohn-Stieltjes type.
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1 Introduction and preliminaries

Urysohn-Stieltjes integral operators and Urysohn-Stieltjes integral equations have been studied by
some authors (see [1]-[8]). The coupled system of integral equations have been studied, recently,
by some authors (see [10]-[12]). Our aim here is to study the existence of at least one solution for
a coupled system of nonlinear functional (delay) integral equations of Urysohn-Stieltjes type in the
space of continuous functions.

In what follows let I = [0,1] be a fixed interval. Denote by C(I) = C]0,1] the Banach space
consisting of all continuous functions acting from the interval I into R with the standard norm

| @ [|=sup [ 2(t) |-
tel

Consider the nonlinear Urysohn-Stieltjes integral equation

1
£(t) = p(t) + / F(t,5,2(5)) dug(t,5), t € T=[0,1] (1)

where g : I x I — R and the symbol d, indicates the integration with respect to s.
Equations of type (1) and some of their generalizations were considered in paper (see [3]), for the
properties of the Urysohn-Stieltjes integral (see Banas [1]).

In this paper, we generalize this result for the coupled system of Urysohn-Stieltjes functional
(delay) integral equations

o) = p(t) + / Fi(tas.y(61(5)) dega(t,5), tE T

y(t) = palt)+ / falt, 5, 2(t2(5))) duga(t,s), t € T
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in the Banach space C(I).

2 Existence of solutions

In this section we discuss the existence of solutions for the coupled system of nonlinear Urysohn-
Stieltjes integral equations in C(I). In our further considerations, we shall assume that the following
conditions are satisfied:

(i) pi:I — R are continuous functions on I, p=sup, | p;(t)], i=1,2.
(ii) ; : I — I are continuous functions such that ¥;(t) <t¢, i=1,2.

(i) fi : IxIxR — R, i= 1,2 are continuous functions such that there exist continuous
functions a; : I x I — I and continuous and nondecreasing functions ¢; : Ry — R4 such that

| fi(t,s, @) |[< ai(t, s)pi(| « [)
fort,s € I, x € R, i =1,2. Moreover, we put k = max{a;(t,s) : t,s €I, i=1,2}.

(iv) ¢gi : I xI — R, i = 1,2 and for all ¢;, to € I with ¢; < t, and the function s —
gi(ta, s) — gi(t1, s) is nondecreasing on I.

(v) gi(0,s) =0 for any s € I.
(vi) The functions t — g;(t,1) and t — g;(¢,0) are continuous on I. Put

p=max{sup | g;(t,1) | + sup | g;(£,0) | on I}, i=1,2.

(vil) There exists a positive number r satisfying the inequality
p+ (kei(r))p <.

Remark 2.1. Observe that Assumptions (iv) and (v) imply that the function s — g(t,s) is
nondecreasing on the interval I, for any fixed ¢ € I (Remark 1 in [4]). Indeed, putting t; = ¢, t; =
0 in (iv) and keeping in mind (v), we obtain the desired conclusion. From this observation, it follows
immediately that, for every ¢ € I, the function s — g(t, s) is of bounded variation on I.

Now, let X be the Banach space of all ordered pairs (z,y), x,y € C(I) with the norm

(2 y) llx = maxgf]], [|yl[}

where
| = ||=sup | (t) |, |y [|=sup [ y(t) .
tel tel

It is clear that (X, ||.||x) is Banach space.

Theorem 2.2. Let the assumptions (i)-(vii) be satisfied, then the coupled system (2) has at least
one solution in X.
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Proof. Define the operator T by

T(x,y)(t) = (Thy(t), Tox(t))
where

Tuy(t) = 2(t) = pi (1) + / fi(t 5,90 (5)) dugn (2, 5)

1
Taa(t) = 5(t) = p2(0) + [ falt,.2(02(5)) dugalt,)
0
We prove a few results concerning the continuity and compactness of these operators in the space

of continuous functions.

We define the set U by
U={u=(z(),y®) | (x(t),y(t) € X:| (z,y) [[x<r}
Let (z,y) € U and define
0(e) = sup{| fi(t2,s,9) — fi(tr,5,9) .| falte, s,2) — folts,s,2) [t @2 € 1, | ta —t1 [<e, x € R}

Now, for (z,y) € U, we have

| Twy@) | < [p(@) ]+ /O fi(t,5,9(41(s))) dsgr(t, ) |

< sgp|p1<t>|+/|f1<tsyw1 N1 d \/gltz
< [ @t y) \/gltz
< b+ (a5 (s) 1) / 41t 5)
< + (ker([l v D)]gr (1) — g1(2,0)]
< + (ke (M)l g1 (1) | + [ 91(¢,0) []
< + (k%(?"))[sup | g1(¢,1) | +sup | g1(¢,0) []
< + (ko1(r))p
then
| Ty || < p+ (koi(r))p.
By a similar way can deduce that
| Tox || < p+ (kpa(r))p.

Therefore,
| Tullx=IT(z,y) |x=I (Tvy, Tox) | x= max{|| Tyy ||, | Tox ||} <.
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Thus for every u = (z,y) € U, we have Tu € U and hence TU C U, (ieT:U — U).
This means that the functions of TU are uniformly bounded on I, it is clear that the set U is
nonempty, bounded, closed and convex.

Now, we prove that the set TU is relatively compact.
For u = (z,y) € U, for all e > 0, § > 0 and for each t1,t2 € I, and t; < t2 such that | to —¢; |< 4,

then

| Tvy(t2)

—Tvy(t1) |

IA

+

IN

_|_

+

IN

+

IA

+

IN

+

| p1(t2) — p1(ta) |
| / Fi(t2,5,9(61(5))) dag (t2,5) / Fi(trs5,5(1())) dagi (tr,5) |
| p1(t2) — p1(ty) |

| / F1(t2,5,5(61(5))) dagi (22, 5) / F1 (s 5,5(61())) dagi (12, 5) |
| / Fi(tr 5, 5(W1(5))) dega(t,s) / Fi(t 5,91 (5)) dega(tr, ) |

| p1(t2) — p1(t1) |

\ /0 [f1(ta, 5,9(¥1(5))) — fi(te, s,y(¥1(5)))] dsga(ta, s) |
1

\ /O fi(t1,8,9(¥1(5))) ds(g1(ta, ) — g1(t1,9)) |

| p1(t2) — pr(ty) |

1
| 1t yn () = s i) | a \/ G1(t>,2)
/ | f1(t1, s, y(¢a(s \/ 91(t2,2) — g1(t1, 2)])

| pa(ts) = pa(ta) | + / ) du(\/ g1(t2. )
z=0

S

/0 (ar(tr, 8)pr(| y(1() 1) ds(\/ [91(t2, 2) = g1(t1, 2)])

2=0

| pr(t2) — pr () || +60e) / dy(g1(t2.5)
0
(ker(l w 11) / dulgn (b2, 5) — g1 (t1. 9)]
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| p1(t2) —p1(t1) || +6(e)[g1(t2,1) — g1(t2,0)]
(ko1 (r){lg1(t2,1) — g1(t1, 1)] = [g1(t2,0) — g1(t1,0)]}
[ p1(t2) —p1(t1) |l +9(E)[91(1 1) —g1(1,0)]
(k1 (r){ll g1(t2,1) — g1(t1, 1) | + | 91(t2,0) — g1(1,0) ||}

+ IN + A

Hence

| Tvy(tz) —Tiy(ta) || < | pa(tz) — pi(ts) || +0(e)[g1(1,1) — g1(1,0)]
(k1(r)[] g1(t2, 1) — g1 (t1,1) | + | g1(t2,0) — g1(t1,0) .

+

As done above we can obtain

| Tox(t2) — Tox(ty) | < || pa(tz) — p2(t1) | +0(e)[g2(1, 1) — g2(1,0)]
+ (kp2(r))]] 92(t2,1) = g2(t1, 1) [ + | g2(t2,0) — g2(t1,0) [].

Now, from the definition of the operator T' we get

Tu(tz) — Tu(ti) = T(z,y)(t2) —T(z,y)(t1)
(Try(t2), Tax(t2)) — (Thy(t), Tax(t1))
(Thy(t2) — Thy(ty), Tox(t2) — Tox(ty))

Therefore,

| Tu(tz) —Tu(t1) |x = || (Tay(tz) — Thy(tr), Tox(tz) — Tax(t)) [Ix

= max{| Tiy(t2) — Thy(t1) [|,[| Toz(t2) — Tox(t1) |1}
max{|| p1(t2) —p1(t1) | +0(e)[g1(1, 1) — g1(1,0)]
(k+7D)[| g1(t2, 1) — g1(t1,1) | + ] g1(t2,0) — g1(t1,0) |]
o I pa(te) —pa(ta) [| +6(e)[g2(1,1) — g2(1,0)]
+ (k+7b)[ g2(t2, 1) — g2(t1,1) [ + | g2(t2,0) — g2(t1,0) []}-

This means that the class of {Tu(t)} is equi-continuous on I, then by Arzéla-Ascoil theorem TU is
relatively compact.

+ IA

Now, we will show that the operator T': U — U is continuous.
Firstly, we prove that T is continuous, for all € > 0 and § > 0, let y1(¢) and y2(¢) € C[0,1] and
| y1(t) — y2(t) |< 9, then

| To(t) - Ti(t) | < | /0 Filt, 5.1 (81(5)) daga (£, 5) / Pt 5. 92(61(5)) dga (t,5) |
< [ 1Al n i) - Atswm@ o) | d \/gltz
0
<

5*/0 ds(\/ 91(t, 2))
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< ¢ /0 dsgl(t78)

< " [91 (ta 1) — 01 (ta 0)]

< gt 1) [+ ] g:(t,0) ]
< efpu=e

Therefore,
| Tvyi(t) — Thya(t) [<e.

This means that the operator T is continuous.
By a similar way as done above we can prove that for any z1(¢), x2(t) € C[0,1] and
| z1(t) — z2(t) |< 0, we have

| Tgl'l(t) - TQ.’EQ(t) |§ E.

Hence T5 is continuous operator.

The operators 77 and T5 are continuous operators imply that T is continuous operator.

Since all conditions of Schauder fixed point theorem are satisfied, then T has at least one fixed
point u = (x,y) € U, which completes the proof. B

Corollary 2.3. Under the assumptions of Theorem 2.2 (with g;(t, s) = g:(s)), the coupled system
of Urysohn-Stieltjes integral equations

2(t) = ;i (1) + / fi(t 5,900 (8))) duga(s), t€ 1

1
WO =0+ [ Faltisa(wals) (o). te 1
has a solution v = (z,y) € U.

In what follows, we provide some examples illustrating the above obtained results.
Example 1. Consider the functions g; : I x I — R defined by the formula

tlntt= fort€0,1], sel
_ t s 4y ’
g1(t,s) { 0, fort=0, sel.
ga(t,s) = tt+s—1), tel.

It can be easily seen that the functions g; (¢, s) and ga(¢, s) satisfies assumptions (iv)-(vi) given in
Theorem 1. In this case, the coupled system of Urysohn-Stieltjes integral equations (2) has the
form

o) = O+ [ S htssthe) s te

y(t) = palt)+ / thalt, s, 2(Ya(s))) ds, te I,



Existence of solution for a coupled system of Urysohn-Stieltjes functional integral equations 123

Therefore, the coupled system (3) has at least one solution z,y € CI0,1].

Example 2. Assume that the functions ¢, : Ry — R4 have the form ¢;(r) = 1+ r and
the functions a; € C(I). Denote by b; =|| a; |= max|| a;(¢,s) |: t,s € I] . Then,

| fi(t,s,2) [< ai(t, s) (14 | 2 |) < ai(t,s) + bi | 2 |-
Notice that this assumption is a special case of assumption (iii).

Consider now the assumptions (444)* and (vii)* having the form
(#i1)* f; : I x R — R are continuous and satisfy the Lipschitz condition

| it s, @) = filt,s,y) [Sbi |z —yl, i=1,2
From this assumption we can deduce that
| filt,s,x) | = | fi(t,s,0) [<] fi(t, s, 2) = fi(t,5,0) |[< bi | 2 |
which implies that
| fit,s,2) |<[ fi(t, 5,0) [ +bi | @ |=[ ai(t,s) | +bi | 2 |
(vid)* b < 1.

Corollary 2.4. Let the assumptions (i) — (i4), (¢4¢)*, (iv) — (vi) and (vii)* be satisfied, then the
coupled system (2) has an unique solution (z,y) € X.

Proof. Let u; = (z1,y1) and uz = (22,y2) be two solutions of the coupled system (2), we have

I @iy1) = (22,92) [x = [l (21— 22,510 —w2) |Ix

= max{|zi -z [, [ y1 —v2 [}

Now,

-] = | pi(t) /ﬁ 5.1 (01(5))) daga (t,5) — /h 52 (01(5))) daga (£,5) |

< /0 | fi(ts s, y1(¥1(5)) = fi(t, 8,92(11(8))) | ds( \/91 (t, )
< AwaWMW—mWMWI%m@@
Sme—mHA dugi (1, 5)

< bllw -l (1) — gi(t,0)

< bllyr—w2 [l ot 1) | +1]91(¢,0)|]

< wbllyi —y2 |
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Therefore,
21—z [<pbllyr—y2ll -
Also
1 1
| = |pad)+ / Fal,21(2(5))) duga(t,5) — pa(t) + / fals,23(02(5)) dygalt,s) |
1 S
< /O | fa(s, 21 (1h2(5))) = fals, 22(v2(s))) | do(\/ g2(t, 2))
) z2=0
< / by | w1 (a(s)) — w2 (a(s)) | dgalt,s)
0
t
bl x1 —z ds ,S
< bl zu/o «9(t,9)
< bllar =2 || [g2(t 1) — g2(t,0)]
< by —ao | [ g2(t,1) [ 4| g2(¢,0) |]
< pbllzr -2 .
Hence
lyr —y2 [[Spb|lzr — 22 .
Then
| (z1,91) = (z2,92) Ix = max{||zs —z2 ||, y1 —y2 [I}
< max{ub || y1 —ya |, ub || z1 — 22 ||}
< pbmax{|| y1 — vz ||, | @1 — @2 ||}

= pb| (z1,y1) — (z2,92) [Ix
which implies that
(1 —pb) | (z1,91) — (22,92) [x< 0,

therefore,
| (z1,91) = (w2,92) [|[x=0

This means that
(r1,91) = (x2,92) = @1 =22, Y1 =1y

Thus, the solution of the coupled system (2) is unique.

Example 3. Similarly as above, take the functions a;(t,s) € C(I) . Let us take the functions
¢i : Ry — R4 having the form ¢;(r) =14 r®, where a > 0 is a fixed number. Then

| fi(t,s,2) |[< ailt, s) (14 | 2 |) < ailt, s) +b; [ @ |7

where b; =|| a, || .
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