Simple proofs of classical results on zeros of J,(x) and J/(x)
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Abstract

The Bessel functions J,(z) and their derivatives J,(z) can be represented by infinite series
and infinite products. Using these representations we give very simple proofs for known results
concerning the zeros of the above functions.
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1 Introduction

It is well known [4, 5] that the Bessel function J,(x) and its derivative J},(x) can be represented by
the infinite series:
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respectively. By j,n and j;,,, n = 1,2,... we indicate the n-th positive zeros of J,(x) and J, ()
respctively. Using only these representations for J,(x) and J! (x) we obtain very easily well known
[1, 2, 3, 5] results concerning the zeros of these functions.

2 Results on the zeros of J,(x)
By equating the right hand side of (1.1) and (1.3) we obtain
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Let us consider the first terms of the series on the left and the first terms of the products on the

right, so:
1 1o 1 1, 1 lg 1,
— -z -t 2’
'v+1) 4 T(w+2) 427 2w +3) 43 3T'(v+4)
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Using the equality I'(x 4+ 1) = 2I'(x), it becomes:
1 1 1 1 1 1
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= JV1)( 33,2)( 33,3)
1)By equating the coefficients of 20, 2%, %, ... of (2.5) we obtain respectively
1=1,
1 =1
e &
dv+1)  “—Hitn
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4 2(” + 1)(” + 2) n=1 ju,n k=1,k#n ]u,k

so, the equation (2.8) takes the form

1 1 1, =1
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or
e}
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(2.2)
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(2.9)

(2.10)

(2.11)

(2.12)

Remark 2.1. If we continue using the analogous procedure by equating the coefficients of z9,...,

we’ll obtain the sums > 7, j% L k=3, ...

Remark 2.2. We mention that the sums Y j%, k=1,2,3,... are well known [1, 2, 3, 5] but

their proof is much more complicated.
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Remark 2.3. It is obvious that using the sums Y~ J2k , k= 1,2,3,... we obtain [5] known
inequalities for the first zero of .J, (z). For example using (2.12) we obtain the lower bound jZ; >
4v+ 1) (v +2)Y2 for v > —1.

2) Putting v = 1/2 in (2.5)and since j; 2, = n, it becomes:

2?2 axt S 22 22 22
l-grt g gt =050 550 - 55)- (2.13)
or
: ~ 22
sine = a1l (1 - n27r2) (2.14)

which is the known [4] infinite product expansion for sinz.
3) Similarly, by putting v = —1/2 in (2.5)and since j_1 /2, = (2n — 1)7, it becomes:

a? axt af 42 42 422
or s
0o x
cosw = TIZ, (1 - m) (2.16)

which is the known [4] infinite product expansion for cosx.
4) We put 4y instead of = in (2.5), so it becomes:

1, 1 1, 1 1 1

Yot eE A e+ TR I 9w+ | (2.17)
y? y? y?
(1+Z)(1+E)(1+E) (2.18)

and y are the zeros of the modified Bessel function I, (y). By putting v = 1/2 in (2.18) we have

2 4 6 2 2 2

1+%+%+% .:(1+%)(1+ )1+ 332”772)... (2.19)

or 2
sinhy = ylIS (1 + W) (2.20)

which is the known [4] infinite product expansion for sinhy.

5) Similarly, by putting ¥ = —1/2 in (2.18)we have:
vy oyt 4y? 4y? 4y?
1+—+E+—+ (1+—)( 2. )(1+527T2)... (2.21)
or

hy =TI, (1 4 2.22
coshy = II32 4 ( +m) (2.22)

which is the known [4] infinite product expansion for coshy.

Remark 2.4. From (2.14) we also obtain the well known [4] result that lim, ,o $°¢ = 1.
Remark 2.5. The equations (2.7) and (2.12) for v = 1/2 and v=-1/2 glve the known summable

: o0 1 _ x? o0 S o _
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3 Results on the zeros of J/ ()
By equating the right hand side of (1.2) and (1.4) we obtain
f) (—5)"@n+v) 1 2

— I (1 —
= nT(v+n+1) I'(v) n=1(

(3.1)

We are working similarly as in section 2, so, we consider the first terms of the series on the left and
the first terms of the products on the right, so:

v 2 (24v) 2t (d+v) 2% (6+v) (3.2)
Tv+1) 4Tw+2) 422w +3) 433 T (v+4) '
1 x? x? x?
= (1-— )(1— — )(1—— )... (3.3)
L(v) (31/41)2 (31/42)2 (31/43)2
and using the equality I'(x 4+ 1) = zI'(x), it becomes:
1 ,(24v) 1 (4+v) 1 (6+v)
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By equating the coefficients of z°, 22, 2%, ... we obtain respectively
1=1, (3.6)
24+v) — 1
oE I DA 7
(4+v) =1 = 1
= _ — (3.8)
PI 00 D 2 L7 k:%;n GAE
As in the previous section, the sum in right hand side of (3.8) can be written
| > 1 1 — 1
- - =z - ) (3.9)
n;l (]/u,n)Q k:l,zk;én (]l//,k?)2 2 ng ]; ]Vk? (]ly,n)z
so we obtain
— 1 24+ 8v+38
Y= (" +8+8) (3.10)
2 G T PR D +2)

Remark 3.1. If we continue using the analogous procedure by equating the coefficients of x9,...,
we’ll obtain the sums o W, k=3, ..

Remark 3.2. We mention that the sums > °7

their proof is much more complicated.

el (J AR k =1,2,3,... are well known [1, 3] but
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