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Abstract

The Bessel functions Jν(x) and their derivatives J ′
ν(x) can be represented by infinite series

and infinite products. Using these representations we give very simple proofs for known results
concerning the zeros of the above functions.
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1 Introduction

It is well known [4, 5] that the Bessel function Jν(x) and its derivative J ′ν(x) can be represented by
the infinite series:
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)ν ∞∑
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(
− x2

4

)n
n!Γ(ν + n+ 1)

, ν > −1 (1.1)
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(
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as well as by infinite products:

Jν(x) = (
x

2
)ν

1

Γ(ν + 1)
Π∞n=1(1− x2

j2ν,n
), ν > −1 (1.3)

and

J ′ν(x) =
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(
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Π∞n=1(1− x2

(j′ν,n)2
), ν > 0 (1.4)

respectively. By jν,n and j′ν,n, n = 1, 2, ... we indicate the n-th positive zeros of Jν(x) and J ′ν(x)
respctively. Using only these representations for Jν(x) and J ′ν(x) we obtain very easily well known
[1, 2, 3, 5] results concerning the zeros of these functions.

2 Results on the zeros of Jν(x)

By equating the right hand side of (1.1) and (1.3) we obtain
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Let us consider the first terms of the series on the left and the first terms of the products on the
right, so:
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)... (2.3)

Using the equality Γ(x+ 1) = xΓ(x), it becomes:
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1)By equating the coefficients of x0, x2, x4, ... of (2.5) we obtain respectively

1 = 1, (2.6)
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Taking in account (2.7) the sums of the right hand side of (2.8) can be written
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so, the equation (2.8) takes the form
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Remark 2.1. If we continue using the analogous procedure by equating the coefficients of x6,...,
we’ll obtain the sums

∑∞
n=1

1
j2kν,n

, k = 3, ....

Remark 2.2. We mention that the sums
∑∞
n=1

1
j2kν,n

, k = 1, 2, 3, ... are well known [1, 2, 3, 5] but

their proof is much more complicated.
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Remark 2.3. It is obvious that using the sums
∑∞
n=1

1
j2kν,n

, k = 1, 2, 3, ... we obtain [5] known

inequalities for the first zero of Jν(x). For example using (2.12) we obtain the lower bound j2ν,1 >

4(ν + 1)(ν + 2)1/2, for ν > −1.

2) Putting ν = 1/2 in (2.5)and since j1/2,n = nπ, it becomes:
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3!
+
x4

5!
− x6

7!
+ ... = (1− x2

π2
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22π2
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32π2
)... (2.13)

or

sinx = xΠ∞n=1(1− x2

n2π2
) (2.14)

which is the known [4] infinite product expansion for sinx.
3) Similarly, by putting ν = −1/2 in (2.5)and since j−1/2,n = (2n− 1)π2 , it becomes:
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which is the known [4] infinite product expansion for cosx.
4) We put iy instead of x in (2.5), so it becomes:
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and y are the zeros of the modified Bessel function Iν(y). By putting ν = 1/2 in (2.18) we have
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which is the known [4] infinite product expansion for sinhy.
5) Similarly, by putting ν = −1/2 in (2.18)we have:

1 +
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which is the known [4] infinite product expansion for coshy.

Remark 2.4. From (2.14) we also obtain the well known [4] result that limx→0
sinx
x = 1.

Remark 2.5. The equations (2.7) and (2.12) for ν = 1/2 and ν = −1/2 give the known summable

series
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3 Results on the zeros of J ′
ν(x)

By equating the right hand side of (1.2) and (1.4) we obtain
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We are working similarly as in section 2, so, we consider the first terms of the series on the left and
the first terms of the products on the right, so:
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and using the equality Γ(x+ 1) = xΓ(x), it becomes:
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By equating the coefficients of x0, x2, x4, ... we obtain respectively
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As in the previous section, the sum in right hand side of (3.8) can be written
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Remark 3.1. If we continue using the analogous procedure by equating the coefficients of x6,...,
we’ll obtain the sums
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2k , k = 3, ....

Remark 3.2. We mention that the sums
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n=1

1
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2k , k = 1, 2, 3, ... are well known [1, 3] but

their proof is much more complicated.
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