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Abstract

The notion of (X,�) partially ordered set is well known and its study for fixed points is well
entrenched in the literature. In this manuscript, we obtain sufficient conditions for the existence
of common fixed point for two set valued mappings satisfying an implicit relation in complete
G-metric space on partially ordered set X.
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1 Introduction and Preliminaries

Unless mentioned or defined otherwise, for all terminology and notation in this paper, the reader
is referred to [6, 10, 11, 15].

There are several reasons for the acceleration of interest in fixed point theory. One way to
study a fixed point is through set valued maps. For such fixed point study, Nadler [11] introduced
a important notion of set valued contraction and proved a set valued version of the Banach con-
traction principle. In a related vein, several authors studied many fixed point results for set valued
contraction mappings see [8, 9, 14, 15]. Popa [12, 13] initiated the study of fixed point for mappings
satisfying implicit relations satisfying ϕ-map. After that Berinde [5] proved some constructive fixed
point theorems for almost contractions for an implicit relation, which generalize related results (see
[2, 3, 6, 7, 15]).

Throughout in this paper, let (X,G) be G-metric space, CB(X) denotes the collection of all
non-empty closed bounded subsets of X. Let H(., ., .) be the Hausdorff G-distance on CB(X), i.e,
for A,B,C ∈ CB(X) and x ∈ X

DG(A,B,C) := inf{G(a, b, c) : a ∈ A, b ∈ B, c ∈ C}

δG(A,B,C) := sup{G(a, b, c) : a ∈ A, b ∈ B, c ∈ C}

and in [9] Kaewcharoen and Kaewkhao defined Hausdorff G-metric as,

HG(A,B,C) := max{sup
x∈A

G(x,B,C), sup
x∈B

G(x,C,A), sup
x∈C

G(x,A,B)}

where,

G(x,B,C) = dG(x,B) + dG(B,C) + dG(x,C)

dG(x,B) = inf{dG(x, y) : y ∈ B}
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dG(A,B) = inf{dG(a, b) : a ∈ A, b ∈ B}.

Note that
DG(A,B,C) ≤ HG(A,B,C) ≤ δG(A,B,C).

Recently, Beg and Butt [4] obtained the sufficient conditions for the existence of common fixed
point of set valued mapping satisfying an implicit relation in partially ordered metric space. In this
manuscript, we provide a birds eye view on [4] to prove a fixed point theorems in partially ordered
complete G-metric spaces for a set valued mapping satisfying an implicit relations.
It is necessary to present a formidable number of definitions in order to make available the basic
concepts and terminology, which will be used in sequel.

Mustafa and Sims [10] introduced more appropriate notion of generalized metric space called
G-metric spaces as follows.

Definition 1.1. [10] Let X be a nonempty set, and let G : X ×X ×X → R+ ∪ {0} be a function
satisfying the following axioms:

(G1) G(x, y, z) = 0, if x = y = z;

(G2) G(x, x, y) > 0, for all x, y ∈ X with x 6= y;

(G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X with z 6= y;

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = (symmetry in all three variables);

(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality).

then the function G is called a generalized metric, or, more specifically a G-metric on X and the
pair (X,G) is called a G-metric space. Clearly, these properties are satisfied when G(x, y, z) is
perimeter of triangle with vertices x, y and z ∈ R2.

Example 1.2. Let (X, d) be a metric space. The function G : X ×X ×X → [0,∞), defined by
G(x, y, z) = max{d(x, y), d(y, z), d(z, x)}, or
G(x, y, z) = d(x, y) + d(y, z) + d(z, x), for all x, y, z ∈ X, is a G-metric on X.

Proposition 1.3. The following useful properties of G-metric are readily derived from the Propo-
sition 1 of [10], for any x, y, z, a ∈ X, it follows that:

(G1) G(x, y, z) = 0 if x = y = z;

(G2) G(x, y, z) ≤ G(x, x, y) +G(x, x, z);

(G3) G(x, y, y) ≤ 2G(y, x, x);

(G4) G(x, y, z) ≤ G(x, a, z) +G(a, y, z);

(G5) G(x, y, z) = G(x, z, y) = G(y, z, x);

(G6) G(x, y, z) ≤ 2
3 [G(x, y, a)) +G(x, a, z) +G(a, y, z)];

(G7) G(x, y, z) ≤ [G(x, a, a) +G(y, a, a) +G(z, a, a)].
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Definition 1.4. [10] Let (X,G) be a G-metric space, and {xn} is sequence of points in X, one
says that sequence {xn}

i) is G-convergent to x if, for any ε > 0, there exists an x ∈ X and L ∈ N such that
G(x, xn, xm) < ε, for all n,m ≥ L;

ii) is G-Cauchy sequence if, for any ε > 0, there exists L ∈ N such that G(xl, xn, xm) < ε, for
all n,m, l ≥ L;

iii) is G-complete if every G-Cauchy sequence in (X,G) is G-convergent in X.

Proposition 1.5. [10] Let (X,G) be a G-metric space. Then the following are equivalent:

i) {xn} is G-convergent to x;

ii) G(xn, xn, x)→ 0 as n→∞;

iii) G(xn, x, x)→ 0 as n →∞;

iv) G(xm, xn, x)→ 0 as m,n→∞.

Definition 1.6. [10] Let (X,G) be a G-metric space, then for x0 ∈ X, r > 0, the G-ball with center
x0 and radius r is defined as

BG(x0, r) = {y ∈ X : G(x0, y, y) < r}.

Proposition 1.7. [10] Let (X,G) be a G-metric space then for x0 ∈ X, r > 0 we have

i) If G(x0, y, y) < r, then x, y ∈ BG(x0, r);

ii) If y ∈ BG(x0, r), then there exists a δ > 0 such that BG(y, δ) ⊆ BG(x0, r)

Definition 1.8. Let R+ be the set of non-negative real numbers and τ the set of real-valued
functions T : R6

+ → R satisfying the following conditions:
τ0 : T (lim inf

n→∞
pn) ≤ lim inf

n→∞
T (pn) for any pn ∈ R6

+, where lim inf
n→∞

pn means components wise lim inf.

τ1 : T (t1, t2..., t6) is non-increasing in t2, t3, ..., t6;
τ2 : there exists a continuous strictly increasing function ψ : R+ → R+ with ψ(t) < t for t > 0 and
ε > 0 such that the inequalities
u ≤ w + ε, and
T (w, v, v, u, u+ v, 0) ≤ 0
or
T (w, v, u, v, 0, u+ v) ≤ 0 implies w ≤ ψ(v);
τ3: T (w, 0, v, 0, 0, v) ≤ 0 and T (w, 0, 0, v, v, 0) ≤ 0 implies w ≤ ψ(v) where ψ is function in τ2.

Example 1.9. [1] T (t1, t2..., t6) = t1 − f(max{t2, t3, t4, 12 (t5 + t6)}), where f : R+ → R+ is a
continuous strictly increasing function with f(t) < t for t > 0. τ0 and τ1 are obvious.
τ2: Let u > 0, then choose ε > 0 so that f(u) + ε < u (this is possible since f(u) < u). Now let u ≤
w+ε and T (w, v, v, u, u+v, 0) ≤ 0 = w−f(max{u, v}) ≤ 0. If u ≥ v then u ≤ w+ε ≤ f(u)+ε < u,
is a contradiction. Thus u < v and w ≤ f(v). Similarly u ≤ w + ε and T (w, v, u, v, 0, u + v) ≤ 0
imply w ≤ f(v). If u = 0 then w ≤ f(v). Thus τ2 is satisfied.
τ3: T (w, 0, v, 0, 0, v) = T (w, 0, 0, v, v, 0) ≤ 0 = w − f(v) ≤ 0 imply w ≤ f(v) = ψ(v).
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Example 1.10. [1] T (t1, t2..., t6) = t1−α max{t2, t3, t4}−(1−α)(at5 +bt6), where 0 < α < 1, a ≥
0, b ≤ 1

2 .
τ0 and τ1 are obvious.
τ2: Let u > 0, then choose ε > 0 so that max{α+ 2a(1−α), α+ 2b(1−α)}u+ ε < u(this is possible
since 0 < max{α+ 2a(1− α), α+ 2b(1− α)} < 1). Now let u ≤ w + ε and T (w, v, v, u, u+ v, 0) =
w − αmax{u, v} − (1 − α)a(u + v) ≤ 0. If u ≥ v then u ≤ w + ε ≤ [α + 2a(1 − α)]u + ε < u, is a
contradiction. Thus u < v and w ≤ max{α+ 2a(1− α), α+ 2b(1− α)}v. Similarly, u ≤ w + ε and
T (w, v, u, v, 0, u+ v) ≤ 0 imply w ≤ max{α+ 2a(1− α), α+ 2b(1− α)}v. Thus, τ2 is satisfied.
τ3 : T (w, 0, v, 0, 0, v) = w−αv−(1−α)bv ≤ 0 imply w ≤ [α+b(1−α)]v ≤ ψ(v) and T (w, 0, 0, v, v, 0)
= w − αv − (1− α)av ≤ 0 implies w ≤ [α+ a(1− α)]v ≤ ψ(v).

Now we begin this section with the following theorem that gives the existence of fixed point in
partially ordered G-metric space X for a set valued mapping.

2 Main Theorems

Theorem 2.1. Let (X,�) be a partially ordered set and G be a complete G-metric on X. Let
x0 ∈ X, r > 0 and F́ , Ǵ : BG(x0, r)→ C(X). Suppose that for all x, y ∈ BG(x0, r), F́ x and Ǵy are
bounded and satisfying
T [HG(F́ x, Ǵy, Ǵy), G(x, y, y),

G(x, F́x, F́ x), G(y, Ǵy, Ǵy), G(x, Ǵy, Ǵy), G(y, F́ x, F́ x)] ≤ 0 (2.1)

for all comparable elements x, y of X and some T ∈ τ . Also assume that the following conditions
are satisfied:

1. For each x ∈ X, there exists y ∈ £x with x � y such that
G(x, y, y) ≤ G(x,£x,£x) + ε for £ ∈ {F́ , Ǵ}.

2. G(x0, x1, x1) < r − ψ(r) for some x1 ∈ F́ x0 with x0 � x1 and ψ is function defined in τ2.

3.
∑∞

i=1 ψ
i(r − ψ(r)) ≤ ψ(r), where ψ is function defined in τ2.

4. If xn → x is a sequence in BG(x0, r), whose consecutive terms are comparable, then xn � x
for all n. Then there exists x ∈ BG(x0, r) with x ∈ F́ x ∩ Ǵx.

Proof: Using condition 2, one can choose x1 ∈ F́ x0 with x0 � x1 such that

G(x0, x1, x1) < r − ψ(r) (2.2)

Since r − ψ(r) < r, {G(x0, x1, x1) < r}, now in view of equation (2.2), we have x1 ∈ BG(x0, r).
Since ψ is strictly increasing function, therefore we can choose ε > 0, such that

ψ(G(x0, x1, x1)) + ε < ψ(r − ψ(r)) (2.3)

Again by condition 1, there exists x2 ∈ Ǵx1 with x1 � x2 s.t.

G(x1, x2, x2) ≤ G(x1, Ǵx1, Ǵx1) + ε ≤ HG(F́ x0, Ǵx1, Ǵx1) + ε (2.4)

Also, x0, x1 ∈ BG(x0, r) therefore inequality (2.1) gives
T [HG(F́ x0, Ǵx1, Ǵx1), G(x0, x1, x1), G(x0, F́ x0, F́ x0), G(x1, Ǵx1, Ǵx1),
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G(x0, Ǵx1, Ǵx1), G(x1, F́ x0, F́ x0)] ≤ 0
from τ1, we get

T [HG(F́ x0, Ǵx1, Ǵx1), G(x0, x1, x1), G(x0, x1, x1), G(x1, x2, x2),

G(x0, x1, x1) +G(x1, x2, x2), 0] ≤ 0,

which can be written as
T (w, v, v, u, u+ v, 0) ≤ 0,

where w = HG(F́ x0, Ǵx1, Ǵx1), u = G(x1, x2, x2), v = G(x0, x1, x1),
by τ2, we have w ≤ ψ(v) i.e.,

HG(F́ x0, Ǵx1, Ǵx1) ≤ ψ(G(x0, x1, x1)) (2.5)

Using (2.4), (2.5) together with (2.3), we have

G(x1, x2, x2) ≤ ψ(G(x0, x1, x1)) + ε < ψ(r − ψ(r)).

Thus,
G(x0, x2, x2) ≤ G(x0, x1, x1) +G(x1, x2, x2),

by condition (3), which becomes

< r − ψ(r) + ψ(r − ψ(r))

< r − ψ(r) + ψ(r) = r.

⇒ x2 ∈ BG(x0, r).

Again choose δ > 0, such that

ψ(G(x1, x2, x2)) + δ < ψ2(r − ψ(r)). (2.6)

On applying condition 2, we found that there exists a x3 ∈ F́ x2 with x2 � x3 such that

G(x2, x3, x3) ≤ G(x2, F́ x2, F́ x2) + δ < HG(Ǵx1, F́ x2, F́ x2) + δ (2.7)

Using 2.1 together with the fact that x1, x2 ∈ BG(x0, r) and x1 � x2 we get

T [HG(F́ x2, Ǵx1, Ǵx1), G(x2, x1, x1), G(x2, F́ x2, F́ x2), G(x1, Ǵx1, Ǵx1),

G(x2, Ǵx1, Ǵx1), G(x1, F́ x2, F́ x2)] ≤ 0

from τ1, we obtain

T [HG(F́ x2, Ǵx1, Ǵx1), G(x1, x2, x2), G(x2, x3, x3), G(x1, x2, x2), 0,

G(x1, x2, x2) +G(x2, x3, x3)] ≤ 0

which reduces to
T (w, v, u, v, 0, u+ v) ≤ 0,
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where
w = HG(F́ x2, Ǵx1, Ǵx1), u = G(x2, x3, x3), v = G(x1, x2, x2),

using τ2, clearly, w ≤ ψ(v) which gives

HG(F́ x2, Ǵx1, Ǵx1) ≤ ψ(G(x1, x2, x2)) (2.8)

On using (2.7), (2.8) and (2.6), we get

G(x2, x3, x3) ≤ ψ(G(x1, x2, x2)) + δ < ψ2(r − ψ(r)).

Also from condition 3

G(x0, x3, x3) ≤ G(x0, x1, x1) +G(x1, x2, x2) +G(x2, x3, x3)

< r − ψ(r) + ψ(r − ψ(r)) + ψ2(r − ψ(r))

≤ r − ψ(r) +

∞∑
i=1

ψi(r − ψ(r))

≤ r − ψ(r) + ψ(r) = r.

⇒ x3 ∈ BG(x0, r)

Proceeding in this manner, we obtain a sequence {xn} ⊆ BG(x0, r) with xn � xn+1 such that
x2n+2 ∈ Ǵx2n+1 and x2n+1 ∈ F́ x2n for n ≥ 0 and

G(xn, xn+1, xn+1) < ψn(r − ψ(r)) (2.9)

using condition 3, and equation (2.9) we found that {xn} is Cauchy sequence. Now as X complete
G-metric, there exists some point x ∈ BG(x0, r) such that xn → x and applying condition 4, we
get xn � x for all n.
Now it remains to show x ∈ F́ x ∩ Ǵx, for this, we consider two cases for ′n′

CASE 1: - n is even
Since xn, x ∈ BG(x0, r) and xn � x, hence by equation 2.1, we have

T [HG(F́ x, Ǵxn−1, Ǵxn−1), G(x, xn−1, xn−1), G(x, F́x, F́ x), G(xn−1, Ǵxn−1, Ǵxn−1),

G(x, Ǵxn−1, Ǵxn−1), G(xn−1, F́ x, F́ x)] ≤ 0

Taking limit inferior as n→∞ and using τ2, together with the

G(x, Ǵxn−1, Ǵxn−1) ≤ G(x, xn, xn)→ 0

G(xn−1, Ǵxn−1, Ǵxn−1) ≤ G(xn−1, xn, xn)→ 0

and
G(xn, Ǵxn−1, Ǵxn−1)→ 0.

Thus the expression turns out to be

T [ lim
n→∞

inf HG(F́ x, Ǵxn−1, Ǵxn−1), 0, G(x, F́x, F́ x), 0, 0, G(xn−1, x, x)
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+G(x, F́x, F́ x)] ≤ 0

.
implies

T [ lim
n→∞

inf HG(F́ x, Ǵxn−1, Ǵxn−1), 0, G(x, F́x, F́ x), 0, 0, G(x, F́x, F́ x)] ≤ 0.

Now using the condition 3, we get

lim
n→∞

inf HG(F́ x, Ǵxn−1, Ǵxn−1) ≤ ψ(G(x, F́x, F́ x)).

Consider
G(x, F́x, F́ x) ≤ G(x, xn, xn) +G(xn, F́ x, F́ x)

≤ G(x, xn, xn) +HG(Ǵxn−1, F́ x, F́ x)

Now taking limit inferior n→∞, in this inequality we get,

G(x, F́x, F́ x) ≤ 0 + lim
n→∞

inf HG(Ǵxn−1, F́ x, F́ x) ≤ ψ(G(x, F́x, F́ x))

⇒ G(x, x, F́ x) ≤ ψ(G(x, F́x, F́ x)).

Also ψ(t) < t for t > 0, which gives
G(x, F́x, F́ x) = 0.

⇒ x ∈ F́ x. (2.10)

Case II: - n is odd

T [HG(F́ xn−1, Ǵx, Ǵx), G(xn−1, x, x), G(xn−1, F́ xn−1, F́ xn−1), G(x, Ǵx, Ǵx),

G(xn−1, Ǵx, Ǵx), G(x, F́xn−1, F́ xn−1)] ≤ 0

Proceeding in the similar vein, as in (case I) one can get,

lim
n→∞

inf HG(Ǵx, F́ xn−1, F́ xn−1) ≤ ψ(G(x, Ǵx, Ǵx))

and therefore

G(x, Ǵx, Ǵx) ≤ G(x, xn, xn) +G(F́ xn−1, Ǵx, Ǵx)

≤ G(x, xn, xn) +HG(Ǵx, F́ xn−1, F́ xn−1)

≤ 0 + lim
n→∞

infHG(Ǵx, F́ xn−1, F́ xn−1)

⇒ G(x, Ǵx, Ǵx) ≤ HG(Ǵx, F́ xn−1, F́ xn−1) ≤ ψ(G(x, Ǵx, Ǵx))

⇒ G(x, Ǵx, Ǵx) ≤ ψ(G(x, Ǵx, Ǵx))⇒ G(x, Ǵx, Ǵx) = 0

⇒ x ∈ Ǵx (2.11)

Hence, from (2.10) and (2.11), we conclude that

x ∈ F́ x ∩ Ǵx.

Hence the result.

The extension of the above Theorem 2.1 is given as:



52 A. Kumar

Theorem 2.2. Let (X,�) be a partially ordered set and G be a complete G-metric on X. Let
F́ , Ǵ : X → C(X) be such that F́ x, Ǵy are bounded and satisfying the implicit relation 2.1 of
Theorem 2.1 for all comparable element x, y of X and some T ∈ τ . Also assume that the following
conditions are satisfied:

1. For each x ∈ X, there exists y ∈ £x with x � y such that
G(x, y, y) ≤ G(x,£x,£x) + ε for £ ∈ {F́ , Ǵ}.

2. there exist r > 0 such that

∞∑
i=1

ψi(r − ψ(r)) <∞, where ψ isfunction defined in τ2.

3. If xn → x is sequence in X, whose consecutive terms are comparable, then xn � x for all n.
Then there exists x ∈ X with x ∈ F́ x ∩ Ǵx.

Proof: Proceeding in similar vein, as Theorem 2.1, first, we show that
infx∈X(G(x, F́x, F́ x)) = 0 or infx∈X(G(x, Ǵx, Ǵx)) = 0.
We shall show this result by contradiction.
Suppose infx∈X(G(x, F́x, F́ x)) = δ1 > 0 and infx∈X(G(x, Ǵx, Ǵx)) = δ2 > 0. On the contrary,
suppose that

δ1 ≤ δ2.

Using the continuity of ψ, and ψ(δ1) < δ1 one can observe that there exists ε > 0 such that

ψ(t) < δ1, for t ∈ [δ1, δ1 + ε). (2.12)

Choose x ∈ X such that
G(x, F́x, F́ x) ≥ δ1 and G(x, Px, Px) < δ1 + ε. Now, by using the condition 1 there exist y ∈ Px
with x � y, such that

δ1 ≤ G(x, y, y) < δ1 + ε (2.13)

In view of equation (2.1) of Theorem 2.1, we get

T [HG(F́ x, Ǵy, Ǵy), G(x, y, y), G(x, F́x, F́ x), G(y, Ǵy, Ǵy),

G(x, Ǵy, Ǵy), G(y, F́ x, F́ x)] ≤ 0.

From τ1 together with the facts that

G(x, F́x, F́ x) ≤ G(x, y, y) +G(y, F́ x, F́ x)

and
G(y, Ǵy, Ǵy) ≤ G(x, y, y) +G(y, Ǵy, Ǵy)

thus
T [HG(F́ x, Ǵy, Ǵy), G(x, y, y), G(y, Ǵy, Ǵy), G(x, y, y) +G(y, Ǵy, Ǵy), 0] ≤ 0.
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i.e.,
T (w, v, v, u, u+ v, 0) ≤ 0,

where

w = HG(F́ x, Ǵy, Ǵy), u = G(x, Ǵy, Ǵy), v = G(x, y, y),

from τ2, we have w ≤ ψ(v) this implies

HG(F́ x, Ǵy, Ǵy) ≤ ψ(G(x, y, y)) (2.14)

Since G(y, Ǵy, Ǵy) ≤ HG(F́ x, Ǵy, Ǵy) now from equation (2.12), (2.11) and (2.10), we get

G(y, Ǵy, Ǵy) ≤ ψ(G(x, y, y) < δ1,

a contradiction to our assumption as infx∈X(G(x, Ǵx, Ǵx)) = δ2 > δ1,
Thus, infx∈X(G(x, F́x, F́ x)) = 0
implies there exists x0 ∈ X with G(x0, F́ x0, F́ x0) < r − ψ(r) and hence we have the existence of
x1 ∈ F́ x0 with x0 � x1 such that G(x0, x1, x1) < r − ψ(r). Now following Theorem 2.1, we have
the existence of sequences x2n+2 ∈ Gx2n+1 and x2n+1 ∈ F́ x2n, for n ≥ 0 with xn � xn+1 such that

G(xn, xn+1, xn+1) < ψn(r − ψ(r)),

Now with the help of condition 2, we found that {xn} is Cauchy sequence and hence convergent
to some point x in complete G-metric space X. The rest of the proof can be given by argument
analogously to those used in Theorem 2.1, which gives that

x ∈ F́ x ∩ Ǵx.

Thus, the result follows.

It is also notice that in Theorem 1.3 [1] assumed the implicit relation for the comparable elements
of partially ordered G-metric space.

Corollary 2.3. Let (X,G) be a complete G-metric space with partial ordered set (X,�). Let
x0 ∈ X, r > 0 and F́ : B(x0, r) → C(X). Suppose that for all x, y ∈ B(x0, r), F́ x is bounded and
satisfying
T [HG(F́ x, F́ y, F́ y), G(x, y, y),

G(x, F́x, F́ x), G(y, F́ y, F́ y), G(x, F́ y, F́ y), G(y, F́ x, F́ x)] ≤ 0 (2.15)

for all comparable elements x, y of X and some T ∈ τ . Also assume that the following conditions
are satisfied:-

1. for each x ∈ X, there exists y ∈ F́ x with x � y such that
G(x, y, y) ≤ G(x, F́x, F́ x) + ε;

2. G(x0, x1, x1) < r − ψ(r) for some x ∈ F́ x0 with x0 � x1;

3.
∑∞

i=1 ψ
i(r − ψ(r)) ≤ ψ(r);
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4. If xn → x is a sequence whose consecutive terms are comparable, then xn � x, for all n.

Then there exist x ∈ B(x0, r) with x ∈ F́ x.

Remark 2.4. In assumption 1, 2 and 4 of Theorem 2.1, we need only comparability of the elements
and there is no need of monotonicity of the terms of the sequence.
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