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Abstract

In this paper, we prove that for any positive integer p, when p ≡ 1 (mod 6) or, p ≡ 3 (mod 6),
the Diophantine equation: 2pA6 + B3 = C2 has infinitely many co-prime integral solutions A,
B, C. When p = 0, this equation has only four integral solutions with (A,B,C) = (±1, 2,±3).
For other integer values of p, the problem is open.
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1. Introduction

In the VIIth Joint Meeting of the American Mathematical Society and the Sociedad Matematica
Mexicana held in Zacatecas, Mexico, during May 23-26, 2007, in a talk titled : Method of infinite
ascent applied on A6 + nB3 = C2, I introduced a method called the method of infinite ascent for
regenerating an infinite number of co-prime integral solutions A, B, C for a class of integers n.
In a recent paper[1], I generalized this result. In another paper[2], this method has been used
non-recursively to find infinitely many co-prime integral solutions A, B, C for all positive integral
values of n. Other papers which use this new method include [3], [4], [5], [6] and [7]. We quote a
paragraph from a paper of Jena[1] to explain the Method of Infinite Ascent (MIA) in brief.

“Sometimes a Diophantine equation possessing an infinite number of integral solutions does not
exhibit this infinitude characteristics as seen in its original form. Putting into a slightly modified
form - which we need to discover - this equation becomes regenerative, so that any set of solution
for the equation will lead to the next set of solution for the same; the first set leading to the second,
the second set leading to the third and so on without end. This is a regeneration technique which
we wish to call the Method of Infinite Ascent (MIA), explicitly showing on how to generate the
endless set of integral solutions for the Diophantine equation.”

The main results of this paper are the following two theorems which are related to the Diophan-
tine equation

mA6 + nB3 = C2. (1.1)

Theorem 1.1. For any positive integer q, the Diophantine equation

26q−5A6 + B3 = C2 (1.2)

has infinitely many co-prime integral solutions A, B, C.
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Theorem 1.2. For any positive integer q, the Diophantine equation

26q−3A6 + B3 = C2 (1.3)

has infinitely many co-prime integral solutions A, B, C.

We will prove these two theorems in the next section after stating two lemmas. Finally, in the
conclusion, we make some remarks about Mordell-Weil rank of elliptic curves, and the viewpoint
of the theory of elliptic curves on the Diophantine equation of the title.

2. Main Results

We need the following two lemmas for proving Theorem 1.1 and Theorem 1.2.

Lemma (Jena [1]) 2.1. For any integer m, p and q,

m(2pq)6 + (mp6 − q2)(9mp6 − q2)3 = (27m2p12 − 18mp6q2 − q4)2. (2.1)

Lemma (Jena [1]) 2.2. If (At, Bt, Ct) is a solution of the Diophantine equation mA6 +nB3 = C2

with m, n, A, B and C as integers then, (At+1, Bt+1, Ct+1) is also a solution of the same equation
such that

(At+1, Bt+1, Ct+1) = {(2AtCt),−Bt(9mA6
t − C2

t ), (27m2A12
t − 18mA6

tC
2
t − C4

t )} (2.2)

and if mAt, nBt and Ct are pair-wise co-prime where nBt is an odd integer and 3 is not a factor of
Ct, then mAt+1,nBt+1 and Ct+1 are also pair-wise co-prime where nBt+1 is an odd integer and 3
is not a factor of Ct+1. In addition to this, mAt+1 will be always an even integer and Ct+1, always
an odd integer.

We need not prove Lemma 2.1 and Lemma 2.2 as they appear as Theorem 2.1 and Theorem 3.1
in paper [1].

2.1. Proof of Theorem 1.1

We will prove Theorem 1.1 in three steps. First, we have to establish that equation (1.2) has
infinitely many co-prime integral solutions A, B, C when q = 1. Then, we will see how to use
these co-prime solutions of first step to find the initial co-prime solutions A, B, C of equation (1.2)
for other values of q > 1. Next, we will show that the conditions of generating infinite number of
co-prime integral solutions, as proposed by Lemma 2.2, are applicable to (1.2) for each value of q.

Step I. Putting q = 1 in (1.2) we get

21A6 + B3 = C2. (2.3)

We will denote the ith solution for (A,B,C) of (1.2) when q = j as (Ai, Bi, Ci)q=j where i and j
take positive integral values. Now, we know

27 + 173 = 712; Or, 2 · 26 + 173 = 712. (2.4)

Using the result of (2.4), we get the starting solution for (A,B,C) of equation (1.2) as

(A1, B1, C1)q=1 = (2, 17, 71).
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Comparing (2.3) with (1.1) we get the values of m and n to be 2 and 1 respectively. Now,
the conditions of generating infinite number of co-prime integral solutions, as proposed by Lemma
2.2, are applicable for (2.3) because, the terms : mA1 , nB1 and C1, taking values 22, 17 and
71 respectively, are pair-wise co-prime; nB1 is an odd integer and 3 is not a factor of C1. Thus,
the repeated use of Lemma 2.2 will enable us to generate an infinite number of co-prime integral
solutions A, B, C. Using (2.2) we get

(A2, B2, C2)q=1 = {(2A1C1),−B1(9mA6
1 − C2

1 ), (27m2A12
1 − 18mA6

1C
2
1 − C4

1 )};
= {(2 · 2 · 71),−17 · (9 · 2 · 26 − 712),

(27 · 22 · 212 − 18 · 2 · 26 · 712 − 714)};
= (22 · 71, 66113,−36583777).

Hence, taking the magnitudes of (A2, B2, C2), we get

(A2, B2, C2)q=1 = (22 · 71, 66113, 36583777).

In general, using equation (2.2), we calculate the kth solution of (2.3) as

(Ak, Bk, Ck)q=1 = (2kA
′

k, Bk, Ck)q=1,

where integer k ≥ 1, Ak = 2kA
′

k and the three terms: A
′

k, Bk and Ck are odd. Now, the repeated
use of equation (2.2) will enable us to find any number of co-prime integral solutions A, B, C of
equation (2.3).

Step II. The first solution A1, B1, C1 of equation (2.3) is (A1, B1, C1)q=1 = (2, 17, 71). Using
these values for (A,B,C) in (2.3) we get

2 · 26 + 173 = 712.Or, 27 · 16 + 173 = 712. (2.5)

The second solution A2, B2, C2 of equation (2.3) is

(A2, B2, C2)q=1 = (22 · 71, 66113, 36583777).

Using these values for (A,B,C) in (2.3) we get

2 · 212 · 716 + 661133 = 365837772.Or, 213 · 716 + 661133 = 365837772. (2.6)

The k
th

solution for (A,B,C) of equation (2.3) is (2kA
′

k, Bk, Ck). Using these values for (A,B,C)
in (2.3) we get

26k+1A
′

k

6
+ B3

k = C2
k . (2.7)

When q = 2, from (2.5) we get the starting solution for (A,B,C) of equation (1.2) as

(A1, B1, C1)q=2 = (1, 17, 71).

When q = 3, from (2.6) we get the starting solution for (A,B,C) of equation (1.2) as

(A1, B1, C1)q=3 = (71, 66113, 36583777).
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When q = k, from (2.7) we get the starting solution for (A,B,C) of equation (1.2) as

(A1, B1, C1)q=k = (A
′

k, Bk, Ck).

Step III. In Step I, we proved Theorem 1.1 for q = 1. Putting q = 2 in (1.2) we get

27A6 + B3 = C2. (2.8)

Now, for each integral value of q > 1, there is a starting solution for (A,B,C) for equation (1.2) as
we showed in Step II. Since the values of B and C in these starting solutions are the same values
which are generated by the subsequent solutions of equation (2.3), they should be co-prime; B
and C are odd integers; and 3 is not a factor of C. Hence, for any integer q > 1, the statement
of Theorem 1.1 should also be valid, because the conditions of generating an infinite number of
co-prime integral solutions, as proposed by Lemma 2.2, are satisfied. This completes the proof of
Theorem 1.1.

The initial numerical solutions A1,B1,C1 of the Diophantine equation (1.2) for the first five
integral values of q have been given in the Table 2.1.

Table 2.1
q A1 B1 C1

1 2 17 71
2 1 17 71
3 71 66113 36583777
4 2597448167 -535925530724803712767 2661377178406628694765

981631103
5 6912789273747929683869 7728055556225610857542 6793711119839793669503

501481664157538201 8473064932087654075947 4193688655551123572122
9924781966253867217010 6683940182435309400379
713775046113600513 4029662880013377760398

8937460368896088450165
0478073311169023

2.2. Proof of Theorem 1.2

Since, 29 + (−7)3 = 132 or, 23 · 26 + (−7)3 = 132, we get the first co-prime solution for (A,B,C) of
the Diophantine equation (1.3) when q = 1 as

(A1, B1, C1)q=1 = (2,−7, 13).

Using Lemma 2.2 we get

(A2, B2, C2)q=1 = (22 · 13, 31073, 5491823).

The steps in the proof of Theorem 1.1 should guide us in establishing Theorem 1.2. The initial
numerical solutions A1,B1,C1 of the Diophantine equation (1.3) for the first five integral values of
q have been given in the Table 2.2.
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Table 2.2
q A1 B1 C1

1 2 -7 13
2 1 -7 13
3 13 31073 5491823
4 71393699 892933489418780033 9948222845453398761776

87617
5 7102404274132234697252 -134806646659202787164 3844277980252270256032

7100244125283 9406221155988955366877 1005431420380951456584
2724390241549956741560 3387403850379940429742
14340607 8760934340309413757406

752322913294757212417

3. Conclusion

Sometimes it is possible to transform a Diophantine equation to an elliptic curve, and depending
upon the Mordell-Weil rank of that elliptic curve one can tell if the corresponding Diophantine
equation has “zero”, “finitely many”, or “infinitely many” co-prime integral solutions. Infact, there
are standard techniques available in the literature[10] on elliptic curves which allow us to explicitly
find some of these solutions. Since our paper is based on an elementary approach we have not told
anything on this matter. How ever, to make the paper complete, we want to make a few remarks
on them.

The theory of elliptic curves has links with many branches of mathematics. Given an elliptic
curve E over a field K, the Mordell-Weil group of E, denoted as E(K), is the group of K-rational
points of E. A theorem of Mordell (later generalized by Weil to abelian varieties) states that, if K is
a number field, then E(K) is a finitely generated abelian group. Its rank is called the Mordell-Weil
rank of E.

Some comments relating to the equation ax6 + by3 + cz2 = 0 can be found in ([8], p. 396). The
general super-Fermat equation is the equation Axp + Byq + Czr = 0 for given nonzero integers
A,B,C and integral exponents p, q, r ≥ 2. For the parabolic case, when 1/p + 1/q + 1/r = 1, we
can have infinitely many or finitely many solutions of this super-Fermat equation, depending on
A,B,C-refer Proposition 14.6.1 of ([9], p. 481) for more details.

The elliptic curves

E1 : y2 = x2 + 1, E2 : y2 = x2 + 2, E8 : y2 = x2 + 8

has rank E1(Q) = 0, rank E2(Q) = 1, rank E8(Q) = 1, respectively. So, we conclude that the
Diophantine equations

A6 + B3 = C2, 2A6 + B3 = C2, 8A6 + B3 = C2

has “finitely many solutions (in fact (A,B,C) = (±1, 2,±3))”, “infinitely many co-prime integer
solutions”, “infinitely many co-prime integer solutions”, respectively.
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