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 SCHAUDER BASES, SCHAUDER
 FUNCTIONS, AND THE GRAM-SCHMIDT

 PROCESS

 A linearly independent subset of a vector space is a basis for the space,
 if every vector can be expressed as a linear combination of the basis vectors.
 In the finite-dimensional case, each basis contains the same (finite) number
 of elements, and the space coincides with the span of any one of these finite
 subsets, a property not enjoyed, however, by any infinite-dimensional space,
 L2[ 0, 1] being a case in point. One possible modification of this concept of basis
 would allow the linear combinations to involve denumerably many vectors, but
 then, of course, one would need some notion of convergence for the series thus
 arising. This, in turn, leads one to conduct the discussion within the friendly
 confines of a distinguished class of vector spaces.

 Let X be a Banach space; i.e., a complete, normed linear space, or, in
 other words, a normed vector space that is (Cauchy) complete in the topology
 engendered by its norm. A denumerable subset of X, {xn : n = 1,2,...},
 is a Schauder basis for X iff each x in X has a unique representation x =

 CnXn, in the sense that limn ||a: - Y17=i cixi'' = 0- Thus, by virtue of the
 Riesz-Fischer theorem, every complete orthonormal system associated with
 an interval [a, b] is a Schauder basis for L2[a, 6]. Familiar examples of this
 type are the trigonometric system, for L2[- 7t,7t]; the Legendre system, for
 L2[- 1, 1]; and the Haar system, for L2[ 0, 1].

 The name for this sort of basis derives from an article written by Schauder
 [9] in which the concept is defined, and, among other things, it is shown how to
 construct bases for C[0, 1], the space of all real-valued, continuous functions
 on [0, 1], a Banach space when endowed with the supremum norm

 ll/lloo = sup{|/(i)| : t € [0, 1]}.
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 A typical construction begins with a sequence {tnk}^LoikLo suc^ that {tnk :
 n > 0,0 < k < 2n} is dense in [0,1]; too = 0; t0 1 = 1; ¿n+i,2fc = tnk ,
 for all n > 0, 0 < k < 2n; and tnk < tn+i,2*+i < ín.fc+i» for all n > 0,
 0 < k < 2n - 1. The first two Schauder functions are given by the equations
 <£oo(¿) = 1) </>oi (¿) = t, and, for n > 0, 1 < k < 2n_1, ipnk is the function
 supported by ( tn,ik - Jt)) linear on 2j^ti,2üs- i] and on [ín,2fc-l,ín,2fc]i
 such that ^nfc(^n,2fc-i) = 1- Finally, one changes the notation slightly, in
 order to arrange these functions in the lexicographical order, setting (po = </?oo>
 <£i = <A) i, and, for n > 0, 1 < k < 2n, <f2n+k = </>n+i,fc- (The ordering of the
 elements proves to be a critical matter, since there are orderings for which the
 resulting system is not a Schauder basis.) The series expansion for an element
 / of C[ 0, 1] is determined in the most straightforward manner. Denoting the
 rft1 partial sum of the series by 5n/, one defines these, inductively, by setting
 Sof = f(0)(po, Sif = Sof + [/(1) - /( 0)]y>i, and for m = 2n + fc, n > 0,
 1 < k < 2n, Smf = Sm-if + (/ - 5m_i/)(tn+i|2ļk-i)^m. The uniform
 convergence of {Snf}^L0 to / follows from the uniform continuity of /, and,
 because (pm(t) = 0 whenever <pn(t) = 1 and m > n > 0, this representation is
 unique.

 Closely related to one of the Schauder systems is the Haar system, the
 definition of which involves the binary rationals. The first Haar function is
 identically 1 on the unit interval, and the remaining elements of the system
 are grouped into blocks the members of which are translates of one another.
 For n > 0, the block contains 2n functions, and the k^ element of block
 n is given by

 C +2T if t e [Mír, |lif)
 h>nk(t) = ' - 2? if t € ( 2"+l ' 2"^!

 [ 0 otherwise.
 Haar created these functions in order to demonstrate the existence of an

 orthonormal system with respect to which every function continuous on [0, 1]
 has a development that converges uniformly to the function, a property not
 possessed by the trigonometric system or by other orthonormal systems arising
 from mathematical physics. Thus, the Haar system is much like a Schauder
 basis for C[ 0, 1], failing in this, of course, because most of the Haar functions
 are not themselves elements of the space.

 In order to construct an orthonormal system that does not suffer from this
 basic deficiency, Franklin [3] proceeded in the following manner. Let {an}^L1
 be the sequence of binary rationals: 0, . . . , . . . , • • 5 ^ vo be
 the constant function 1; for each n > 1, let

 /X Í 0 if X < an
 Vn(x) v /X ' = < -r ' > v ' [ X - an if -r X ' > an
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 and let V = {vn : n = 0, 1, . . .}. Then V is linearly independent, and, thus,
 application of the ordinary Gram-Schmidt process yields an orthonormal fam-
 ily, GSV , of continuous functions. Franklin showed that GSV is a Schauder
 basis for C[ 0, 1] (as well as for L2[0, 1].)

 Subsequently Kaczmarz and Steinhaus [6] modified Franklin's approach by
 substituting, for the family V, one of Schauder's bases for C[0, 1], as described
 above. Application of the Gram-Schmidt process to any one of those Schauder
 systems will yield an orthonormal Schauder basis for C[0, 1]; members of the
 resulting families are termed Franklin functions.

 A final modification of the Franklin schema was made by Ciesielski [2], who
 began his seminal work in this area with the Schauder system based upon the
 binary-rational points of [0, 1] . The Gram-Schmidt orthonormalization of
 this family is the Franklin system. (It is a curious historical anomaly that the
 functions that bear his name are not, in fact, the ones described by Franklin in
 the article cited above.) Ciesielski gave a brief, clever proof that the Franklin
 system is a Schauder basis for C[ 0, 1], and indicated how the argument could
 be extended to show that this system is a Schauder basis for each of the
 Lp-spaces, p > 1, as well.

 This last conclusion also follows swiftly from two results due to Banach
 (see [1], Chapter VII) and the M. Riesz-Thorin interpolation theorem (see,
 for example, [16], Volume 2, Chapter XII). Let Y = {yn : n = 1, 2, . . .} be an
 orthonormal set of functions continuous on [0,1]. Then, if Y is a Schauder
 basis for Lp[ 0, 1], for some p in (1, +oo] (for p = +oo, let Lp = C), then Y is

 a basis for L9[0, 1], ķ + ^ = 1, as well; and if 1 < pi < pi < +oo, and if Y is
 a Schauder basis for both LPl [0, 1] and LP2 [0, 1], then y is a basis for Lp[0, 1],
 for each p in [pi,p2]-

 As a further consequence of the results last noted, one observes that if ty be
 any Schauder basis for C[ 0, 1], then exactly one of the following must obtain:

 (i) G Sty is a Schauder basis for every Lp[0, 1], 1 < p < +oo;

 (ii) GSty is a Schauder basis for precisely those Lp[ 0, 1] with 1 < p < +oo;

 (iii) there exists an a in [2, +oo) such that GSty is a Schauder basis for
 precisely those Lp[ 0, 1] with a/(a - 1) < p < a;

 (iv) there exists an a in (2, +oo) such that GSty is a Schauder basis for
 precisely those Lp[0, 1] with a/ (a - 1) < p < a.

 Since Franklin's system, V, and the Schauder systems all yield Gram-Schmidt
 orthonormalizations of type (i), one well might question whether G Sty is a
 Schauder basis for C[0, 1], whenever ty so serves. On the basis of Baxter's
 metatheorem, however, one would guess that the answer to this question is
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 no, and, indeed, Szlenk [11] has resolved this matter, in the negative, by
 modifying one of the systems devised by Schauder.

 Let {tnk}^L0, ¡tío be a sequence that satisfies tU) 2n_i = 1 - l/2n, for each
 n > 1, as well as the original conditions specified by Schauder (above), and let
 {£m}m=i be a sequence of positive numbers. For each n = 2m + 1, with m > 1,
 let ipn = <Pn + £m<£2n- 2, and for the remaining values of n, let ýn = (pn . Then,
 by virtue of the Krein-Milman-Rutman theorem on the stability of bases (see,
 for example, [7, pages 442-444]), = {ipn : n = 0, 1, . . .} will be a Schauder
 basis for C[0, 1] as long as the em are taken to be sufficiently small. On the
 other hand, Szlenk showed that if 'ř be based upon a (Schauder) sequence for
 which tn i < £^/2n+6, then GS will not be a Schauder basis for C[ 0, 1].
 One notes, however, that each of the Szlenk systems is closed (the set of all

 finite linear combinations of elements of the set is dense) in each space Lp[ 0, 1],
 p > 1, because every linear combination of elements of the corresponding $
 can be written as a linear combination of elements of 'ř. Thus, it might be
 the case that GS 'ř is a basis for the Lp-spaces even though it fails so to
 serve for C[0, 1]. Of course, there must be an interval such that, for every p
 contained therein, G Sty is a Schauder basis for Lp[ 0, 1], but this interval need
 not be (1, -|-oo). Indeed, Veselov [13] has shown that each of the outcomes
 (i)-(iv) is possible. In particular, one may perturb a Schauder system, a la
 Szlenk, so that the new system will be again a Schauder basis for C[ 0, 1], yet
 its Gram-Schmidt orthonormalization will be a basis only for L2[0, 1].
 Proceeding on a slightly different tack, suppose now that one were to delete

 some of the elements from a Schauder system, $, and then subject the residual
 system, $p, to the Gram-Schmidt process. It would be too much to expect
 of it that GS$p be a Schauder basis for C[ 0, 1], since does not fulfill this
 function, but if were a sufficiently thick subset of $, it is conceivable that
 GS$p could be a basis for some of the Lp-spaces.
 Several years ago, Goffman [4] showed that to every Lebesgue measurable

 function on [0, 1] there corresponds a Schauder series, with coefficients tending
 to 0, that converges almost everywhere to the function. In this work, Goffman
 used the dyadically based Schauder functions, but the arguments employed
 therein, mutatis mutandis, would apply equally well to any of the Schauder
 systems. Subsequently, he asked whether it be necessary to require all of the
 Schauder functions to be present in order that every measurable function be
 representable in this way. Prom a superficial examination of Goffman's work,
 it is clear that a corresponding representation theorem will be obtained if the
 Schauder system be replaced by any one of its cofinite subsets; thus, in analogy
 with questions treated by Talalyan [12] and by Goffman and Waterman [5],
 it is natural to ask whether it be possible to obtain a result of this type for a
 Schauder subsystem whose complement is infinite. This question was answered
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 in the affirmative, in [14], where it was shown that a subsystem = {ipn :
 n = 1,2,...} is sufficiently rich for the specified method of representation
 of measurable functions if (*) //(limsupn En) = 1, where /z is the Lebesgue
 measure, and En is the support of ipn. Moreover, in an observation peripheral
 to the work on this sort of representation of measurable functions, it was noted
 that will be closed in each Lp[0, 1], p > 1, if (*) be satisfied. Thus, for
 such a subsystem, GS$P will be a Schauder basis for those Lp-spaces that
 correspond to values of p belonging to some interval that contains 2, and it
 seems likely that this interval should be nontrivial. The following example is
 instructive.

 Let be obtained by deleting from a Schauder system those members
 whose supports abut {0}. Let / be continuous on [0,1], and let Snf be the
 n kh partial sum of the Fourier expansion of / with respect to G5$p. Because
 of the triangular nature of the Gram-Schmidt process, Snf can be written as
 a linear combination of the elements of an initial segment of viz.,

 m 2* k+ 1

 CijtPij "4" ^ ^ Cm+ljtpm+lj i
 i=2 j= 2 j=2

 where n = 2m+1 - m + fc, 0 < m and 0 < k < 2m+1 - 1.
 Now any such sum, whatever be the coefficients, will be a polygonal func-

 tion whose vertices have abscissae belonging to the set

 S = {tij : 0 < i < m, 1 < j < 2¿} U {tm+ íj : 2 < j < 2k}.

 Thus, Snf will be 0 on [0, tmi] and at each point tq i, with q < m. To every
 other tij in 5, however, there corresponds one of the iprsi involved in Sn/,
 such that <Prs(Uj) = 1- It follows that a polygonal function built upon the
 first n members of may assume any real value at such an interior point.
 Consider one of the intervals [íg+ifi,tgi] = Q. Relabel the Uj e S H Q :

 tq+ i,i = ti < ¿2 < • • . < tk = tq'. Then, on Q, the polygonal function must
 have the form

 <p{t) = Vi+'~Vi(t-ti)+yi, ài i = 1, . . . ,k - 1, ài

 where = |¿í+i - t»|, and yi = yk = 0. The particular tp of this type, 5n/,
 will have its 2 < i < k - 1, specified by the condition

 [ [fit) - Snf(t)]2dt = min I(p), Jo v



 306 Robert E. Zink

 where [f(t)~ </?(¿)]2d¿, and <p belongs to the set of polygonal functions
 here considered. Some of the necessary conditions for the minimality of the
 functional, /, are

 dl
 TT- - = 0, î = 2, . . . , fc - 1,
 dyi

 from which follow the estimates

 2|y¿| < 311/Hoo -ļ- II <^|| oo ? i = 2, . . . , k - 1.

 These inequalities, together with the corresponding estimates for the other
 intervals [V+i,i> Vi]> yield

 ||S»/||oo = IMloo < 311/Hoo,

 and thus, from a theorem of Orlicz [8], one also may conclude that

 ''Sng''p<Hg''p, v<?eLp[ o,i], vP>i.

 Hence, each of the sequences {||S,n||p}^=1 is bounded, and, since is closed in
 each of these spaces, GS$P is a Schauder basis for each Lp[0, 1], 1 < p < +oo.

 This approach, which is due to Ciesielski, is applicable here, because those
 2/i, not required to be 0, are independent variables. This, in turn, is the case,
 because, whenever some (pij G one has also (pr3 G if the support of
 the latter is contained in the support of the former. Hence, one may apply
 this same argument to show that, if a subsystem, $p, of a Schauder system,
 $, satisfies both (*) and

 Vrs £ whenever (pij G $p and support (frs C support <^, (**)

 then GS&P is a Schauder basis for each Lp[ 0, 1], 1 < p < +oo.
 For example, one might select those members of the standard Schauder

 system whose supports lie in

 ri 3i r i 3 1 r i3 īsi r i 3 1 r 6i 63 1
 u - , - u - , - u - , - u.. .u - , - u....

 _4 4j L16 - , - 16J L16 - , - 16j 1.64 - , - 64 J [64' - , - 64 J

 The resulting Pranklinesque system, obtained by performing the Gram-Schmidt
 maneuver on this collection, has the interesting property that each of its con-
 stituents vanishes on the "Cantor" set C = fljjl xCn, where C' = [0, U [|, 1],
 ^2 = [0, u [^, |] U [|, |§] U [ļ|, 1], . . .. Indeed, one may carry this idea
 one step further in order to obtain an orthonormal set that is a basis for each
 Lp[0, 1], 1 < p < -boo, each of whose members vanishes on a preassigned
 Cantor set.
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 On the other hand, what can one say about GS$P, if satisfies (*) but
 not (**)? Here the situation will be more complex, because the approximating
 polynomials engendered by <J>P will have vertices ( U , with the depending
 upon various other corner-values yj. For example, if $p be a subset of the
 standard Schauder system, and if </?n and ip2' belong to but ^32 does
 not, then a polygonal function, </?, formed from an initial segment of will
 have ip( |) a linear combination of ip(') and, perhaps, also <¿>(0) and
 ip( 1). Thus, the Ciesielski schema cannot be followed precisely. Although it
 has been shown [15], albeit not without a surprising amount of difficulty, that
 if one deletes any single function from the Schauder system, then the Gram-
 Schmidt orthonormalization of the residual system will be a Schauder basis
 for Lp[0, 1], 1 <p< +00, it is not known if the same result obtains when one
 makes an arbitrary finite number of deletions. The degree of complexity of
 the general problem seems to be a good bit higher.

 Of course, it may be that this question can be resolved easily, if one but
 approach it in a different manner. For example, there could be some general
 principle(s) that would trivialize the problem. One possibility of this nature:
 suppose it were the case that from the inclusion 'I>i C ^2 (where 'I>i and
 ^2 are both closed in Lp[0, 1], 1 < p < +00), it followed that GS'ř 2 is a
 Schauder basis at least for those Lp-spaces for which 'ři so serves. Then, if

 were any finite subset of a Schauder system $, and if = {ipn G $ :
 3m > n 3 (pm e then $ ' $£ would satisfy (**), and, thus, would be a
 Schauder basis for each Lp[ 0,1], 1 < p < +00. Since C the same
 property would be enjoyed by $ ' $>5. Unfortunately, a counterexample to the
 proposed "principle" is rather easily obtained from the work of Szlenk. If in
 that construction one takes en = l/2n +2 and tni = £^/2n+6, then one finds

 that, for every p > 2, {|| »Sn lipidi, where Sn is the partial-sum operator
 associated with G5'I>, is unbounded, so that cannot be a Schauder basis
 for Lp[ 0, 1], for these values of p. Yet, if one deletes from 'I> the elements ipn
 for which n = 2m + l,ra>l, one obtains a subsystem of a Schauder system
 that satisfies both (*) and (**). At the time of this writing, general principles
 seem to be in somewhat short supply.
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