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 ON THE CARATHÉODORY
 SUPERPOSITION

 Abstract

 In this paper we investigate properties of Carathéodory's superposi-
 tion and show some of their applications to differential equations.

 Throughout this article ( X , M, ļi) denotes a totally a- finite measure space
 and ($, =>) will denote a differentiation basis for this space. This means ([1])
 that $ C M is a family of sets of finite positive measure // and => is a notion
 of contraction of nets (generalized sequences) of sets in $ to points of X1 such
 that the following two conditions are satisfied:

 (i) if X e X, there exists a net ( Ia ) of elements of $ contracting (in the
 sense of =>) to x; in symbols, Ia => x;

 (ii) any subnet of a net contracting to a point x also contracts to x.

 Let A e M and let x e X. We define the upper und lower densities of A
 at x with respect to ($, =>) by

 Du(A1x) = sup{limsup/i(A D Ia)/ß(Ia)}

 and

 Di(A,x) = inf{lim inf fi(A fl Ja)//¿(Ja)},

 where the limits superior and inferior are taken over a net ( Ia ) contracting to
 x and the supremum and infimum are taken over the family of all such nets.
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 Section I

 Let (y, g) be a metric space with the metric g and let g : X - ► Y be a
 function. Let 7 G (0, 1] be a number. We say that the function g has the
 property:

 (SUi7) (with respect to ($, =>)) if for every open set U C Y and for every x with
 g(x) G U , there is a set B C g~l(U) such that B G M and DU(B , x) > 7;

 (Ą,7) if for every open set U C Y and for every x with g(x) G U there is a set
 B G M such that Di(B,x) > 7.

 Theorem 1 Let f : X x Y - ► Y be a function. Suppose that :

 (1) all sections fy(x) = f(xiy)(x G X,y G Y) have the property (SUi 7)
 ((Ąj7)), where 7 G (0,1];

 (2) for every point {x,y) G X x Y there is a set A(x,y) G M such that
 all sections ft(u) = /(t,u) ( t G A(xìy)ìu G Y) are equicontinuous at a
 point y and Di(A(xìy)ìx) = 1.

 Then for every function g : X - ► Y having the property (£/,1) the Carathédory
 superposition

 h(x) = f(xìg(x))ìx G X ,

 has the property ( Sun ) ((Sin)).

 Proof. Fix x G X and an open set U C Y such that h(x) G Í7. Let
 £ > 0 be such that {u G Y',g(u,h(x)) < e] C U . By (2) there is a set
 A(xig(x)) G M. and a positive number 6 > 0 such that Di(A(xi g(x)) = 1 and
 6(f(t>y),f(t,g(x))) < e /2 for t G A(x,g(x)) and y G Y with g(y,g{x)) < 6.
 Since the section t - ► f(tig(x)) has the property (Su>7) ((Ął7)), there is a set
 C G M such that Du(C1x) > 7 ( Di(C,x ) > 7) and g(f{t1g(x))ìf(xìg(x)))
 < e /2 for every t G C. Analogously, since the function g has the property
 (Si, 1), there is a set E G M. such that Di(E,x) = 1 and g(g(t)ig{x)) < 6
 for every t G E. Observe that the set B = C Pi E fi A(x1g(x)) G M and
 Du(B,x) > 7 ( Di(B,x ) > 7). If t G B, then

 g(h(t),h(x)) = Q(f{t,g(t)),f(x,g(x)))
 < g(t)), f(t, g(x))) + ß(f(t, g(x)), f(x, g(x)))
 < E /2 E /2 = E.

 So, B G M,Du(B,x) > 7 (Di(B,x) > 7) and B C /i_1(£/). This completes
 the proof.
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 Remark 1 If (X, T) is a topological space with the topology T such that T C
 M, then we can define the properties {S'un) and (S'l/y) assuming that the set
 B c g~l{U) belongs to T.

 Then we have the following:

 Theorem 2 Let f : X x Y - ► Y be a function. Suppose that:

 (l') all sections fy,y G Y, have the property ( S'un ) ((S/j7)), 7 G (0,1];

 (2') for every point (x,y) G X x Y there is a set A(xiy) G T such that all
 sections ft, t G A(x,y), are equicontinuous at y and Di(A(x,y),x) = lą

 Then for every function g : X - ► Y having the property {S[ x) the superposi-
 tion h(x) = f(xìg(x))ìx G X , has the property S'un) ({S[^))š

 Section II

 In this section we suppose that y is a separable Banach space with the norm
 II • II . Let g : X - ► y be a function which is integrable (in the Bochner sense)
 on every set I G The function g is called a derivative at a point x G X
 (with respect to ($, =>)) ([1]) if for every net Ia => x we have

 lim / g(t)dt/ß(Ia ) = g(x).
 a Jia

 Theorem 3 Let f : X x Y - ► Y be a bounded function. Suppose that f
 satisfies the condition (2) from Theorem 1 and the following conditions:

 (3) all sections fy,y €Y, are derivatives ;

 (4) for every function g : X - ► Y having the property (5¿,i) the superposi-
 tion x - ► f(x,g(x)) is ß-measurable, i.e. for every open set U C Y the
 preimage {x' f(x,g(x)) eU} e M.

 Then for every function g : X - ► Y having the property (S/,i) Carathéodoryys
 superposition h(x) = f(x,g(x))ix G X, is a derivative.

 Proof. First, we observe that h is //-measurable and bounded, so integrable
 (in the Bochner sense) on every set I G $ ([9]). Fix x G X, a net Ia => x
 and € > 0. Let a > 0 be such that ||/(t,2/)|| < a for each (t,y) G X xY.
 By (2) there is a set A(xig(x)) G M and 6 > 0 such that Di(A(x1g(x))ix) =
 I and II f(t,y) - f{t,g(x)) || < e/3 for all t G A(xìg(x)) and y e Y with
 II y - g(x) II < 6. Since g has the property (Siy i), there is a set E' G Aí such
 that Di(E,x) = 1 and || g(t) - g{x)'' < 6 for every t G E. Observe that the set
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 B = ED A(xìg(x)) e M and Di(B,x) = 1. Since the section t - ► f(t,g(x))
 is a derivative at x, we have

 lim / f(t,g(x))dt/ß(Ia) = f(x,g(x)). a Jia

 There exists an index ß such that for a > ß we have:

 (5) ha /(*> g(x))dt/ p(Ia) - f(x, g(x)) < e/3;

 (6) p(B n Ia)/ß(Ia) > 1 - e/6a.

 Consequently, by (5) and (6) we have for a > ß,

 i h(t)dt/ļi(Ia) - h(x)
 I 'Jia

 = II/ f(t,9(t))dt/ß(Ia)- f(x,g(x))
 I 'Jia

 = ||^ - f(x,g(x)))dt /fi(Ia)
 < f ''f(t,9(t)) - f(t,9(x))''dt/n(Ia) JianB

 + / ''f(t,g(x)) - f(x,g(x))''dt/ß{IQ)
 JianB

 + / ll/(¿, g{t)) - f(x, g(x))''dt/p(Ia) J Ia-B

 < £fi(la n B)/3fj,(la) + £ß(la n B)/Zp{la)
 +2a/z(/a - B^ / <c e/3 -'- £ /3 -I- 2 cle ļ 6û = £.

 This shows that

 lim i h(t)dt/ fi(Ia) = h(x)
 a Jia

 and finishes the proof.

 Remark 2 A particular case of Theorem 3 is proved in [7].

 Remark 3 In the general case there can exist nonmeasurable derivatives hav-
 ing the property (S/,i). For example , if X = M (the set of all reals), 'i is
 the Lebesgue measure and 3> is the family of open intervals then there ex-
 ists a ß-nonmeasurable set A C [0,1]. Let 1^ => x e - 10,1] mean that
 X e Ik C M - [0, 1] for all k = 1,2, .. . and lim^oo d(I^) = 0 (d(Ik) denotes
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 the diameter of Ik), and for x G A let Ik => x mean that Ik => 2, and for
 X G [0, 1] - A let Ik =>• x mean that Ik => - 2. Then the function

 0(2) = /1 1 for x e A U (l,oo) 1 0 otherwise

 is a ß-nonmeasurable derivative having the property (Sj,i). Some additional
 assumptions for the differentiation basis ($, =>) (for example, the density prop-
 erty [1] ) imply the fi-measurability of all derivatives and all functions having
 the property (Sun), 7 G (0, 1].

 Remark 4 Some counterexamples concerning Theorems 1 and 3 are con-
 tained in [5], [7], and [6].

 Section III

 In this section we assume that (Y, g) is a metric space, (Y, Mi, H') is a totally
 cr-finite complete measure space and that ($1, =>) is a differentiation basis in
 Y.

 Theorem 4 Let f : X x Y - ► Y be a function such that :

 (7) for every (x, y) G X x Y and for every € > 0 there are sets A(xìy) G
 M, B(x,y) G Mi such that Di(A(xìy),x) = Di(B(xìy)ìy) = 1, y G
 B(x,y), and £?(/(£, u), /(t, y)) < e for every t G A(xìy) and every u G
 B(x,y);

 (8) all sections fv,y G Y , have the property (Sin) ((Sun)), where 7 G (0, 1].

 Then for every function g : X - ► Y satisfying

 (9) if g(x) e U e Mi and Di(U,g(x)) = 1, then there is a set C G M such
 that x G C C g~l{U) and Di(C,x) = 1,

 the superposition h(x) = f(x1g(x))ix G X, has the property (S/l7) {{SUil)).

 Proof. Fix x G X, and an open set U C Y such that h(x) G U. Let e > 0
 be such that

 {UG7; g(u , /i(x)) < e} C U.

 By (7) there are sets A(xig(x)) G M and B(xìg(x)) G Mi such that

 g(x) € ß(x,5(x)),

 A(i4(i,p(x)),i) = Di(B(x,g(x)),g(x)) = 1 and
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 ß(f(t,u),f(t,g(x))) <e/2

 for every t G A(x , g(x)) and every u G B(xì g(x)). By (9) there is a set C G M
 such that X G C C y_1(ß(x,p(a:))) and Di(C,x) = 1. Since the section
 t - ► f(tig(x)) has the property (S¿,7) ((«Su/y)), there is a set E G Ať such
 that Di(E,x) > 7 ( Du(Eix ) > 7) and g(f(tìg(x))ìf(xìg(x))) < e/2 for each
 t e E. Observe that the set G = C fi E D A(x,g(x)) G M and A(G, x) > 7
 (Du(Gìx) > 7). Moreover, we have for ígG,

 g(h(t),h(x)) = g{f(t,g(t)),f(x,g(x)))
 < 9(t)), f(t, 9(x))) + e(f(t , 5(1)), /(1, y(x)))
 < e/2 + e/2 = £.

 This completes the proof.

 Section IV

 In this section we assume that (Y, || • ||) is a separable Banach space and
 (y, Ali, /ii) is a totally cr-finite complete measure space and ($i,=>) is a dif-
 ferentiation basis in Y .

 Theorem 5 Let f : X xY - ► Y be a bounded function satisfying the condi-
 tion (7) from Theorem 3 such that

 (10) all sections fy , y G Y , are derivatives;

 (11) for every function g : X - ► Y satisfying the condition (9) from Theorem
 4 the superposition h(x) = f(xig(x))1x G X, is ß- measurable .

 Then for every function g : X - ► Y satisfying the condition (9) from Theorem
 4 the superposition h(x) = f(xìg(x))ìx e X, is a derivative.

 Proof. Fix x G X, a net Ia => x, and e > 0. By (7) there are sets A(x, g(x)) G
 M and B(x,g(x)) G Ali such that g(x) G B(xìg(x))ì
 D¡(A(x,g(x)),x) = Di(B(x,g(x)),g(x)) = 1 and ''f(t,u) - /(i,ff(x))|| < e/3
 for every t G A(x, g(x)) and every u G B(x, g(x)). By (9) there is a set C G M
 such that x G C C g~1(B(xig(x))) and Di{C,x) = 1. Observe that the set
 E = A(x, g(x)) D C G M and

 (12) Di(E,x) = 1.

 By (10) and (12) there is an index ß such that for a > ß we have:

 (13) ||i/„ ftt'9(x))dt/ß(Ia) - f(x,g(x)) < e/3;
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 (14) /x(/a D E)/ß{Ia) > 1 - e/6a, where a > 0 is such that||/(£, t¿)|| < a for
 all (t,u)eXxY.

 If a > ß then, by (13) and (14),

 i h(t)dt/ß(Ia ) - h(x)
 I 'Jia

 = / f(t,9(t))dt/p(Ia) -f(x,g(x))
 ''Jlc.

 = 1/ (/(*>»(*)) - f{x,g(x)))dt /ß{Ia)
 I 'JIa

 < ( f ''f(t,g(t))-f(t,g(x))''dt JlanE

 + [ ''f(t,9(t)) - f{t,9(x))''dt
 J la- E

 + [ II f(t,g(x)) - f(x.g(x))''dt/n{Ia)) Jlc

 < £ß{Ia fi E)/3ß(Ia) + 2ea/6a + e/3
 ^ £ /3 s/3 £ 13 = £.

 So,

 lim [ h(t)dt/ ß(Ioc) = /i(x),
 a Jia

 and the proof is finished.

 Section V

 Now we will show some applications of Theorems 1, 2, and 3 to the differential
 equations. In this section X = M, fi is the Lebesgue measure and $ denotes
 the family of all open intervals. Let Ik => x mean that x G Ik for all k
 and limfc-KX) d(Jjt) = 0. Let F be a separable Baiwh space. Observe that
 in this case all derivatives and all functions having the property (5Uł7), 7 G
 (0, 1] are measurables in the Lebesgue sense. The functions with the property
 (Sj,i) {(S'n)) are called approximately continuous [2] (a.e. continuous [10]).
 Moreover, in this case every bounded function g having the property (S¿,i) is
 a derivative ([2], and [8] ).

 Let D C M x Y be a nonempty open set and let f : D - ► y be a function.
 A continuous function g : I - ► Y , where I is a nondegenerate interval, is
 called a Carathéodory solution of the Cauchy problem

 y' iß) = f(x, y(x)),y(x0) = y0, (1)
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 if g'(x) = f(xìg(x)) almost everywhere (with respect to the Lebesgue mea-
 sure) on J, xo G /, and <7(20) - Vo- Obviously, if the superposition x - ►
 f(xìg(x))ìx G /, is a derivative and / is bounded, then the Carathéodory so-
 lution g of the problem (1) is an ordinary solution of (1), i.e. g'{x) = /(x, g(x))
 everywhere on I ([7]).
 Prom the above, by Theorems 1, 2, and 3, and by Theorem 1 from [4], p.

 7 we have the following:

 Theorem 6 Let Y = M.k,D = [to.to + a] x {y G Rk; ' y - yo' < b}(aib > 0),
 and f : D - ► Mk be a locally bounded function satisfying the condition (2)
 ((%))[ (%') ] { (%') } and such that:

 - all sections fy are derivatives having the property (Sin) ( (Sun) )
 l (S|l7) y { (s;,7) }, Where 7 € (0, 1];

 - almost all sections fx are continuous ;

 - there is an integrable function h : [¿o>¿o + o] - ► M such that |/(¿,y)| <
 h(t) for every { t,y ) e D.

 Let
 r

 g(u) = / h(t)dt , u e [to, to -I- a}.
 J to

 Then for every d such that 0 < d < a and g(to~'~d) < b there is a solution y of
 the Cauchy problem (1) (where to = xo) defined on [¿o>¿o + d] and such that
 its derivative y' has the property (5/ł7) ( ( Sun ) ) [ (S¡ ) ] { (S'u/y) }.

 Remark 5 Observe that all sections fXì x e [to,to + a], of the function f from
 Theorem 6 are continuous. Indeed , if a section fx is not continuous at some
 point y then there is s > 0 such that oscfx(y) > s . By (2) there is a set
 A G Ai and r > 0 such that Di(A,x) = 1 and 'f(t,u) - f(t,y) ' < s/ 4 for each
 t € A and u e Y with 'u - y' < r. Since every section fu is a derivative and
 I f(t,u) - f{t,y)' < s/ 4 for t G A and u e Y with 'u - y' < r, we have that
 |/(x, u) - f{x,y) I < s/ 4, a contradiction .

 Theorem 7 Let Y = D = [0, 1] x U , where U is an open ball in Rk with
 center yo and radius ro > 0. Let f : D - ► Mk be a locally bounded function
 satisfying the condition (2) ( (2) ) [(2')] { (2}) } suúi that:

 - all sections fy ,y G U, are derivatives having the property ( Sin ) ((Sun))
 KSl,y)] { (^4,7)}' where 7 e (0, 1];

 - almost all sections fx, x G [0,1], are continuous ;
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 - there is an integrable function h : [0,1] - ► M such that'f(tì y)' < h(t)
 for each (t,y) G D.

 Let J = [0 ,T], where 0 < T < 1 be such that /0T(/i(í) + l)cfó < ro. Then the set
 of all solutions y of the Cauchy problem (1) defined on J and such that their
 derivatives y' have the property (S/,7) ({SUi y)) [{Sļ )] { (5¿j7)} is an Rs-set
 in the space C(J,M.k) of all continuous functions from J to Rk with the norm
 of uniform convergence. (Recall that a subset of a metric space is called an
 Rs-set if it is the intersection of a decreasing sequence of (nonempty) compact
 absolute retracts.)

 The proof of Theorem 7 follows from de Blasi's and Myjak's Theorem in
 [3] and from our Theorems 1, 2, 3.
 Now, we assume that Y is an infinite-dimensional separable Banach space

 and we recollect the following notions:

 - for a bounded set A C Y, ot(A) denotes the Kuratowski a-index of the
 set A, i.e. the greatest lower bound of the set of such numbers r that A
 can be covered by a finite number of sets with the diameter not larger
 than r;

 - we shall call a Kamke function every function cj : [0, a] x M+ - ► M+ such
 that all sections 0 < t < a, are continuous, all sections a;y, y > 0,
 are measurable (in the Lebesgue sense), u;(t,0) = 0 for 0 < t < a, and
 u(t) = 0 for 0 < t < a is the only continuous solution of the inequality

 u(t) < f¿v(s,u(s))ds satisfying the condition u( 0) = 0.

 Fix a Kamke function u. Then we have:

 Theorem 8 Let D be a rectangle [0, a] x {y e Y' ''y - yo|| < b}(a, b > 0). Let
 f : D - ► Y be a bounded function such that:

 - all sections fx, 0 < x < a, are continuous ;

 - all sections fv, y G Y and || y - yo'' < b, are derivatives having the
 property (5/)7) ({Su„)) [(S'ln)] { (S'u^)}, 7 t (0,1];

 - there is c > 0 such that ''f(xiy)'' < c for each (x,y) G D;

 - for each bounded set A CY and for almost every x G I,

 lim a(f(Ix<s,A)) < w(x,a(A)),
 s->0

 where I = [0, /3], ß = min(a, 6/c), IXi3 = (x - s, x 4- s);
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 - / satisfies the condition (2) ( (2) ) [ ( 2 ') ] { (2') }.

 Then there exists at least one solution y of the Cauchy problem (1) defined on
 [0,/?] such that its derivative y' has the property (Si ... 7) ((SU1)) [(S¡ )]
 { (K,7) }• ...
 The proof of this Theorem follows from Theorems 1, 2, 3 and from Piani-

 giani's Theorem in [11].
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