
 Real Analysis Exchange
 Vol. 19(1), 1993/94, pp. 242-247

 Richard J. O'Malley, Department of Mathematical Sciences, University of Wis-
 consin, Milwaukee, WI 53201, omalley@csd4.csd.uwm.edu

 SOME CONSEQUENCES OF THE
 FREILING - HUMKE RESULT ON THE

 DENSITY PROPERTY

 Abstract

 Recently, Freiling and Humke answered a question of the present
 author concerning the density property of certain sets. In this paper we
 examine how their work affects two different but related theorems. The

 first theorem concerns the monotonicity of approximately semicontinu-
 ous functions and the second, the existence of approximate maxima of
 approximately continuous functions.

 1. Background Information and Results

 In this paper we wish to discuss some of the implications of the recent results
 by Chris Freiling and Paul Humke [1]. In [3], the present author proved a
 density property of certain sets:

 If A C (0, 1] is an Fa set which has left density 1 at all its points,
 then there is a point xo G B = [0, 1) ' A such that A has right
 density 1 at xq.

 This result was used to prove a result about the monotonicity of Baire class
 1 functions, (see Theorem A below). In Query 7 of Vol. 16, No.l (1990-1991),
 page 376 of the Real Analysis Exchange the present author asks whether the
 Fa condition is necessary.

 Before the Freiling-Humke result the best work along these lines was the
 joint paper [2], where, among other interesting things it was shown that:
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 Corollary 4. Let ß stńctly between 0 and 1 be given and let M be
 a nonempty measurable subset of ( 0, 1) which is not an interval (of
 arbitrary type). Let the upper right density of M at all it points be
 greater than ß.

 Then there is a point z G (0,1 )'M for which the lower left density
 of M > ß.

 The above result has the advantage of generality in the set M and also
 in requiring upper density instead of density, but doesn't answer the query
 Though it could be thought of as the limiting case when ß - ► 1.

 The work of Kreiling and Humke answers Query 7 as follows :

 1) Theorem 6 of [1] shows that the Fc assumption cannot be arbitrarily
 dropped.

 2) Theorem 5 shows that it can be replaced by the weaker condition that
 A be G6<J.

 We will show how their work affects two different but related theorems, The-
 orem A of [3] and Theorem B of [4]. Theorem A deals with monotonicity of
 functions which are approximately semicontinuous in a certain sense. Theorem
 B deals with the existence of approximate maxima of approximately contin-
 uous functions. We will assume the reader has a working knowledge of the
 definitions associated with metric density and approximate limits of various
 kinds in M.

 Theorem A Let f be a function on [0, 1] satisfying :

 1) f is Baire class 1,

 2) ap lim sup x_+x-f(x) < f(x0) < ap lim sup x^x+f(x), for every x0.

 3) interior[f({x :AD+f(x) < 0})] = 0,

 Then f is nondecreasing }

 Since condition 1 of Theorem A is only used to insure that certain sets are
 it is natural to desire to delete that condition.

 Theorem B Let f be an approximately continuous function on [0,1]. Then
 there is a point xo € [0, 1] at which f has an approximate maximum. That is,
 at xo the set {x : f(x) > f(x o)} has density 0.

 For Theorem B, it is natural to wish to replace the requirement of approxi-
 mate continuity by the weaker condition of approximate uppersemicontinuity,
 as is possible in the classical case for upper semicontinuous functions.

 1In [3], functions satisfying conditions 1 and 2 are called type *.
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 We will show, using the example of Theorem 6 of Freiling and Humke,
 neither change is possible in the strict sense. However, we will also show
 how Theorem B can be modified to apply to certain kinds of approximately
 upper semicontinuous functions, i.e. those which are uniformly positively ap-
 proached from below. This in turn sheds a different light on the basic question
 contained in Query 7, and allows us to state a new monotonicity result similar
 to proposition 4 of [2]. We will end by showing that Theorem 5 of [1] has a
 simple corollary similar to Corollary 4 of [2].

 2. New Results and Examples

 Let A be the set of Theorem 6 which has left density 1 at all its points and
 for which its complement has positive right upper density at all its points. We
 may assume that 1 e A and 0 & A.

 We define a function / on [0, 1] as follows:

 íx + 2 êifx^A
 /<l)='x IfxeA

 The reader can easily verify that this function satisfies condition 2 of The-
 orem A. Further, for every xo we have that AD+/(a;o) > 1, so that condition
 3) is satisfied. However, the function is clearly not nondecreasing. Thus con-
 dition 2 alone is not sufficient to imply the validity of Theorem A. However,
 the main theorem of [2] can be thought of as a natural extension of A in a way
 that will be clearer after we show how we can extend Theorem B.

 For Theorem B we note that the example of Theorem 6 actually allows us
 to assume that A has density 1 at all its points and still not have a point in
 [0, 1) ' A at which A has right density 1. For such an A , assuming again that
 1 e A and 0 & A, we redefine our function on A:

 f(x) = -X if X e A.

 Again the reader should be able to verify easily that this / will be ap-
 proximately upper semicontinuous but has no approximate maxima. Thus we
 cannot just switch to the weaker continuity property and expect approximate
 maxima.

 At this point we would like to indicate how weakening is possible for the
 approximate maxima result. The key is that positive upper density at x is not
 sufficient; instead we must require a certain uniformity. Namely:

 Let / be such that there is a a > 0 such that, {x : f(x) > y} has upper
 density > a at all its points for every y e M. Such a function we will say is
 uniformly positively approached from below.

 Then we may prove:
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 Theorem 1 If f is approximately upper semicontinuous on [0, 1] and uni-
 formly positively approached from below , then there is an xo G [0, 1] at which
 f has an approximate maximum.2

 PROOF. Rather than copy large sections of the proof of the original theorem
 in [3], we will only indicate where four major changes are involved.

 First, for any closed subinterval of [0, 1], we previously said that the image
 under / would be a nondegenerate interval which would not contain its right
 endpoint. Now since our function is not necessarily Darboux, we can only say
 that the image is at least two points and does not contain its supremum.

 Second, the original proof constructed two sequences of strictly nested
 subintervals, [an, òn],[c£, cfo] of which the second sequence was used to de-
 termine the next term of the first sequence. We must introduce a third
 sequence, [rn, sn], whose terms also depend on this [ck,dk] sequence.

 More precisely, we will have a strictly increasing sequence of numbers yn
 and two sequences of closed intervals [an, 6n], [rn, sn] for which we have:

 1) [ûn+lî frn+l] C (û-rii^n)î

 2) &n+l ~~ Û-n+1 ^ ~ ®n),

 3) '({x : /(#) > 2/n} [f"n> ®n]) ^ -5o:(rn - Sn)

 where a is the constant of uniformity mentioned above,

 4) ((ûn+l, ^n+l) C ( rnìSn ) C (ú-nj^n)^

 5) '({x:f(x) > 2/n+i}n(c,d)) < ^(d-c)
 for all (c, d) with (c,d) C [an,6n] and (c,d) containing
 either or

 The sequence (rn,5n) is introduced at the point in the proof on page 79
 where we previously said:

 Therefore, there is a 6 > 0 such that for all open intervals J of
 length less than 6 and containing x' we have

 Now we only know there is a sequence of intervals J satisfying the desired
 properties that A (J) is small enough and satisfies the inequality. We pick
 an appropriate one to be (rn,sn) and then pick [cfc,dfc] contained in that J
 interior and set it as (an+i, 6n+i).

 2 It should be noted that approximately continuous functions satisfy the hypotheses.
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 Thirdly, as might already have been noticed, we use a/2n in place of l/2n.
 Finally, the lemma on page 76 must be modified to this new a sequence

 and we note that the A (Hk(y)) function will only be nondecreasing rather than
 strictly decreasing. (Though its limit as y increases will still be 0.)
 Any other changes are minor and the reader should be able to follow the

 new proof.
 It is somewhat surprising that a criteria of uniform approach from below

 is required to get this result, but perhaps it makes clearer why the authors
 of [2] used a similar condition in their Theorem 1. We may also see that the
 following result has a standard proof and should be viewed in connection with
 Proposition 4 of [2]:

 Theorem 2 If f is approximately upper semicontinuous on [0,1], uniformly
 positively approached from below, and for every x in [0, 1) AD+f(x) is positive ,
 then f is increasing.

 PROOF. We need only remark that as in the original proof of Theorem B we
 have that:

 There is a sequence of points xn such that / has an approximate
 maximum at each xn and

 sup{/(zn) : n = 1, 2, • • •} = sup{/(x) : x e [0, 1]}.

 Prom the above it is clear that the example of Theorem 6 of [1] must have
 the property that for every ß strictly between 0 and 1 there is a point in
 [0, 1) ' A at which A has right lower density > ß.

 It should also be pointed out that Theorem 5 can be used to show this is
 always true. Namely:

 Corollary 1 Let A be any set having left density 1 at all its points , A C (0, 1];
 let 1 > ß > 0 be given. Then there is a point xo G [0, 1) ' A at which A has
 lower right density > ß. 3

 PROOF. Suppose not. Then let A^ = {x : A has lower right density > ß
 at x}. Then A& is a Gsa set contained in A and of the same measure as A.
 Hence it has left density 1 at all its points. But then by Theorem 5 there is a
 point outside of Aß where it has right density 1. But then A has right density
 1 at this point also. However this would require that the point belong to Aß
 by definition. This contradiction proves the stated result.

 Thus for a general extension of the the original density property the above
 Corollary 4 seems the best possible result.

 3 This corollary is obviously also implied by Corollary 4 of [2].
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