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 SEQUENCE CONDITIONS WHICH IMPLY
 APPROXIMATE CONTINUITY

 A function is approximately continuous at a point x if, on removal of a set E
 which has a density 0 at x, the function is continuous at x with respect to Ec. This
 suggests that, in some probability sense, it is unlikely that a sequence approaching
 the point x should contain infinitely many points of the set E.

 The purpose of this paper is to examine some probability spaces, whose el-
 ements are sequences tending to a point x, for which a function, continuous at
 the point x with respect to a collection of sequences whose probability is 1, is
 necessarily approximately continuous at x.

 The following conventions, standard definitions and notation will be needed.
 The Lebesgue measure of a subset E of the line will be denoted by m(E). All
 sets under consideration will be Lebesgue measurable and all functions will be
 measurable functions; the integral used in this paper will be the Lebesgue integral.
 The characteristic function of a set E, denoted by Ce, satisfies Ce{x) = 1 if
 x G E, Ce{x) - 0 if x £ E. The density of a set E at x, written De(x) is
 limm(E H I)/m(I) provided the limit exists. Here the limit is taken over intervals
 / with x in I and m(I) approaching 0. The upper density of E at x , written
 Ďe(x), is lim m(E fl 7)/m(J); the lower density of E at x, written Z^x), is
 lim m(En I)/m(I). A point a: is a point of density of E if De(x) = 1; a point x is
 a point of dispersion of E if De(x) = 0. A function / is approximately continuous
 at x if a; is a point of density of a set E and / is continuous at x with respect to E.
 The collection of measurable sets E for which each point of E is a point of density
 of E form a topology called the density topology.

 Without loss of generality, we will be concerned with approximate continuity
 of a function at the point 0; we will also only consider approximate continuity
 at 0 from the right and frequently use only the right hand density at 0, limÄ_0+
 m(E fl (0 ,h))/h, which will be written Dte{0) and the corresponding upper and
 lower densities ĎrE(0) and DrE(0), Clearly, a set E has 0 as a point of density
 (resp., dispersion) iff the value of both the right and left hand densities at 0 is 1
 (resp., 0).
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 Consider the following simple example of a probability space X whose elements
 are sequences decreasing to 0: fix a sequence {<„} decreasing to 0 and let X consist
 of all sequences of the form {xťn} for x in (0, 1); let the probability of a collection
 C of sequences from X corresponding to a measurable subset of (0, 1) be equal to
 m({x € (0, 1) : {x • *„} e C }).

 We begin by characterizing the sequences {ťn} for which the following property
 holds:

 (*) Whenever f(xtn) approaches /(0) for almost every x in (0, 1), then / is
 approximately continuous at 0 from the right.

 Theorem 1. Let {ť„} be a sequence which is decreasing to 0. In order that
 (*) hold for each measurable function f, it is necessary and sufficient that there
 be an r > 0 so that for each n, tn+ i > rtn or, what amounts to the same thing,
 that ļim tn+1 /tn> 0.

 Proof. Suppose {ťn} decreasing to 0 is given. Consider any measurable func-
 tion /. Suppose ťn+i > rtn for some r > 0 and that f{xtn) approaches /(0) for
 almost every x in (0, 1). By selecting, if necessary, a subsequence of {ťn}, we may
 presume for each n, that tn+l < tn/2 and tn+ļ > rtn for some r > 0. To see that
 / is approximately continuous at 0 from the right, let

 An,ic = {x :n> N implies 'f(xtn ) - /(0)| < l/k).

 Then for every k there is Nk so that m(ANk¿) >1 - 1 /k. Let

 Bk = {x : xt~l S ANktk for some n with Nk < n < Nk+i}.

 Let E = UBk D (ťjvjt+jííiv*)- If x € E and tsk+1 < x < tNk, then x 6 Bk and
 xť"1 G Auktk for some n with Nk < n < Nk+ 1. Thus /(x) = /(xt'1^) and
 |/(x) - /(0)| < l/k. Thus / is continuous on the right at 0 with respect to E
 and it remains to show that E has 0 as a point of density on the right. To see
 this, suppose h > 0 is given with tn+i < h < tn where Nk < n < Nk+i . Since
 m(ANkik) > 1 - l/k, one has m({x G (0 ,tn) : xt~ 1 G ^ATfcl*}) > (1 - 1 /k)tn.
 Because tn - tn+ļ > tn/ 2 and thus (tn - ťn+i) * 2/fc > tn/k, it follows that

 m(E n (tn+1, tn)) > (1 - l/Ar)ťB - ťn+i = tn - tn+ 1 - tjk

 > (1 - 2/k)(tn - ťn+i).

 Then m(E fl (0 ,h))/h is at least as large as the quantity obtained by assuming
 that E fi (tn+i,h) = <f> and h = tn+ 1 + (2 /k)(tn - tn+ļ). That is

 m(E n (0, h)) ^ (1 - l/fc)*n+1 ^ 1 - l/k
 h - tn+1 + (2 /*)(*„ - in+1) - 1 + (2/fc)(l - r)/r
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 Here, the last inequality is due to the fact that tn+i > rtn and thus tn - tn+ 1 < (1 -
 r)tn < ťn+i(l - r)/r. Since, as h approaches 0, k approaches oo, m(E D (0, h))/ h
 approaches 1 as h approaches 0. Thus E has 0 as a point of density on the right.
 Now, to see the converse, suppose {tn} decreases to 0 and lim tn+i/tn = 0. We
 must construct a measurable function / which is not approximately continuous at
 0 from the right and yet for almost every x in (0, 1), f(xtn ) approaches /(0). Since
 lim tn+ļ/tn = 0, there is a subsequence {n*} of the natural numbers so that in*+i <
 k -1 • 2~* • tnk. The sequence {n*} can also be chosen so that tnk+1 < 2~ktnk+ļ. Let
 E = Ufc(^n*+i, A;-í„fc+i) and f(x) = Ce(x). Then / is not approximately continuous
 at 0 because /(0) = 0, f(x) = 1 for x in E and, indeed, ĎTE(tí) = 1. However,

 lim m({x : f(xtn ) = 1 for some n > TV})
 N-+00

 OO

 - Jim Z) ť»í(* • *"*+! + (* + !)• ťnfc+1+l + • • ■)
 K^°° k=K

 OO

 ^ E C • 2~ktnk
 K^°° k=K

 OO

 " < lim £ 2-* = 0.
 " i =k

 Thus, for almost every x in (0, 1) there is an N so that f(xtn ) = 0 when n > N.
 Consequently, f(xtn) approaches 0 = /(0) for almost every x in (0, 1).

 We now characterize the measurable functions / for which there is some {ť„}
 decreasing to 0 so that f(xtn ) approaches /(0) for almost every x in (0, 1).

 Theorem 2. Let f be a measurable function defined on a neighborhood of
 0. There is a set E C (0, 1) so that DJE( 0) = 0 and f is continuous on the
 right at 0 with respect to Ec iff there is a sequence {ťn} decreasing to 0 so that
 limn f(xtn ) = /(0) for almost every x in (0, 1).

 Proof. Suppose there is E with PrE(0) = 0 and / is continuous on the right
 at 0 with respect to E°. Choose tn so that m(E D (0, tn)) < 2 ~ntn. For c > 0, let
 c • A = {ex : x E A} and note that m(cA) = c • m(A). Then

 m({x G (0, 1) : f(xtn) does not approach /(0)})
 OO OO

 < I Z m(iX 6 (°' X) : xt" G E)) = H m(t:nX • ( E n (°> in)))
 n=N n=N
 oo oo

 < ÍZ £ 2-" = 2-"+1.
 n=N n=N
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 Since this is true for each N, f(xtn ) approaches /(0) for almost every x in (0, 1).
 For the converse, suppose / is measurable and there is a sequence {ťn} decreasing
 to 0 so that limn f(xtn) = /(0) for almost every x in (0, 1). Choose N' so that
 ijVj < 1/2. Then there is N[ > N' so that

 E' = {x e (ťjVj', 1) : 'f{xtn ) - /(0)| < 1 when n > N[}

 has m(Ei fl (<^,1)) > 1/2. Then

 m( U *n ' (-^1 rï (0, źjVj'))) > l/2ťjVj'
 n>Nļ

 and there is N" > N[ so that

 m( U ' (-^1 n (tNļ'itNļ))) > 1/2 (tNļ)-
 N><n<Nļ'

 In general, choose the number Nk so that N¡¡ > Nk_ļ and t^k < l/(fc + 1). then
 there is N'k so that

 Ek = {x G (tN>k, 1) : I f(xin) - /(0)| < 1/k when n > N'k)

 has m(Ek fl (íjv¿, 1)) > k/(k + 1). Then

 m( [J in • (Ek n (0,ta¿))) > k/(k + 1) • tN¡¡
 n>N'k

 and there is N'k' > N'k so that

 m( U • (Ek H (tpfji, tNļ))) > k/(k + 1) • tN¡_.
 Nk<n<N'k'

 If
 oo

 EC = U U Ín ' (Ek n (ťjv», íjV¿)),
 fc=l Wj1<n<N¿'

 then the upper density of Ec at 0 from the right is 1 because it is greater than
 each number k/k + 1. Thus Dļ( 0) = 0. Also / is continuous at 0 with respect to
 the points of Ec because |/(z) - /(0) | is less than 1/k when x belongs to

 U tn • (Ek fl (ťjv», ÍN'k))-
 NļĶnĶNļ'

 We now turn to consider some probability spaces whose elements are countable
 subsets of (0, oo). We will first construct a space to examine density at 0 by 'turning
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 around' a frequently used probability space whose elements can be considered to
 be increasing sequences {ťn} with limin = oo; namely, a Poisson process. (See, for
 example, [2] for the development of such processes.) The standard Poisson process
 describes 'arrival times' and involves a 'rate of arrival', c > 0. It is a probability
 space whose elements are increasing sequences S where the probability, (c)Pr, is
 determined by the formulas:

 (c)Pr{5" : #(5fl(a,6)) = n}) = e~ct(ct)n/n'

 where t = b - a, and for disjoint intervals

 (a,-, 6.) and non-negative integers n,-,

 (c)Pr({S:#(Sn(0i, 6, ))=n.}) =
 īle~cti(cti)ni /tiil where ť,- = - a,-. (Here

 #(x D y) denotes the cardinality of x H y.)

 In particular, for measurable sets A C (0, oo),

 (c)Pr({5 : #(S D A) < oo}) = 1 iff m(A) < oo.

 For c = 1 fixed and S = {ťn}5 let 1/5 denote {1 /¿„}. If A is a collection of
 sequences S increasing to oo, and 1 /A denotes the collection of sequences 1/5 for
 S in A , put Pr'(l/A) = (c)Pr(A) = Pr(A).

 We are only interested in a simple situation: if / is approximately continuous
 at 0 on the right, there is a set E with DE( 0) = 0 so that if tn approaches 0
 and only finitely many tn € E, then lim f(tn) = /(0); thus, given a set E with
 £ę(0) = 0, we want to know whether iV^l/S : #(1/5 D E'1) < oo}) = 1. But
 this is equivalent to Pr({S : #(5 fl E'1) < oo}) = 1 where E'1 = {x_1 : x G E}.
 As noted above, this probability is 1 iff m(E~l ) < oo.

 Since, for an interval (a, 6) C (0,1), m((a,6)_1) = a-1 - 6_1 = /06ť"2cřť, it
 follows that, for a measurable set E 6 (0, 1), miE-1) = fEt~2dt. Thus Pr'(l/S :
 #(1/ S n E) < oo) = 1 iff fE l/t2dt < oo. By considering an open set G = U(a¿, 6,)
 containing E ,

 JG / t~2dt < oo iff E fbn t~2dt < oo iff E(l/an - l/bn) = S6"~a" < oo. JG Jan 0,nbn

 This condition implies ^^(O) = 0 because it is equivalent to lim^_o S hb2~bn = ®
 where is the sum over all n with an < A; DrE( 0) = 0 is equivalent to the
 existence of an open set G = U(a„6.) so that limE^^^- = 0 where h € [aN,bN]
 defines N and again is the sum over all n with an < h. Note that this implies
 that if m(E~ 1) < oo, then DE( 0) = 0. The converse is far from true: for example,
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 if E'1 = U(xn,yn) with yn = xn + 1, then m(E *) = oo but E = (y,,1,®«1)
 can have 0 as a point of dispersion. (If xk = 3*, for example, lim# E£k(3-' -
 (3* + 1)-1/3-k < lim* EJ1k9-* ■ 3K = limK 9-K(9/8)3K = 0 shows that the
 resulting E has DTE{ 0) = 0.)

 The definition of Pr' could have been obtained in another way be considering
 a 'non-homogeneous' Poisson process whose probabilities, ( g)Pr , are defined by

 (s)Pr({S : #(S D A) = n}) = e~c^c(A)n/n'

 where for measurable sets A, c(A) = fA g(t)dt. (See [2]). Here g is assumed to be a
 non-negative measurable function which is integrable on each closed interval con-
 tained in (0, oo). Also, for pairwise disjoint measurable sets Ak and non-negative
 integers nk,

 (g)Pr({S : #(S n Ak) = nk, k = 1,2, . . .}) = īlke~c^c(Ak)nk lnkl

 When g(t) = c one obtains the usual Poisson process. When g(t) = t~2, one has
 for sets E C (0, 1),

 Pr'({S :#(Sn£)=n}) = (<"!)Pr({5 : #(S n E) = n}).
 Note also that

 1 = lim^o (r2)Pr({5 : S n E n (0, h) = <j>} = lim^o e~c^0'h^

 iff 0 = lim^o fEn(o,h) t~2dt

 iif there is an open set G D E with G = U(a¿, bi )

 so that lim^_o E/> = 0.

 We now examine other probabilities determined by finite functions g which are
 non-increasing on (0, 1) and satisfy /<J g(t)dt = oo. These conditions guarantee
 that with probability 1 sequences will have 0 as a limit point and have no other
 limit point in (0, 1).

 We first consider g(t) = t~l. Given a measurable set E, ( t~1)Pr({S : #(5 fl
 E) = 0}) = e-fEt~idt. Thus

 lim^o Pr(#(S H E D (0, h)) = 0) = 1

 iff lim/,-0 e~ ł dt = 1

 iff lim/,_to fEn(0 ,h) i~ldt = 0

 iff there is G = U(a¿, b¿) with EG so that

 lim^o S^n(6„/an) = 0

 iff limjv = 1.
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 But īlb£ converges iff II converges iff S I2- - 1 converges. (See [1], p. 96.) That
 is, this holds iff lim^o tn¿"°n = Thus, if E is contained in an open set
 G = U(an, 6n), so that lim/,_»o E h br}b*n = then DE( 0) = 0 since for N defined by
 h e (aN,bN), < limÄ_*0

 The following example shows that there are sets E with De(0 ) = 0 but
 fE 1/t dt = oo.

 Example. Let E = U„(3-n(l - n-1),3-n). These intervals are distinct because
 3"n(l - 1/n) - 3"(n+1) = (3(1 - 1/n) - l)/3n+1 = (2 - 3/n)/3n+1 > 0. Then
 ££(0) < limE~ N3-n(l/n)/3~N < 'imN2 ■ 3~n(1/N)/3~n = 'imN2/N = 0.
 However, E(6n - an)/bn = Snn_13"n/3"n = En-1 = oo.

 It is tempting at this point to consider functions g the values of which are
 smaller than 1/t for every t G (0, 1) and /J g{t)dt = oo in order to obtain a better
 process for estimating density 0 and approximate continuity at 0 from the right.
 However, no such better process of this type exists. To see this we show that
 functions g(t), whose ratio to 1/t approaches 0 on a sequence tn decreasing to 0,
 have sets E of upper density 1 at 0 so that ( g)Pr({S : S fi E is infinite}) = 0.

 We now characterize this situation.

 Theorem 3. Suppose g is a non- increasing function on (0, 1) and g(t)dt =
 oo. Then limoni • g(ť) = 0 iff there is a set E with ĎrE(0) = 1 (alternately,
 Dte( 0) > 0) so that fEg(t)dt < oo and thus ( g)Pr({S : #(5 fi E) = oo}) = 0.

 Proof. Suppose g(t) satisfies Hm t-g(t) = 0. Choose a sequence {in} decreasing
 to 0 so that tng(tn) < 3"n. Let E = U (tn,2ntn). Then ĎrE(0) > limn (2 ntn -
 tn)/2ntn = 1 but

 / g(t)dt < Hg(tn)(2ntn - tn) < Zg(tn) ■ tn2n < E2n/3n < oo. JE

 It follows that (^)Pr({5 : #(5 fi E) = oo}) = 0 because

 lim(^)Pr({5 : #(5 D E D (0, h)) = 0} = lim c"- W*)- = 1.
 h->0 /i - »-0+

 To see that the converse holds, note that if lim g(t) ■ t > 0 there is e > 0 so that

 g(t) • t > e when t < e and thus for any set E , fEn^0 c) g(t)dt > e ■ fEn^0iS) 1/t dt.
 Then, if fEg(t)dt < oo, fEl /t dt < oo and E has 0 as a point of dispersion
 according to the calculations for the function 1/t.
 A simple example of such a function g with Ii m tg(t) = 0 and g(t)dt = oo
 is g(t) = - l/(t ■ tnt) if t 6 [0,e-1);flr(ť) = e if t 6 [e-1, 1).
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 We now relate sets E and functions g > 0 which are non-increasing on (0, 1)
 and have g(t)dt = oo and fE g(t)dt < oo. A consequence of this theorem is that
 D!e(0) = 0 iff there is a g > 0 non-increasing on (0,1) with fEg(t)dt < oo and
 Jo 9(f)dt = oo so that : #(è S fi E) = oo}) = 0.

 Theorem 4. For any measurable set E there is a non-increasing function g > 0
 on (0, 1) with $ g(t)dt = oo and fßigitydt < oo iff D_E( 0) = 0.

 Proof. Suppose E has J2^(0) = 0- Let t0 = 1 and for n > 0 let tn satisfy
 tn < in-i/2 and m(E O (0,ť„)) < 2 ~ntn. Let g(t) = (*n-i - *n)-1 if t G [ín,<n-i)-
 Then g is non-increasing on (0, 1) and g(t)dt = £(ť„_i - ť„)-1 • (tn- 1 - tn ) = oo-
 Also,

 Je [ g(t)dt = - ť„)-1m(.En (ť„,ín-i)) Je n=0

 < 52(*n-l - ^n)-1 • 2~"ťn_i + <7(ťi)(l - ti)
 n=0

 < 5Z2"n + flí(ťi)(l-ťi) < oo.
 n=0

 To see the converse, we show that if £>¿(0) > 0 and g > 0 is non-increasing on (0, 1)
 with /J g(t)dt = oo. Then fEg(t)dt also equals oo. Choose any {xn} decreasing
 to 0 so that for 0 < x < xi, m(E D (0, #)) > D1¡( 0)/2 = e. Determine a sequence
 {in} decreasing to 0 so that x' = ťj, Xk = tnk and

 txk+ 1

 / txk+ 1 9(t)dt - É 1 - U) < 2~k.
 Jx* i=nk

 Then
 OO

 (E D (0, ia)) X (0, g{ti)) U U (E n (0, in)) X (gitn-i), g(tn))
 n=l

 is a pairwise disjoint union of sets whose points lie in the plane under the graph of
 g on E. Then fE g(t)dt is greater than or equal to the sum of the measures of these
 sets. That is, e_1 / g(t)dt > g(ti)ti+(g(t2)-g(ti))t2-'

 <7(^i)(*i - tļ) + g{tļ){t2 - tz) I- g(tn)(tn - ťn+i) -I

 the earlier probability spaces defined by {tn} decreasing to 0 with tn+ 1 > rtn for
 some r > 0 and the spaces with lim t • g(t) > 0 give rise to stronger notion of 'point
 of dispersion' and hence to a weaker topology than the density topology if a set E
 is defined to be open if each point of E is a 'point of dispersion' of Ec. We also
 note the following problem:
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 Problem. Characterize the measurable sets E (with DTE(ti) = 0) for which
 there is a sequence {tn} decreasing to 0 and r > 0 so that tn+ļ > rtn and for
 almost every x in (0, 1), Cß(x/n) approaches 0.
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