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 DERIVATIVES AND THE

 CARATHÉODORY SUPERPOSITION

 Let R be the set of reals. The density topology T¿ ([1], [8], [10]) on R consists
 of all measurable subsets A of R such that, for every x G A, x is a density point
 of A. Let I C R be an interval. A function / : I - ► R is density continuous ([5],
 [6], [7]) if it is continuous as a map from (I,Td) into (R, Td).

 A family T of maps of the topological space (R, Td) into R (with the natural
 topology) is said to be Tj-equicontinuous at a point x G R ([9], p. 188), if, given
 e > 0, there is a neighborhood V G Td of x such that |/(u) - /(x)| < e for
 each u G V and / G T. We say that T is T^-equicontinuous on R if it is T¿-
 equicontinuous at each point.

 In the paper [2] I proved the following theorem:

 Theorem 0. Suppose that D C R2 is a nonempty open set and / : D - * R
 is a locally bounded function such that all sections fy(t) = f(t,y ) (í,¡/ 6 R and
 (í, y) G D) are derivatives and all sections fx(t) = f(x,t) (x,t G R and (x,ť) G D)
 are equicontinuous. Then for every continuous function g : I - * R such that
 (x,g(x)) G D for x € I and I is an interval, the function h(x) = f(x,g(x )) is a
 derivative.

 In this paper we approach the derivative structure of the function h in terms
 of density continuity.

 Theorem 1. Suppose that D C R2 is a nonempty open set and / : D - ► R is a
 locally bounded function such that all sections fy are derivatives and all sections fx
 are Tj-equicontinuous. Then for every continuous and density continuous function
 g : I R such that / is an interval and ( x,g(x )) G D for x G /, the superposition
 h(x) = f(x, g(x)) is a derivative.

 Proof. First, we remark that the function h is measurable in the Lebesgue
 sense ([4]). We shall prove that h is a derivative at each point x G I, i.e.
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 ļim J h(u)du/(t - x) = h(x).
 Fix x G I and e > 0. Since / is locally bounded and g is continuous at x , there
 are numbers 5, Si > 0 such that si < s,

 (1) M = sup {ļ/(«, u)| : |u - x| < a, |v - flr(x)| < a} < oo,

 and |ý(ť) - <7(x)| < a for t € I H (x - ai,x + ai).

 Without loss of generality we may assume that M > 0 and [x,x + s] C I. Since
 the section f3^ is a derivative at x, we have

 ļim t-*X J f f (u, g(x))du/(t - x) = f(x, g(x)). t-*X J x

 Consequently, there is to > x such that, t0 < x + aj and

 (2) |y f(u,g(x))du/(t - x) - f(x,g(x)) < e/3 for x<t<t0.
 Since all sections /„ are Tj-equicontinuous, there exists a Xj-neighborhood
 V £ Ti of <7(x) such that, V C (<7(ar) - s,g(x ) + a), and

 (3) I f(u,y) - f(u,g(x))' < e/3 for each u e I, y € V.

 Observe that g-1 (V) (E T¿ and x is a density point of g~l(V). There is ti > x such
 that, iļ ^ to, and

 (4) m((x, i) n ý_1(^))/(ť - 1) > 1 - e/6M
 for x < t < ti (m denotes Lebesque measure). If x < t < ti, then
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 I Sx h(u)du/(t - x) - h(x) | =

 l/Í f{u,g(u))du/(t - x) - f(x,g(x))' =

 I Sx (/(«> 0(«)) - /(®> 9{x)))du!(t - z)| =

 (5) < 'Sx(f{u,g(u))- f(u,g(x)))du/(t- x)+

 Sx (S(u,g(x)) - f(x,g(x)))du/(t - x)| <

 Sx 'S(u,g(u)) - f(u,g(x))'du/(t - x)+

 > I Sx (f(u,g(x)) - f(x,g(x)))du/(t - x) |.

 Using (2) we have for a: < t < ti the following:

 I Sx f{u,g(x)) - f(x,g(x)))du/(t - x) I =
 (6)

 I Sx /(«» g(x))du/(t -x)- f(x, ^(x))| < e/3.

 On the other hand, from (1), (3) and (4) we have for x < t < t',

 ' Sx 'S(u,g{u))~ f(u,g(x))'du =

 S(x,t)ng-HV) I f(u,g(u)) - f(u,g(x))'du+
 (7) I

 f(*,t)'g-Hv) I f(u>g(u)) - f(u,g(x))ldu <

 „ e(t - x)/3 + 2M e(t - x)/6 M = 2 e(t - x)/3.

 Thus, from (5), (6) and (7) we obtain

 |y h(u)du / (t - x) - h(x) <e
 and consequently,

 lim f h(u)du/(t - x) = h(x).
 t- >X+ Jx

 Analogously we may show that

 lim f h(u)du/(t - x) = h(x). t - J x
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 This completes the proof.

 Remark. In my paper [3] I proved that there is a function / : R2 - ► [0, 1] such
 that all its sections fx,fy are continuous, /( x,x) = 1 for x > 0 and /(0,0) = 0.
 Note that the function g(x) = x is continuous and density continuous, but the
 superposition h{x ) = f(x,g(x)) is not a derivative.

 Theorem 2. Let L > 0 be a constant. There are a function g : R - ► R
 satisfying the Lipschitz condition with constant L and a function /* : R2 - [0, 1]
 having all constant sections fy and all Tj-equicontinuous sections fx such that the
 superposition h(x) = f(x,g(x)) is not a derivative.

 Proof. Let ( bn)n_0 be a decreasing sequence such that lim^oo 6n = 0 and
 bn > 0, n = 1,2,... and

 (8) (bn-i - bn) 22n"2 < L for n = 1,2,...

 (for example bn = L/(8n)'). Put

 'bo for x > 1

 bn for x e [2-2n,2"2n+1], n = 1,2,...
 g{x) = <

 0 for x < 0

 . linear on the intervals [2~2n+1, 2-2n+2], n = 1,2,

 From (8) it follows that g satisfies the Lipschitz condition with the constant L.
 There are intervals /„ = [6n - an, 6n + an] (n = 0, 1, . . .) such that /„il h = <f> for
 k ^ n and 0 is a density point of the set

 OO

 E = R' (J In.
 n=0

 Let z : R - > [0, 1] be continuous at each point x ^ 0 and such that z(bn) = 1 for
 n = 0, 1, . . . and z(x ) = 0 for x 6 E. Define

 f(x,y) = z(y) for (x,y) Ç. R2.

 All sections fy are constant and all sections fx are Tj-equicontinuous. More-
 over, the function h(x) = f(x,g(x)) is such that h( 0) = 0 and h(x) = 1 for
 x € [2"2n,2~2n+1], n = 1,2, - Since 0 is not a density point of the set
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 oo

 R ' U [2-2n,2~2n+1]
 n=l

 and h(x) > 0 for all x G R, h is not a derivative at 0.

 Theorem 3. Let L > 0 be a constant. There are a function g : R - > R
 satisfying the Lipschitz condition with constant L and a function /i : R2 - ► [0, 1]
 having continuous sections (/i)x, (fi)y and Tj-equicontinuous sections (/i)x, such
 that the superposition h(x) = f(x,g(x)) is not a derivative.

 Proof. Let /, g be the same as in the proof of Theorem 2. The sets

 A = {(x,y) : x > 0, y < g{x)¡ 4},

 B = {(x,î/) : x > 0, y > g(x)/ 2}

 are closed in the space C = {(x, y) G R2 : x > 0} with the natural topology. There
 exists a continuous function fi'.C-* [0, 1] such that /2(2, y) = 0 for (x, y) G A
 and /2(2, y) = 1 for ( x,y ) 6 B. Define

 ' f2(x,y)f(x,y) for (x,y)eC
 fi(x,y) =

 0 otherwise.
 '

 All sections are continuous, the sections (fi)x are Ij-equicontinuous
 and the superposition h(x ) = fi(x,g(x)) is not a derivative.

 Example. Let /„ = [an, 6„] , n = 1, 2, . . ., be a sequence of intervals such that
 ai < 61 < a,2 < bļ < • • • - > 0 and 0 is a density point of the set R ' U^Li In- For
 each n = 1,2, .. . there exists a closed interval Jn C (an, bn). There is a function
 / : R2 - ► [0, 1] continuous at each point (a:, y) ^ (0, 0) such that

 ' 0 if *€R'U~1 In,

 f(x,y) = < 0 if x e In and y < l/2n, n = 1,2, . . . ,

 1 if x G Jn and y > 1/n, n = 1,2,

 Then the sections fx(x G R) are not Tj-equicontinuous, but for every continuous
 function g : I -* R, where I is an interval, the function h(x) = f(x,g(x)) is a
 derivative.
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