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DERIVATIVES AND THE
CARATHEODORY SUPERPOSITION

Let R be the set of reals. The density topology Ty ([1], [8], [10]) on R consists
of all measurable subsets A of R such that, for every ¢ € A, z is a density point
of A. Let I C R be an interval. A function f : I — R is density continuous ([5],
(6], [7]) if it is continuous as a map from (I, Ty) into (R, Ty).

A family F of maps of the topological space (R,Ty) into R (with the natural
topology) is said to be Ty-equicontinuous at a point z € R ([9], p. 188), if, given
e > 0, there is a neighborhood V € Ty of z such that |f(u) — f(z)| < € for
eachu € V and f € F. We say that F is Ty-equicontinuous on R if it is Ty-
equicontinuous at each point.

In the paper [2] I proved the following theorem:

Theorem 0. Suppose that D C R? is a nonempty open set and f : D — R
is a locally bounded function such that all sections f¥(t) = f(¢,y) (t,y € R and
(t,y) € D) are derivatives and all sections f,(t) = f(z,t) (z,t € R and (z,t) € D)
are equicontinuous. Then for every continuous function g : I — R such that
(z,9(z)) € D for € I and [ is an interval, the function h(z) = f(z,g(z)) is a
derivative.

In this paper we approach the derivative structure of the function k in terms
of density continuity.

Theorem 1. Suppose that D C R? is a nonempty open set and f: D — Ris a
locally bounded function such that all sections f¥ are derivatives and all sections f,
are Ty-equicontinuous. Then for every continuous and density continuous function
g : I — R such that I is an interval and (z, g(z)) € D for z € I, the superposition
h(z) = f(z, g(z)) is a derivative.

Proof. First, we remark that the function % is measurable in the Lebesgue
sense ([4]). We shall prove that A is a derivative at each point z € I, i.e.
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lim /: h(u)du/(t — z) = h(z).

Fix £ € I and € > 0. Since f is locally bounded and g is continuous at z, there
are numbers s, s; > 0 such that s; < s,
(1) M = sup {|f(u,v)|:|u—z|<s|v—g(z)| < s} < oo,

and |g(t) — g(z)| < s for te IN(z— 31,2+ $1).

Without loss of generality we may assume that M > 0 and [z,z + s] C I. Since
the section f9(%) is a derivative at z, we have

tim [ F(u, 9(@))dul (¢ - ) = J(z,9(2))

Consequently, there is to > & such that, ¢, < z + s; and

(2) /: f(u,g(z))du/(t — =) — f(z,9(z))| < €/3 for z <t <t

Since all sections f, are Ty-equicontinuous, there exists a Ty-neighborhood
V € T, of g(z) such that, V C (g(z) — s, 9(z) + s), and

(3) |f(#,9) — f(u,9(z))| < €/3 foreach ue I, yeV.

Observe that g=!(V) € T, and z is a density point of g=}(V'). There is t; > z such
that, ¢; < to, and

(4) m((z,t)N g~ (V))/(t —z) > 1 —¢/6M
for £ < t < t; (m denotes Lebesque measure). If < t < ¢;, then
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(| Jz h(u)du/(t —z) - h(z)| =

| [z f(u,g(w))du/(t — z) - f(z,9(z))| =

| fz (f(u,9(w)) — f(z,9(z)))du/(t — )| =

() {1z (F(u,9(w)) = f(u, g(z)))du/(t — =)+
Jz (f(u, 9(2)) = f(=,9(z)))du/(t — )| <
Jz 1£(u, 9(u)) — f(u, g(z))ldu/(t — )+

Lz (f(u, 9(2) = f(z, 9(2)))du/(t - z)].

Using (2) we have for z < t < t; the following:
|z f(u,9(z)) = f(z, 9(2)))du/(t — )| =

|z f(u,9(z))du/(t — ) - f(=z,9(2))| < ¢/3.
On the other hand, from (1), (3) and (4) we have for z < t < t;,

( Sz 1£(u,9(w) = f(u, g(2))ldu =
Jeng-rvy 1F(u,9(u)) = £(u, g(z))|du+

<

Jzang-1v) 1f(,9(u)) = f(u, g(z))|du <

 e(t—x)/3+2M e(t —z)/6M = 2¢(t — z)/3.
Thus, from (5), (6) and (7) we obtain

(6)

(7)

| / " h(u)du/(t — o) — h(z)| <

and consequently,

jim [ " h(u)du/(t - 2) = h(z).

Analogously we may show that

lim | " h(u)du/(t - z) = h(z).

T
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This completes the proof.

Remark. In my paper [3] I proved that there is a function f : R? — [0,1] such
that all its sections f,, f¥ are continuous, f(z,z) = 1 for z > 0 and f(0,0) = 0.
Note that the function g(z) = z is continuous and density continuous, but the
superposition h(z) = f(z, g(z)) is not a derivative.

Theorem 2. Let L > 0 be a constant. There are a function ¢ : R = R
satisfying the Lipschitz condition with constant L and a function f : R? — [0,1]
having all constant sections f¥ and all T;-equicontinuous sections f, such that the
superposition h(z) = f(z, g(z)) is not a derivative.

Proof. Let (b,),_, be a decreasing sequence such that lim,,o, b, = 0 and
b, >0, n=1,2,... and

(8) (b1 — 5,)2°" 2 < L for n=1,2,...
(for example b, = L/(8n)!). Put

((bg forz>1

b, forz € [272",27241] n=1,2,...

9(z) = |
0 forz<0

| linear on the intervals [2727+1/2-2n+2] ' = 1,2 ...,

From (8) it follows that g satisfies the Lipschitz condition with the constant L.
There are intervals I, = [b, — an, b, + a,] (n =0,1,...) such that I, N [} = ¢ for
k # n and 0 is a density point of the set

E=R\|J I.

n=0
Let z : R — [0, 1] be continuous at each point z # 0 and such that z(,) = 1 for
n=0,1,... and z(z) =0 for z € E. Define

f(z,y) = 2(y) for (z,y) € R%.

All sections fY are constant and all sections f, are Ty-equicontinuous. More-
over, the function h(x) = f(z,g(z)) is such that ~A(0) = 0 and A(z) = 1 for
T € [27% 272"+1] = 1,2,.... Since 0 is not a density point of the set
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R\ G [2—2n’2-2n+1]

n=1

and h(z) > 0 for all z € R, h is not a derivative at 0.

Theorem 3. Let L > 0 be a constant. There are a function ¢ : R — R
satisfying the Lipschitz condition with constant L and a function f; : R — [0, 1]
having continuous sections (f1)z, (f1)¥ and T4-equicontinuous sections (f1)s, such
that the superposition h(z) = f(z, g(z)) is not a derivative.

Proof. Let f, g be the same as in the proof of Theorem 2. The sets

A={(z,9): >0, y < g()/4},

B={(z,y):z>0, y > g(c)/2}

are closed in the space C = {(z,y) € R?: 2 > 0} with the natural topology. There
exists a continuous function f, : C — [0, 1] such that fo(z,y) = 0 for (z,y) € A
and fy(z,y) =1 for (z,y) € B. Define

f2(xay)f(xay) for (xay) € o

0 otherwise.

fl(xvy) = {

All sections (f1)z,(f1)¥ are continuous, the sections (f;), are Ty-equicontinuous
and the superposition h(z) = fi(z, g(z)) is not a derivative.

Example. Let I, = [a,,b,], n = 1,2,..., be a sequence of intervals such that
a3 < by <az <by<---—0andO0 is a density point of the set R\ U2, I,. For

n=1
each n = 1,2,... there exists a closed interval J, C (an,b,). There is a function
f :R? — [0, 1] continuous at each point (z,y) # (0,0) such that

0 if ze R\UZ, I,
flz,y)=4 0 if z€ Iandy<1/2n, n=1,2,...,

1 fzedJoandy>21/n, n=1,2,....

Then the sections fz(z € R) are not Ty-equicontinuous, but for every continuous
function g : I — R, where I is an interval, the function k(z) = f(z,g(z)) is a
derivative.
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