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 Sets which are Well-Distributed and Invariant Relative

 to All Isometry Invariant Total Extensions of Lebesgue
 Measure

 1 Introduction

 In this paper we discuss subsets A of the real line having the property

 fi(A i)J) = a (1)

 for any interval J of the real line, where 0 < a < 1 and fi is an isometry-
 invariant extension of the usual Lebesgue measure A on the real line. In [18],
 Simoson considers the notion of a set having this property, but with /z re-
 placed by the Lebesgue outer measure A*. Simoson calls such a set a comb ,
 and goes on to show that no comb exists. The purpose of this paper is to
 show that such sets do exist if the outer measure is replaced by suitable ex-
 tensions of the Lebesgue measure. In particular, for any aÇ (0,1), there are
 sets A , which we shall call a-shadings of R, or combs of shade a, which have
 the property that for any finitely-additive isometry invariant extension ļi
 of A to 2r, one has

 fi(A D E) = a A (E),

 for any Lebesgue measurable set E. In fact, many different types of such sets
 are shown to exist, some having appeared in the literature as examples of
 non-Lebesgue measurable sets. For instance, one of the classic examples of a
 non-measurable set is discussed by Haimos [6], and many of the sets in this
 paper are generalizations of this set. Another set is due to Sierpiński [16],
 which was shown by Hewitt and Stromberg [8] to satisfy A* {A fi J) > |A( J),
 for intervals J C R. Other results concerning some of these sets have been
 of the form A*(A H J) = A (J), and the reader is referred to Pu [13] and
 Simoson [19]. The notion of an a-shading will then be generalized to that of
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 an /-shading, where / is any continuous function mapping R into the closed
 unit interval [0, 1], and these sets will also be shown to exist.

 We consider sets having property (1) to be "well-distributed" in the sense
 of W. Rudin [14], who used the term to describe certain Lebesgue measurable
 sets A of reals having the property

 0 < A(An V) < A(V)

 for every nonempty open set V C [0, 1]. The use of the term "shade" is a
 heuristic one, which is suggested by property (1) and the expression "shades
 of grey", where we can consider a set to be black if a = 1, white if a = 0,
 and grey if 0 < a < 1. What makes these sets especially interesting is that
 the parameter a associated with the shade does not depend on the particular
 extension of the Lebesgue measure (so long as it is an isometry invariant total
 or universal extension of A, i.e., an extension to the entire power set of R),
 so such sets have a certain invariance property. The Soviet mathematician
 A.B. Harazishvili has done extensive investigation into countably-additive
 extensions of Lebesgue measure, and invariance relative to such measures.
 While most of this paper concerns itself with finitely-additive extensions, we
 will discuss some relations to invariance in countably-additive extensions.

 We shall construct several types of shadings, including shadings that have
 the "Bernstein property", where the set and its complement intersect every
 uncountable closed subset of R. We will also explore some other interesting
 properties of these sets, and suggest some problems for future research.

 2 Notation

 In what follows, Z will denote the set of integers, N the set of positive
 integers, R the real numbers, Q the rationals in R, H the irrationals in R. We
 let A and A* denote the Lebesgue measure and outer measure, respectively.
 For a set X, 2X denotes the power set of X, that is, the set of subsets of X.
 We denote by A4 the set of all finitely-additive extensions of A to 2®" that are
 isometry invariant, that is, if /x £ A4, then fi(A) = f¿(B) whenever A and B
 are isometric. These measures are known to exist as a consequence of the
 Hahn-Banach theorem (see, for example, [12]). Since so much of what we do
 in this paper relies on the properties of measures on disjoint unions of sets,
 we use the symbol (+| to emphasize disjoint unions, that is, X Ö Y denotes the
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 set X 'J Y, where X H Y = 0. The complement of a set X C R is denoted
 by Xe. The symmetric difference of two sets X and Y is denoted by X A Y .
 For two sets X and Y , we write X = Y if card (X A7) < 2N°.

 For X C R, Y C R, and t € R, we define X + t, X + Y, and tX as
 follows:

 X -(- 1 = {¡t -| - 1 X £ X},

 tX = {fcr : X € -iV},

 X + Y = {x + y:xeX,y € F}.
 If S C R, we denote by Xs the usual characteristic function of S .
 We will have occasion to make use of the binary, or base-2 expansion of

 real numbers. For x € [0, 1] we shall write

 X = (.£1X2X3 • ' O2

 when
 OO

 * =

 t=i

 where each X,- is either 0 or 1.

 3 Definition and Existence of Shadings

 We start by stating two well known facts that can be found in [6, p.69].

 Lemma 3.1 If h 6 H, then the set hZ + Z is dense in R.

 Lemma 3.2 For h G H, the relation ~ given by

 x~y&x-yehZ + Z

 is an equivalence relation.

 Definition 3.3 The above equivalence relation partitions R into distinct
 equivalence classes, so by the axiom of choice we can choose one element 7
 from each such class to form a set T. For each h Ç H, we let S{h) denote
 the class of all the different index sets that can be so constructed. The

 equivalence class containing 7 is 7 + hZ + Z and we have

 R = |+ļ (7 + ÄZ + Z).
 7€r
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 Definition 3.4 Let T G £{h). For M C Z, we define

 K(h,T;M)= |+ļ (7 + hM + Z) = T + hM + Z.
 -ř€r

 We will abbreviate this to K(M) when h and T G £{h) are fixed.
 For a G N, b G Z, we define

 Matb = o Z -ļ- b

 and

 /ra,6(/í,r) = A'(ft,r;Ma,fc).

 For /1 and T fixed, we denote the latter by Ka,b-

 We note some simple, yet fundamental properties of the sets Ka¿ in the
 following theorem, the proof of which is omitted.

 Theorem 3.5 Let h and T £ £(h) be fixed. The following properties are
 satisfied:

 1) K{ Z) = R,

 2) K(Mi tì Mí) = K{MX) Ö K(M2),

 3) Ma<b = M0i6m0da, V a G N, b € Z,

 4) li)o<6<o M0i6+c = Z, V a G N, c G Z

 Wo<6<(i Mcdtcb = MCt0) V c, d G N,

 6) /ťa,6 + (ma + c)Ä + n = /ťai(,+c, V a G N, 6, c, m, n G Z.

 Property 6) shows that the set Kaiļ is invariant under a dense set of
 translates, namely, those in ahZ + Z (which is dense in R by lemma 3.1).
 In [7], a set which is invariant under a group G of isometries is called G-
 invariant. In [19], Simoson defines an Archimedean set to be a set A such
 that A+ r = A for densely many r G R, so we see that Ka,b is an Archimedean
 set. He then shows that if such a set A has positive Lebesgue outer measure,
 then A*(v4 D J) = A (J) for any interval J C R. In [18] he states,
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 "It would seem plausible that some exotic manipulation of the
 Cantor set or some wild invocation of the axiom of choice ought
 to yield a comb. But no such scheme exists."

 We will see, however, that all of the examples he gives of Archimedean sets
 in [19] are, in our sense, combs. In fact all of the examples of Archimedean
 sets in this paper will be seen to be combs, causing us to wonder whether or
 not every Archimedean set is necessarily a comb (see Sec. 6).

 We first show that the sets Ka%b are combs, or in our terminology, (1 /a)-
 shadings.

 Henceforth, unless we explicitly state otherwise, Ä6H and T € £(/i) are
 fixed.

 Theorem 3.6 Let fi € A4, and let a G N. Then for any interval J C R,

 fi(Ka,b n J) = -A (J), VbeZ.
 a

 Proof. Let J be any nonempty, bounded interval in R, and let 0 < e <
 Now, for each c = 1, 2, . . . , a - 1, we have that ahZ + Z + eh is dense in R,
 so we can choose rc e (0,e) fl (ahZ + Z + eh). Then /ťa i + rc = Ka,b+ci by
 property 6) of Theorem 3.5. Letting ro = 0, and applying properties 1), 2)
 and 4) of Theorem 3.5, we have

 o- 1 a- 1

 [¿I ( Kajb + rc) = (+J Ka¿+c
 c- 0 c=0

 c= 0

 = Ma,b+C
 c=0

 = K( Z) = R.

 Let J+ = J U ( J + e) and J~ = J D ( J + e). Then

 J~ C J + rc C J+, Vc = 0, 1,2, ...a - 1,

 429



 and so for each such c,

 fi(Ka<b n J) = n({Kaib n J) + rc)
 = + rc) n ( J + rc))
 = l¿(Ka,b+c H ( J -|- rc))»

 hence,
 a- 1

 a fi(Ka¿ n J) = ^2 n(Ka,b+c n ( J + rc))
 c= o

 c=0

 = rttíV. ,6+c n J+))
 c= 0

 = f(( W K.mc) n J*)
 c=0

 = /i(RflJ+)
 = A(«7) 4- £.

 Similarly, using J~ in place of J+,

 a n(Ka,b n J) > A (J) - e.

 Since e is arbitrary, it follows that

 fi(KaibnJ) = (l/a)'(J).

 □

 We note that the only isometry invariance of y. required in the above
 proof was the translation i.e., that /i( A ) = n(A -f t) for all ¿GR.

 The above theorem motivates the following definition.

 Definition 3.7 If a E [0, 1] and fi(A D J) = a A (J) for all // 6 A4 and
 all bounded intervals J C R, then we call A an a-shading of R, and write
 sh(v4) = a.
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 Using the finite- additivi ty of /¿, it is easy then to construct combs of any
 rational shade. If p, q € N with p < q, then for

 A= Ó*,*,
 t=l

 where {61, 62, . . . , bp} is any set of distinct numbers in {0, 1, ... q - 1}, we have
 that sh(A) = p/q. The obvious question is then, can combs be constructed
 having irrational shade? The affirmative answer to this question follows as
 a corollary to the next simple, yet fundamental theorem, which asserts that
 despite the fact that fi is only finitely- additive, the shades of our combs are
 countably- additive under ļi.

 Theorem 3.8 If is a sequence in (0, 1) such that
 OO

 = 1,
 «= 1

 and {Ajjgļ is a pairwise disjoint sequence of combs such that

 sh(Aj) = Xi, for each i € N,

 then for any M C N, the set

 Am '•= (¿I Ai
 «€A/

 is a comb, and
 s1I(J4M) = x*-

 i€M

 Proof. Without loss of generality, we may assume that |+)¿6jv Ai = R. We let

 Xjvf = Xj,
 ieM

 and let A = Am and B = R ' Am- Let J be any bounded nonempty interval
 in R, let e > 0, and choose n G N such that

 ^ X} €.
 iÇM, t<n
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 Then we have

 fi(A n J) > fi( |+j Ai n J)
 t€A/,i<n

 = E " MJ)
 t*€À/,»<n

 > (xM - e)A( J),

 and since e was arbitrary,

 fi(A C'J)>xm X(J). (2)

 Similarly,
 fi(BC'J) > (1 - xa/)A(J). (3)

 But if equality does not hold in either (2) or (3), then

 A (J) = n{A n J) + n(B nj)
 > XM A( J) + (1 - XM)^(J)
 = A(J),

 which is a contradiction. Hence

 H(AM fi J) = xm A (J),

 which proves the theorem. □

 Corollary 3.9 For each x € (0, 1), there exists a comb with shade x.

 Proof. Let {A,}^ be a sequence of disjoint combs such that sh(A)) = 2~*
 for each î Ç N (for example, we can take Ai = /ť2t,2«-i- 1)- We write x as a
 binary expansion,

 OO

 X = *«2~' = (-*1*2*3 * * -)2,
 ¿=1

 let M = {iE 'N : Zi = 1},
 Xi = 2"',

 and apply Theorem 3.8. The comb A = 1+1, ejv/ Ai has shade x. □
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 Remark 3.10 It is clear that the manipulation of the combs Ka< j basically
 involves exploiting the properties of the underlying sets of integers Ma¿.
 Intuitively, we think of Ma<ķ as being "every a'th integer, beginning with 6,"
 and splitting Z into a "copies", i.e. translates, of Ma,b (see property (4) of
 Theorem 3.5). Thus each translate occupies a fraction 1/a of the entire set
 of integers. This is the simplest example of a set of integers with so-called
 natural or asymptotic density, which is usually defined (for positive integers)
 by

 w = i sit n **(•'). n «=1

 if the limit exists (see, for example, [11]). One might expect the shade of
 K(M) to coincide with the density of M in Z, if it exists, but this connection
 is by no means obvious. For now, we simply note that each n € M. induces
 a finitely-additive isometry invariant measure vß on 2Z as follows:

 uß{M) := p(K(M) D J),

 where I is any unit interval in R. These measures coincide with the mea-
 sure on the Carathéodory extension T>ß of T> 0 in the well-known paper of
 R.C. Buck (cf. [1, p.562]), where T> 0 is the algebra of subsets of Z gener-
 ated by all the finite subsets of Z and all subsets of Z that are arithmetic
 progressions. In that paper, it is shown that the quasi-progressions

 {[an + ß]:n € Z},

 where a > 1 is irrational and [ ] denotes the greatest integer function, are
 not in the class Vfi, but have density (1/a). One can readily show that
 this number is also the vß -measure of such a quasi-progression, and so these
 measures agree with the density on at least certain classes of subsets of Z.

 Although Buck's measures were defined on N, all of the basic results go
 through for integers. However, one problem that comes up in our context
 is the following: What is sh(Ä"(N)) ? It is easy to verify that if M C Z is
 finite, then sh (K(M)) = 0, and so we have

 sh(/C(- N)) + sh(K({0})) + sh(/ť(N)) = sh(/ť(Z)) = 1,

 so that

 sh(/ť(-N)) = 1 -sh(/C(N)).
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 Now, since we are dealing with isometry invariant measures, and since - N
 is isometric to N, it is tempting to conclude that

 •h(tf(-N)) = .h(łf(N)) = Ì. (4)
 But this is not at all clear, since K(- N) need not be isometric to -ß'(N).
 However, it can be shown that T € S{h) can be chosen such that Y is "almost
 symmetric", in fact, such that

 = (5)

 The details are rather tedious, but it is basically a matter of starting with
 any To 6 £(/i), and then for each 7 6 To (except those equivalent to an
 element of the right hand side of (5)), replace with -7 the element of To
 which is equivalent to -7, to form a new index set Y G S {h). For such T,
 one can then show that (4) is satisfied.

 We conclude this section with an easy and obvious theorem, which al-
 lows us to pass from intervals to Lebesgue measurable sets. We include the
 proof, since we are dealing with countable collections of intervals, but an only
 finitely-additive measure.

 Theorem 3.11 Let a G (0,1) and let A be an a-shading of R. Then for
 any Lebesgue measurable set E C R,

 fi(A D E) = a '{E).

 Thus, A "combs" not only intervals, but all Lebesgue measurable sets.

 Proof. Let E be any Lebesgue measurable set having finite Lebesgue measure.
 Let e > 0 and choose { J,}?^ to be a sequence of intervals in R such that
 E C U^i Ji and ^(«^ť) < X(E) + e. Let n be a positive integer such that
 A(J.) < £. Then we have

 OO

 fi(A n E) < //(U(^nj,))
 i=l

 < + M Ū (^4 n Ji))
 t=l t'=7l+l
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 < o ¿A«) + ž A(Ji)
 t'=l t=n+l
 oo oo

 = a S>(J,) + (i - <*) E A«)
 1=1 t=n+l

 < a(Á(E) + e) + (1 - a)e
 = a A (E) + e.

 It follows that

 ¡i{A n E)<a A (E). (6)

 By considering the (1 - a)-shading, Ac, as in the previous theorem, we also
 have that

 ß(Ac n E) < (1 - a)X(E). (7)

 Hence, if either equality in (6) or (7) fails, then as in Theorem 3.8, we get a
 contradiction. The theorem is thus proved for A (E) < oo. It follows easily
 for the infinite case, for if rj > 0, we can choose N > 0 sufficiently large that
 A([- JV, N] fi E) > ri/a, so that

 n(A n E)> fi(A n [-N, N]nE) = a A ([-N, N]nE)> r¡,

 that is, fi(A D E) = oo. □

 4 Some Examples of Shadings
 In section 3 we saw one type of a comb, which is based on disjoint unions of
 combs of the type Ka,b- The combs Ka¿ are, in turn, formed from countable
 unions of translates of the index set T. The set T is a classic example of a
 Lebesgue nonmeasurable set, as seen in [6, p.69], where it is then used to
 construct A^o, which is shown to have the property

 D E) = A(£),

 for every Lebesgue measurable set E.
 It turns out that other well-known examples of Lebesgue nonmeasurable

 sets are, in fact, combs.
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 Example 4.1 In [16], Sierpiński constructs a set C of irrationals, such that,
 if X + y is rational, then exactly one of {x, 3/} is in C. In [8], it is shown that
 if J C R is an interval, then

 V(CnJ)>ÌA(J). (8)
 Using essentially the same method as implemented in [8], it can easily be
 shown that

 „(C n J) = ÌA(J), (9)
 for any fi € M.. We omit the details here, merely noting that the inequality
 in (8) comes from the subadditivity of A*, which is replaced by equality in
 (9), due to the finite-additivity of fi. Also, in this example, it is not enough
 for ļi to be merely translation invariant.

 The above example is also found in [19] as an example of an Archimedean
 set (a dense set of translators is Q). The following two examples are also
 found in [19].

 Example 4.2 Let V denote a Hamel basis for R over the rationals Q. Fix
 vq G V (we will assume vq > 0) and let

 W = r«u« : r« e Q> v¡ € V, V,- 7É üo, n G n| .
 Then

 R = l±j(W + ™0),
 r€Q

 and W is Archimedean, since

 W = W + rv , VreQ,u6 V ' {uo}-

 If ļi G A4, we easily have (using only translation invariance) that

 n(wr'j) = o,

 for any bounded interval J. To see this, assume that J is a bounded
 nonempty interval and that

 fi(W D J) = tX( J), for some t G (0, 1].
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 Choose k £ N such that kt > 1, and let 0 < e < ( kt - l)X(J)/vo. Choose
 {?~i , T2, . . . , rjt} to be distinct elements of Q D (0, e), and let J+ = U¿=i(«^ +
 r.uo). Then

 kt'(J) = kfi(WnJ)
 k

 = H l*((W + W o) n ( J + rťuo))
 t=l

 k

 < EM(^ + ^o)nJ+)
 t=l

 = n('ß(W + riVo)nJ+)
 t=l

 < A (J+) < A (J) + evo < ktX(J).

 This contradiction establishes the claim. We note that this example shows
 that a set of positive A* -measure can have shade zero.

 Problem 1 What can be said about n{W), where W is as in Example 4.2 ?

 Example 4.3 Let denote the set of rationals having odd denominator
 when expressed in lowest terms. We define an equivalence relation ~ on R
 by

 z ~ y x-y € Q0dd-
 From each equivalence class, choose an a and let Ba denote those members
 X from this equivalence class for which x - a is of the form p/q, where p/q
 is in lowest terms, and both p and q are odd. Let B be the union of all such
 Ba. Then B is a ^-shading of R. To verify this claim, observe that for any
 odd p and q, we have

 Bc + p/q = B.

 Let J be any bounded interval, choose e € (0, A( J)), let J+ = JU( J +£), and
 choose p and q odd such that p/q G (0, e). Then using only the translation
 invariance of //, we have that

 A (J) = n(B n J) + fi(Bc n J)
 = ļx(B n J) + n(B n ( J + p/q))
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 < 2 fi(B n J+)
 < 2 (/ i(B D J) + e)

 and similarly,
 A (J) < 2 (n{Bc n J) + e).

 The claim follows. Also, this example can easily be generalized to produce
 similar combs of any rational shade.

 The following easy lemmas will facilitate the next examples.

 Lemma 4.4 Let W be any set of reals such that card W < 2K°. Then for
 any k G N, there exist reals ri, r2, ... r* such that the sets W, W +
 ri, W + r2, ... W + rjt are pairwise disjoint. Moreover, if S is any subset of
 R with card S = 2H°, the translators rx, ... r* can be chosen from S.

 Proof. Let card S = 2N° . We observe that

 card (W-W)< (card W)(card W) < 2No,

 and choose rx 6 S ' ( W - W). Clearly then, W D ( W + ri) = 0. Next let
 Wi = W {W + T') and choose r2 G S ' (W' - Wi) and we have that the sets
 W , W + Ti and W + r-ļ are pairwise disjoint. This process can be continued
 indefinitely, proving the lemma. □

 Lemma 4.5 Let W be any set of reals such that card W < 2N°. Then for
 any fi G M. and any bounded interval J, we have

 n(wnj) = 0.

 As a corollary, it follows that if A = B, then fi(A D J) = fi(B fi J).

 Proof. Assume that ļi{W D J) = t'( J) for some t G (0, 1], choose k G N such
 that kt > 1, let 0 < e < ( kt - 1)A( J), choose rx, r2, ... r* as in the previous
 lemma and proceed as in Example 4.2. □

 In [17], Sierpiński constructs a set A of Lebesgue measure zero with the
 property that each translate of A is equal to A, except at countably many
 points (assuming the continuum hypothesis). Sets of this type are also dis-
 cussed by Erdös in [3]. In [7], Harazishvili constructs a set with similar
 properties, and this set serves as our next example.
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 Example 4.6 There exists a subset A of the line with the following proper-
 ties:

 a) card (A fi F) = card {Ac fi F) = 2H° for every closed set F with positive
 Lebesgue measure,

 b) {A + t) = A , for each t 6 R, and

 c) fa(A) = Ac, for each s 6 R,

 where fa(x) := 2 s - x is the reflection of the point x relative to s. We claim
 that A is a comb with shade |. To see this, let J be any nonempty bounded
 interval, and choose the unique s € R such that fa(J) = J. In view of
 property c), we must have

 fs(A n J) = f,(A) n MJ) = Ac n J,

 and so,

 2 n(An J) = n(AC' J) + fji(ft(An J))
 = n(A fi J) + fi(Ac D J) (by Lemma 4.5.)
 = fW,

 and our claim follows.

 Incidentally, it might be noticed that we did not use properties a) or b).
 In fact, all that is needed is a weakened form of c), wherein fs(A ) = Ac for
 densely many s € R.

 The set A from the previous example could be called "almost- Archimedean,"
 in that A = A + t for densely many t. The fact that this set of translators is
 not only dense in R, but is all of R, seems to be a trade-off - if we weaken
 the requirement that A = A + 1 for densely many i, and instead require only
 that A = A + ť, for densely many t , then we can have uncountably many
 such t. On the other hand, as was pointed out in Example 4.2, one can have
 uncountably many t such that A = A+t, if A has zero shade. The question of
 whether such restrictions are necessary we answer in the negative by means
 of the following examples.

 Example 4.7 Let a G (0, 1). We shall construct a set A with the following
 properties:
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 a) A is Archimedean,

 b) (A + t) = A for 2N° many t G R, and

 c) A has shade a.

 Using the notations of Example 4.2 it seems plausible that a subset Qa of
 the rationals might be chosen such that A := W + Qavo is a comb of positive
 shade, since R = W + Qi>o- This turns out to be the case. In fact, let

 Qa = Qn (J [m,m + a).
 m€ Z

 It is clear that A + w = A for each w G W, and that card W = 2^° . If a is
 equal to 1 ¡q for some q G N, then it is easy to see, using methods previously
 employed, that

 y(A+-vo) = R,
 k= 0 9

 whence sh(A) = l/ç. We can then easily pass to a of the form p/q, where
 p, q G N. Finally, each a G (0, 1) is contained in an arbitrarily small interval
 with rational endpoints, say a G (p/q, (p + 1)/?)) from which it is easily
 shown that sh(A) G (p/q, (p + 1 )/?), and the claim follows. We note in
 passing that this also shows that an Archimedean set can have irrational
 shade. Also, this set has the interesting property of being a nontrivial set
 such that {A + t : t G R} is only a countable family of sets.

 Example 4.8 Let A = W -'-QaVq, where Qa = Qfl(0, oo), and the notation
 is as in the previous example. Then

 a) A is Archimedean,

 b) (A + t) = A for 2N° many t G R,

 c) sh(j4) = j, and

 d) sh(A A (A + t)) = 0, VieR.

 The proof is straightforward and we omit it.
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 Remark 4.9 We note that a set A having the property

 A -ł- 1 = A , V í £ R (10)

 can also be Archimedean. In fact, let A be any set satisfying (10). We define
 the set B by

 B= U(A + <z) = A + Q.
 ?€Q

 It is easy to see that B satisfies (10), and that B + q = B, V q € Q, so B
 is Archimedean. Also, if A is comb with shade a, then so is B, since A = B
 (by Lemma 4.5).

 5 Some Properties of Shadings

 From the construction of the combs Ka¿ , we can see that if rj, r2, . . . , rn are
 rationals in (0, 1) such that r' + r2 + • • • + rn = 1, then there exist disjoint

 n

 combs C', C2, . . . , Cn such that (+) C, = R and sh(C,) = r, for each i. We
 t'=l

 simply write rt- = Pi/q, where 1 < p,- < q for each i, and q is a common
 denominator, and then consider disjoint unions of p,- combs having shade
 1/q. The question immediately arises as to whether the r, can be irrational,
 and we provide an affirmative answer with the following.

 OO

 Theorem 5.1 Given C (0,1) such that xi = there exist dis-
 1=1

 joint combs such that sh(C,) = x,- for each i G N.

 Proof. We again make use of the binary expansion of each a:,-, with the
 condition that each expansion is non-terminating, e.g., | = (.011111 .. .)2.
 We write

 CO

 Xl = (.X11X12X13 • • -)2 = X'j2"3
 j= 1
 00

 xi = (.0:21222*23 • ■ O2 = £ x2ß~3
 j = 1

 OO

 Xi = (.Xi'Xi2Xi3 ••■)2= E Xij2~3
 j= 1
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 where each x¡j = 0 or 1. For each j € N, let Lj = {(¿, j) : X{j = 1}. Since
 °o

 each Lj is a finite set, we can order U Lj by listing the elements of Li,
 j=i

 followed by those of Lļ, etc. Let L = {Lj; Lļ] • • •} denote this concatenation.
 We now construct a disjoint family of sets of integers corresponding to

 the elements of L. For each k € N, let a(k) denote the fc'th element of
 L, and let pk be the power of 2 corresponding to a(k), i.e., pk = if and
 only if a(k) G Lj. Then p' < p2 < P3 < • • • and we let Ni = MPu 0 (see
 def. 3.4). For k > 1, define Nk recursively by letting n* be the first positive
 integer not contained in N' U Nļ U • • • U Nk- 1, and letting Nk = MPk<nk.
 It is easily verified that the Nk are well-defined and that they are pairwise

 OO

 disjoint, with |+J Nk = Z. Then the combs K(Nk) are pairwise disjoint, with
 k=l

 l+J K(Nk ) = R, and sh (K(Nk)) = 1 /pk- Finally, for each fixed i € N, let
 k= 1

 C, = y{/i(JV„-,wl) : j e N,»b = 1}.

 By Theorem 3.8, it is clear that sh(C,) = and our claim is proved.
 N

 We note that the theorem is obviously true for finite sums £2 x¡ = 1» 35
 t=i

 well as sums less than one. □

 In taking the union of disjoint combs to form new combs, we see that these
 unions can be thought of as having the original disjoint combs as subcombs.
 With the exception of Example 4.1, the author has found fairly easy means
 of forming subcombs of the examples found in this paper, but it is not at all
 clear that an arbitrary comb has nontrivial subcombs, and we will have to
 leave this question unanswered for now:

 Problem 2 If A is a comb with sh(i4) = a, and b is a real number in the
 open interval (0, a), does there exist a comb B C A such that sh(jB) = b ?
 (It suffices, in view of the proof of Corollary 3.9, to find B with sh(i?) = |a.)

 The previous theorem does give us an easy way to construct examples
 of sets A and B having the property described in Problem 2. For 0 < b <
 a < 1, we need only construct disjoint combs B and C of shades b and
 a - b, respectively, and let A = B U C. We can also construct systems of
 combs having other inclusion properties. For instance, for 0 < x < we
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 can construct combs A and B each with shade | and such that A D B is a
 comb of shade x. We simply let D', Dļ, and Dz be disjoint combs of shades
 I - X, I - X, and x, respectively, and then let A = Di U Dz and B = £>2 U Dz-
 We can easily generalize this to systems of combs having any "admissible"
 intersection properties, by means of the following corollary to the previous
 theorem.

 Corollary 5.2 Let n £ N and let {0, l}n denote the set of 2n n-tuples with
 coordinates either 0 or 1. Let

 v: {0,1}" ->[0,1]

 be such that

 E w(*) = l-
 *€{0,1}"

 Then there exist combs such that the following holds. If

 x = (x1,x2,...,xn) e {0, l}n,

 let

 ¿(1) = n ¿.w.
 1=1

 where

 j,.(x' A ) - / rï®« = 1
 j,.(x' A ) - ' R ' C, if Xi = 0.

 Then L(x) has shade v(x).
 The proof is easy, and we omit it.

 We illustrate the above corollary with the following two examples.

 Example 5.3 We construct combs C',Ci,Cz with shades 2/5, 2/5, 4/5,
 respectively, such that the sets C' D C2, C' D C3, C2 fi C3, C' fi C2 D C3 are
 combs with shades 1/10, 2/5, 3/10, and 1/10, respectively.

 In the notation of the above corollary, we let n = 3 and

 u(0, 0, 0) = 1/10 v(0, 0, 1) = 1/5 u(0, 1,0) = 1/10 v(0, 1, 1) = 1/5
 ü(1,0,0) = 0 ü(1, 0,1) = 3/10 ü(1,1,0) = 0 v(l, 1, 1) = 1/10.
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 Example 5.4 Let vi, ü2, . . . , vn be reals in (0,1). Then there exist combs
 Ci» Cļ, • . . , Cn with the following "probabalistic independence" property: For
 any set M of distinct integers from {1,2,..., n},

 sh( n ci) = iu
 j€M jçM

 This follows from the previous corollary with v : {0, l}n - ► [0, 1] given by

 v(x) = n Vi, where y, = ļ [>_ v¡ * ī ¿
 We should also mention that one need not be restricted to finite collections

 of combs. Here is a denumerable collection with an independence property:

 Example 5.5 We construct a sequence of combs such that sh(C,) =
 I for each i , and such that the intersection of any n of these sets or their
 complements has shade 2-n.

 For each i, define Ni C Z by

 N, ; = y 1
 j= o

 Then JV,- is merely a block of 2,_1 integers (starting at zero), followed by a
 gap of equal size, then a block, and so on. Let C,- = K(Ni). It is easy to
 verify that these C,- have the above stated properties.

 The previous corollary and examples illustrate that in special cases, one
 can have very nice intersection properties of combs. But the general situation
 is much more complicated, in that the intersection of two arbitrary combs
 can result in most unusual sets, even if the two combs to be intersected have
 identical shade. In some cases, we are guaranteed that the intersection will
 be a comb of positive Lebesgue outer measure. In fact, if A and B are combs
 with

 sh(yl) = a 6 (0, 1), sh(i?) = 6 € (0, 1), and a + b > 1,

 then for any bounded nonempty interval J,

 fi(A fi B H J) < min (a, b)fi(J) < n(J),
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 and

 fi(AnBnJ) = fi(J) - n((Ac u Bc) n J)
 > fi(J)(a + b- 1)
 > 0,

 so that

 o < n{A n B n J) < /¿(J).

 Hence, A f~l B is a comb with positive shade, relative to //, and hence has
 positive Lebesgue outer measure. But we cannot guarantee that the measure
 ofADBDJ is independent of ¡i. And it is clear that we cannot expect that
 A D B is a comb with constant shade , as we illustrate in the next example.

 Example 5.6 Let C' and D' be combs with

 sh(Ci) = sh(.Di) = 3/4 and sh(Ci fl D') = 1/4,

 and let C2 and D2 be combs with

 sh(C2) = sh(Z}2) = 3/4 and sh(C2 fl D2) = 1/2

 (we have made use of the Corollary to Theorem 5.1). Then letting

 A = ((- oo,o] n Cļ) u ((0,oo) n c2),
 B = ((-oo,0]n/?i)u((0,oo)ni>2),

 we see that A and B are combs with shade 3/4, but that

 w uMnsn/ì-i vi Ci n Dx n J) = (1/4 )/z( J) if J c (-oo, o] w j"ļ fi(C2 n d2 n J) = (i/2)n(j) if J c (o, oo).
 Thus A Ci B is a comb whose shade is not constant on R.

 We can see that by using Theorem 5.1 and taking intersections with
 intervals, as in the above example, we can build combs whose shades are
 given by step functions. The next question is then, can we construct combs
 whose shade varies continuously, by passing to smaller and smaller intervals?
 The affirmative answer to this question is the result of the next theorem.

 445



 Theorem 5.7 Let / : R - ► [0, 1] be continuous. Then there exists a set
 F CR such that

 lim , ' = f(x), V X e R,
 ß(J(x))-*0 fi(J(x)) ,

 where J(x) denotes an interval containing x.

 Proof. For each n € N, we define a two- valued simple function

 fn: R-+{0,2"n}

 as follows. Let /o = 0 on R and for n > 1, let

 Sn = {x S R : f(x) - £ Mx) >2""),
 t'=0

 and let

 f"ix> , ( . = / 2_n if x € Sn
 f"ix> , ( . = ' 0 if x Í s„.

 It is clear that for each n,

 n

 and that £ /«'(^) ~ ^ /(^) uniformly on R as n - ► oo. We let
 «=1

 OO

 F = l+l cn n 5n,
 n=l

 where {Cn}^Ļļ is any pairwise disjoint family of combs such that sh(Cn) =
 2-n for each n G N. It can readily be shown that F has the desired properties,
 and we omit the details. □

 The continuity of / ensures that the limit need only involve intervals
 containing the point x. If / were only, say, piecewise continuous, this limit
 could differ to the left or right of a discontinuity. This motivates the following
 definition.
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 Definition 5.8 Let F C R, and Iet fi G M.. For each x G R, we define
 the upper right fi-shade sh ļ(F)(x) of F at x, and the lower right fi-shade
 sh+(F)(x) of F at x, by

 ' t. ß(F n fx, x -f h))
 sh +(F)(x) ' - t. limsup

 />-0+ »

 and
 * i * t-i' / x r u(F f][x,x + h))

 sh * ļ(F)(x) i * t-i' / x = hmmf r

 Similarly, we define the upper left fi-shade and lower left fi-shade of F at x
 by

 iE ~AF){x) = lim sup (*~M)
 /1-0+ «

 and

 « _ / jp'/ s r lšmmf . ,(i(F -i r'(x L - h,x]) 'Ą Sh. « _ (F)(*) / jp'/ s = lšmmf r . ,(i(F -i

 respectively. If these quantities do not depend on the particular fi G M, we
 call them the upper right shade sh+(F)(x) of F at x, etc. If we define the
 function Fo : R - ► [0, oo) by

 /i([o,i)nF) if x > o
 Fo(x) = < 0 if x = 0

 fi((x , OjflF) if x < 0,

 then we recognize the above four defined quantities as the so-called derivates
 of Fo, that is,

 sh+(F)(x) = D+F0(x) := lim sup ^ o+ h

 V> + / jp'/ ' r» ri ! ' i* liminf • r "ł" Fq(x}
 sÎCC^X*) V> + / jp'/ ' = D+F0(x) r» ri ! ' := liminf i* • r

 sh~(F)(x) = D~F0(x) := lim sup - - ,
 fc- o+ "

 Ú¿(F)(x) = D-Fo(x) := lim inf F°^ " f°^ ~ ^ . /i- >o+ n

 If sh+(.F)(x) = sh+ (i?)(x), then the common value may be called the right
 fi-shade sh+(F)(x) of F at x, and similarly we may define the left fi-shade
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 sh~(F)(x) of F at X. In turn, if these two quantities exist and are equal,
 we call the common value the fi-shade shti(F)(x) of F at x. Again, if these
 three quantities are independent of /z, then they may be called the right
 shade sh+(F)(a:), the left shade sh~(F)(a:), and the shade sh(F)(x) of F at
 x , respectively. These quantities are the right derivative, left derivative, and
 derivative, respectively, of Fo at x. Well known facts from analysis guarantee
 us that if F is any subset of R, then our function F0 is nondecreasing, so
 Fo is differentiate almost everywhere. Thus the shade of F is defined at
 almost all points of R. If F is Lebesgue measurable, then the upper and
 lower shades of F can take only the values 0 or 1 (cf. [18]).

 We make several remarks.

 Remark 5.9 We note that our use of the term "shade of A " prior to the
 last definition has been consistent, since the shades of our combs have been
 constant functions, with the exception of Example 5.6. In that example, the
 shade of A D B is not defined at x - 0, however, the left and right shades
 are:

 sh+(/l n B),i) = { 1^2 «Iti

 .h-Mr>B)(x) = ļ$
 Remark 5.10 We can restate Theorem 5.7 as follows:

 Given a continuous function / : R - > [0, 1], there exists FcR such that
 sh(F) = /.

 Remark 5.11 It is easy to see that the above is also true for piecewise
 continuous functions, so long as either f(x+ ) = f(x) or f(x~) = f(x) at
 each x.

 Remark 5.12 It is not difficult to see that since sh^(F) is always a Lebesgue
 measurable function, it follows that for any Lebesgue measurable set E, we
 have

 n{E n F) = I sh JF) dX.
 JE

 This generalizes Theorem 3.11.
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 Remark 5.13 Results analagous to Theorem 5.1 and its corollary remain
 true with shades that are piecewise continuous functions. An affirmative
 answer to Problem 2 would imply its truth with shades a and b replaced by
 piecewise continuous functions.

 6 Archimedean Sets

 As was remarked earlier, all of the Archimedean sets mentioned thus far have
 been combs of constant shade. We shall see that if an Archimedean set is a

 shading, then its shade is constant. But is every Archimedean set a shading?
 We only partially answer this question.

 Theorem 6.1 Let fi G A4 and let A be an Archimedean set. Then for any
 bounded nonempty interval J, the quantity

 fi(A D J)
 KJ)

 is a constant independent of J. Hence, shM(A) exists and is constant on R.

 Proof. We only sketch the proof, since it is similar to that of Theorem 3.6.
 Let t(A) denote the set of Archimedean translators of A, that is,

 t(A ) = {< 6 R: ,4 + i = A}.

 First, assume that Ji and J 2 are two nonempty bounded intervals of equal
 length. Then it is easy to see that ļ i{A fi Ji) = fi(A D J2), using the fact
 that t(A) is dense in R, and the translation invariance of fi. Therefore the
 theorem is true for intervals of unit length. From here it is easy to pass to
 intervals of rational length, and then using a limiting argument, to intervals
 of any finite length. □

 What we have not shown, of course, is that the constant referred to in the
 statement of the above theorem is independent of the choice of fi, and we
 must leave this unsolved:

 Problem 3 Is every Archimedean set a shading?
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 It is easy to see that for an Archimedean set A , the set of Archimedean
 translators t(A ) is an additive group (in [15] Archimedean sets are mentioned
 as special cases of locally compact abelian groups which have a character
 whose kernel is dense and not Haar measurable). One can then define an
 equivalence relation on R by means of

 X ~ y X - y G T(A).

 We can write

 R = l+J A 7,

 for some index set T C R, where A7 = 7 + t(y4) for each 7 G I' We see that
 each Ay is Archimedean with t(A 7) = t(A), and so for any T' C I' the set

 r + r(A) = l+J A,
 ier>

 is Archimedean. We also have that

 A= y A,, (a)
 -rereis

 and

 a'= y A,.

 An elementary group-theoretic argument shows that T cannot be finite, and
 we conclude that each A 7 also has zero shade (for any ļi Ç. Ai).

 Assume that A is Archimedean and that sh/x(>l) = a G (0, 1). Given the
 facts of the preceeding paragraph, especially (11), it is not unreasonable to
 conjecture, at least for a fixed fi G Aí, that for b € (0, a), some subset Tj of
 Tni might be chosen such that

 shM( l+l Ay) = b.
 7€rfc

 In other words, we have another problem:

 Problem 4 For a fixed fi G A4, do Archimedean sets necessarily have every
 (or even any) //-shade of subcomb?
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 7 Shadings in Other Extensions of A

 In [7, p. 11 7], Harazishvili gives an example of a set A C R which has the
 property

 *(/» ni). ÌA(£) (12)
 for any Lebesgue measurable set £cR, where v is any isometry invariant
 extension of A containing A in its domain of definition (see Example 4.6). But
 he points out that extensions u which are only translation invariant need not
 satisfy (12). In [6, p.71], it is pointed out that one can extend A to measures,
 though not necessarily translation invariant, on <x-algebras of the form

 {(¿¡a D A) U (E2 D i4c) : Eļ,E2 are Lebesgue measurable},

 where A is as above, by defining v by means of

 v({Ex D A) U (Ei n Ac)) = o A(£x) -I- b A (E2), (13)

 where a and b are any two numbers in [0, 1] for which a + b = 1. It is clear,
 however, that such extensions cannot be further extended to finitely-additive
 isometry invariant measures on 2R unless a = b = Ì.

 Many translation invariant extensions of A are known, most notably those
 due to Kakutani and Oxtoby [5], who obtained extensions to very large <r-
 algebras. (See [2] for an extensive bibliography on this subject.)

 While the methods used in [5] are fairly advanced, a relatively easy
 method, similar to the method used to obtain (13), can be used to create
 non-trivial translation invariant extensions of A. Let us say that a set A has
 the Bernstein property if

 A fi F ^ 0 / Ac D F for every uncountable closed FcR (14)

 (cf. [12, Problem 2.4.5]). In Theorem 2.8 of [12], it is claimed that if A satisfies
 this property, then one can define a translation invariant extension v of A on
 the <r-algebra Są generated by A and the Lebesgue measurable subsets of R
 by setting

 «/((£, n A) U (E2 n Ac)) = i(A(^) + A (E2)),

 where E' and E2 are Lebesgue measurable. The problem with this is that
 for a measure to be translation invariant, the cr-algebra on which it is defined
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 must also be translation invariant, and this need not be the case with Sa, as
 we shall see. In private communications, Professor Mukherjea has pointed
 out that the claim of the theorem is at least true for all translations of

 sets which do belong to Sa- While this author agrees, it turns out that
 we can construct A to be such that none of the members of Sa (except the
 Lebesgue measurable ones) belong to Sa under non-trivial translation. Before
 proceeding to verify these claims, we point out that the theorem in [12] can be
 repaired by taking A to be the set in Example 4.6, since property b) in that
 example guarantees that the <r-algebra so induced is translation invariant
 (for all translators). It is not claimed that this A satisfies the Bernstein
 property, but only the weaker property that both A and Ac have nonempty
 intersection with every closed set of positive Lebesgue measure. But the
 stronger property is not necessary for constructing the extension of A. In
 fact, if it were not for this restriction, our counterexample would be very
 easy indeed, since all combs of positive shade necessarily have uncountable
 intersection with every set of positive Lebesgue measure.

 To verify the claims above, we take the trouble to include a very general
 and useful theorem, which is interesting in its own right. It was inspired by
 the construction of Example 4.6 in [7].

 Theorem 7.1 Let ~ denote an equivalence relation on a set E, where E
 has cardinality 2No , and each equivalence class is countable. For x € E, let
 Sx denote the equivalence class containing x. Let Cl denote the least ordinal
 number having cardinality 2N°, and let $ denote any family of subsets of E
 such that

 U f = E,
 Fe<*

 card ($) = 2k°,
 and where

 card ( F ) = 2**°, for each F6$.

 Finally, let
 {Fa}a<il

 denote a transfinite sequence of all the elements of $, where each element is
 indexed 2N° many times, that is,

 card {a < Q : Fa = F} = 2H°, for each F G $.
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 Then there exists a family
 {®o}a<fl

 such that

 a) ea G Fa, Va € [0,0),

 b) S,. n S,r = t, V a, ß € [0, fi), a jí ß, and

 c) £ = U,<nV

 Proof. Let {xß : ß < íí} be a well ordering of E and put ea = x^, where

 7 = min{£ : xť G Fa ' (J Seß}.
 0<ot

 Then it is easy to verify, using transfinite induction, that these ea satisfy the
 requirements of the theorem. □

 Corollary 7.2 An index set T G S{h) (see 3.3) can be chosen such that

 card (r n F) = 2n°,

 for each closed set F with card (F) = 21*0.

 Proof. Let E = R, and let

 $ = {F CR: Fis closed and card F = 2H°}.

 Then the preceeding theorem applies. □

 We now construct the example which refutes the claim in [12].

 Example 7.3 For any h G H, we use the above corollary to choose T E S (h)
 such that r intersects every uncountable closed subset of R. The set T + t
 will also have this property, for any < £ R, and it follows that Ka^{h, T)
 has the Bernstein property, for any a, 6 G N, a > 1. Let / : R - ► (|, |) be
 continuous and strictly increasing, and let A be an /-shading constructed
 using the disjoint combs
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 as a "basis" (see Def. 3.4 and Theorem 5.7). Then A has the Bernstein
 property, since

 r C K2,o(h,T) C A,
 and

 r + 3Ac iUAW) c ac.

 Let Sa denote the cr-algebra

 {(Ei flA)U (E2 D Ac) : Ei, E2 are Lebesgue measurable}.

 We omit the details here, but it is not very difficult to verify that the as-
 sumption

 {{El n A) u {e2 n Ac )) + 1 = {e3 n A) u {e4 n A%

 for some Lebesgue measurable Ei,E2,E3, E4 and some í G R, leads to a
 contradiction.

 Remark 7.4 If we let A = K3ļ0(h, T), where T is as above, then no contra-
 diction arises in defining v as in (12), if we observe the restriction that the
 translators are from the set 3hZ + Z. However, all of the translators hZ + Z
 are are also invariant, and if they are to be included, then the cr-algebra
 includes all of the invariant sets of the form

 (Ao n i?o) u {Ai n Ei) u {Aļ n e2),

 where Ao = A, Ai = Ao -'- h , A2 = Ao + 2 h, and we must have

 v{{A0 n Eo) U (Ai n El) U {A2 n E2)) = ļ(A(£0) + A {El) + '{E2)). (15)

 Invariance of this type, where the set of invariant isometries form a subgroup
 G of all isometries on the space, is referred to in [7] as G-invariance and
 measures such as u in (15) are called G -measures.

 Remark 7.5 The above construction shows how easy it is to obtain sets
 which have the Bernstein property. In fact, for any piecewise continuous
 function / : R - » [0, 1], one can construct an /-shading with the Bernstein
 property. This might lead one to wonder whether Theorem 7.1 and its corol-
 lary are really necessary to achieve this property. That they are necessary can
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 be seen1 by noting that there exists a T containing a perfect set ([10]). Also,
 sets like the set A of Example 4.6 can fail to have the Bernstein property,
 since there exists a Hamel basis containing a perfect set ([4], [9, pp.220-221]).

 Remark 7.6 Sets with the properties of the set A in Example 4.6 can cer-
 tainly be constructed that do have the Bernstein property, and had this been
 required rather than property a), the author of [7] could have included it at
 no extra cost. We sketch the construction of this set as an application of
 Theorem 7.1, and to give the reader a better understanding of the structure
 of the set in Example 4.6 to which we have made so many references. We do
 this by means of the following corollary to Theorem 7.1.

 Corollary 7.7 A Hamel basis V for R over Q exists for which

 card (VDF) = 2N°,

 for each closed set F with card ( F ) = 2H°.

 Proof. Let {i>a}a<n be any Hamel basis for R over Q. For each a < ii, let
 Ta denote the span of {vß}p<a, that is,

 Ta = : <?, e Q ,ßi < a,n G n| ,

 and let Ua = Ta+ 1 ' Ta. We note that Ta is countable for each a < ii, so that
 U a is as well, and that {t/a}a<n is a pairwise disjoint family of sets whose
 union is R and thereby defines an equivalence relation on R:

 X ~ y {x,y} C Uc ,i for some a < ii.

 Let E = R, let

 $ = {F C R : F is closed and card F = 2N°},

 and apply the preceeding theorem. It is easy to verify that the set { ea :
 a < lì} thusly obtained forms a new Hamel basis V with the properties we
 require. □

 1 - thanks to the wisdom of the anonymous referees, to whom I am indebted for spotting
 many imperfections in the original manuscript.
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 We note that in [7], a Hamel basis V with the properties given above is
 obtained directly, without the intermediate Hamel basis, by methods similar
 to the proof of Theorem 7.1. The set A is now constructed eis follows. Let
 the Hamel basis V obtained above have a well-ordering, say ■<, which is
 order-isomorphic to Si. For a given x G R, we have a unique expansion

 n(*)

 x = £ę(x,i)v(x,i),
 1=1

 where q(x,i) G Q and v(x,i) G V for each i, with

 v(x, 1) -< v(x,2) ■< ••• -< v(x,n(x)).

 We then let

 A = {x G R : q(x,n(x)) > 0}.

 The details of verifying the alleged properties of A are given in [7] and we
 omit them.

 Remark 7.8 Given that property (12) holds for every v G M, it would be of
 interest to know if there exists a ļi which is a translation invariant extension
 of A to 2r, for which fi(A fi E) ^ | '(E ), for some Lebesgue measurable set
 E. We generalize this question as follows:

 Problem 5 Does there exist an a-shading A , a translation invariant ex-
 tension ß of A to 2r, and a bounded nonempty interval J C R such that
 fi(J f)A)^a A (J)? (If so, the shade of A must rely on invariance with
 respect to reflection about a point, as does, Example 4.6.)

 8 Conclusion

 The facts and examples in this paper merely scratch the surface. The inter-
 ested reader will no doubt see many problems that the author has omitted.
 For instance, we know that for a set A of constant shade,

 T(A) := {sh(A n {A + *)) : t G R}

 must be contained in the interval

 U a '•= [max(0, 2 sh(i4) - l),sh(A)].
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 Can A be such that T(A) = U a*- In view of Remark 4.9, one can see
 that T(A) can be a singleton, while Example 4.7 shows that T(A) can be
 countable and dense in U a- Can T(A) be finite but contain more than one
 element? The author can show that it is easy to construct examples of A
 which are countable unions of Archimedean sets, for which T (A) contains a
 sequence of shades {.s,}^ which approaches the shade of A. Can such values
 Si be prescribed? It is likely that many results from the theory of uniformly-
 distributed and well-distributed sequences of integers can be brought to bear
 on such questions, at least for certain Archimedean sets and their countable
 unions (in view of Remark 3.10).

 We have not even mentioned shadings in Rn for n > 1. Clearly, the
 definition of shading would have to be changed for n > 3, but one can consider
 "G- shadings" for a group G of isometries on Rn. But R2 is interesting
 enough. Let A and ļi now represent the Lebesgue measure in R2 and any
 isometry invariant total extension of A to the power set of R2. It is obvious
 that if A and B are any of the constant shadings of the line presented in this
 paper, then

 fi(E n (Ax B)) = sh(A)sh(B)'(E). (16)

 But it is only obvious because we know how such sets are constructed, and so
 the same basic manipulations (translations, etc.) can be performed in R2 to
 verify equation (16). But if A and B are any two arbitrary combs of constant
 shade in R, it is not at all obvious that their product is a comb of constant
 shade in R2 (although it seems likely).

 Also, can a subset D C R2 be constructed for which every line in R2
 intersects D to form a constant shading of R?

 Another interesting problem would be to see if shadings A of R can be
 created with arbitrary constant shade, which satisfy the Sierpiński property

 A = A -{- 1) V ť € R.

 We could go on, but will stop here, hoping that this article might spark
 some interest in what are, in this author's opinion at least, very interesting
 and beautiful sets.
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