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THE SETS WHERE A FUNCTION HAS
INFINITE ONE-SIDED DERIVATIVES

In paper [1] Codyks proved following theorem:

Theorem. Let F; and F; be disjoint subsets of the set of all real numbers.
There exists a function f defined on the set of all real numbers such that F; =

{z: f'(z) = +00} and E; = {z : f'(z) = —oo} if and only if
(i) E; and E, are of type F,s and of measure zero, and

(ii) There exists disjoint sets F; and F, of type F, such that E; C F; and
E, C F.

In the present paper we consider the problem: Is analogus theorem for left
(right) - hand derivative of any finite real function true? It turns out that it is not
so. We prove that, for any disjoint sets F; FE, of measure zero there exists a function
f such that E; = {z : f'(z) = +o0} and E; = {z : f.(z) = —oo}. Therefore,
exists a function for which the sets {z : f’(z) = +o0} and {z : f.(z) = —oo} are
not-Borel.

We shall apply the following notations:

R - the set of all real numbers;
R\ A - the complement of the set A;

A~ At - the set of all accumulation points of the set A from the left, from
the right;

F (2), f~(x) - the upper left-hand, lower left-hand Dini derivatives of a func-
tion f at point z;

m(A) - the Lebesgue measure of a set A;
X4 - the characteristic function of the set A;

fL(z) - the left-hand derivatives of the function f at the point z.
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Theorem 1. Let Ay C R, A; C R, A; N A; = 0§ and m(4;) = m(A;) = 0.
Then there exists function f : R — R such that A; = {z: f'(z) = +00}A; = {z:
f.(z) = —oo}, (ATUAZ)\(A1UA2) = {z : f’(z) does not exist, finite or infinite},
R\ (AT UALUAZUA,) ={z: f'(z) # too}.

Proof. A7 and A; are closed from the left. Therefore A7 € G5 and A; €
Gs. Denote by G}, G% the sets of type Gs such that m(G}) = m(G3) = 0 and
A; C G, A; C G;. Let Gy = A{ NG, G2 = A7 N G5. Then m(G,) = m(G;) =
0, Gi€Gs, G € Gsand A;N A7 C G, C AT, A;NA; CG, C A7.

Let us denote by hq, h; the continuous, non-decreasing, and bounded functions
such that Ay : R — R, hi(z) = +oo for ¢ € G, hi(z) # +oo for z € R\
G1, hi(z) > 0 for all z and hy; : R — R, hi(z) = +oo for z € G, hi(z) # +o0
for z € R\ G3, ha(z) > 0 for all z (see Zahorski [3]).

Let fi: R — R and f;: R — R be defined by

hi(z) + xa,(z) for z € R\ A;
fi(z) =
0 for z€ A,
and
ho(z) + xa,(x) for z € R\ A,
fa(z) =
0 for z € A

We have fi(z) >0 on R\ Az and f5(z) >0 on R\ A;.
We show that f|_(z) = +o0o for ¢ € A;. Let 29 € A; and ¢ < zo. Then
fi(zo) = hi(zo) + 1 (since zo € A;) and fi(z) € [0, hy(z) + 1]. Hence

fi(zo) = fi(e)  Pa(2o) — ha(z)

Tg—T - Tg—T

Thus f]_(zo) = 400 for z9 € A1 N A] (since A;NAT C G1). If zo € A1 N A7, then
there exists a § > 0 such that (zo — §,z0) N A; = 0. Let z € (zo — 6,20). Then
fi(z) € [0, hy(z)]. Hence

fi(zo) = fi(z) > hi(zo) +1—-hi(z) 1

To—T To—T T“zo—1T

Thus f{_(zo) = +oo_ for z € A,;.

We prove that f; (z) < 0 for ¢ € A;. Let zo € A;. Then fi(zo) = 0 and
fi(z) > 0 for each z € R. So f (zo) < 0. Analogously we obtain that f;_(z) =
+oo for z € Az and f, (z) <0 for z € A;.
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Let f = f; — f. We show that f’(z) = 400 for ¢ € A; and f/(z) = —
for ¢ € A;. Let 2o € A;. Then we have i‘(zo) = fi_(z0) — f; (z0) = +00. Let
To € A;. Then we have f (z0) = f; (o) — fo_(z0) = —o00.

We prove that (A7 UAZ)\ (A1UA;) = {z: f.(z) does not exist, finite or infi-
nite}. First (A7 U A7)\ (41 U Az) = By U B, U B3 where By = (A7 \ A7)\ A7 U
Az), 32 = (A; \Al-) \ (A1 U Az) and Ba = (Al_ N A2_) \ (Al U Ag) Let To € Bl.
Then zo € A; U Ay, o € A7 and zo € A;. Since h, is continuous and increasing,
it follows that there exists a § > 0 such that hy(z) > hy(zo) — } for z € (zo — 6, x0)
and (zo — 8, z9) N Az = 0. Clearly (zo — 6,z0) N A1 # 0. Let y € (zo — 6, 0) N A;.
Then fi(zo) = h1(z0), f1(y) = h1(y) + 1, fa(zo) = h2(x0) and fo(y) = 0. Hence

f(zo) = £(y) _ ha(zo) — h1(y) — 5 — 3 — ha(z0)
To— < To— T
Let t € (zo — 8, o) \ A1. (This is possible since m(A;) = 0.) Since t € A,, we have
fl(t) - hl(t) Then

f(zo) = f(1) _ M(%o) = m(t) _ ha(z0) — ha(t) _ B (zo) — h)(zo)

— —oo if y 7 .

Tog—1 To—1 To—1
# —oo if t /7 zo.

(Since zo € Az, o € G2 and hence h(zo) # +00.) Analogously we obtain that
f'(z) does not exist, finite or infinite on B;. Let o € Bs. Since h; and h; are
continuous and increasing, there exists a § > 0 such that (zo — 8,z9) N A; #
0, ((l!o— 6, .‘L‘o) N Ag # w, To ¢ Al UA2 and hl(l‘) > hl(wo) - %, hg(l‘) > hg(l‘o) - %
for ¢ € (zo — 6,20). Let y € (z0 — 6,20) N A; and t € (zo — 6,z0) N A2. Then
fi(zo) = h1(zo), f2(zo) = ha(wo), f1(y) = M(y) +1, faly) =0, fi(t) = 0 and
f2(t) = ha(t) + 1. Clearly

f(z0) = S(y) — —oo if y /o and
To— Y
J(zo) — f(t) _ hi(zo) — ha(zo) + ha(t) + 141 )
l'o—t - zo_t 2 2—*+00 lfy/‘wo-

Let 20 € R\ (A7 U A1 U A7 U A;). Then there exists a § > 0 such that (zo —
8,z0) N Ay = 0 and (20 — 6,20) N A2 = 0. Let = € (zo — 8,20). Then fi(zo) =
h1(zo), fa(z0) = ha(20), fi(z) = hi(z) and fa(z) = ho(z). Hence f.(z0) =
h'(zo) — hf(xo) # Loo. This ends the proof of Theorem 1.

Modifying the construction from Theorem 1, we obtain analogous results for
the sets {z : fi(z) = +oo} and {z : fi(z) = —oo}. Theorem 1 implies the
following theorems:
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Theorem 2. Let F; and E; be disjoint subsets of R. There exists a function
f:R— Rsuchthat E; = {z: f’(z) = 400} and E; = {z: f (z) = —oo} if and
only if m(E,) = m(E,;) = 0.

The sufficiency of the condition follows from Theorem 1, and its necessity —
from the Denjoy-Young-Saks theorem.

Theorem 3. There exists a function f : R — R for which sets {z : f’(z) =
+o00} and {z : f.(z) = —oo} are non-Borel. We obtain analogous theorems for
the right-hand derivatives.

Exists a function f : R — R for whichsets {z : f’(z) = 400} and {z : f’ (z) =
—oo} also {z : fi(z) = 400} and {z : f](r) = —oo} are non-Borel but the union
of this sets is Borel.

In paper [2] I prove that: for any set A of measure zero, there exists a function
f:R— Rsuchthat A= {z: f/(z) = +oo}U{z: fl(z) = —cc}U {z: fi(z) =
+oo}U{z: fi(z) = —oo}, A\A={z: f_(z) and f}(z) does not exist, finite or
infinite} and R\ A = {z : f'(z) exist finite}.
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