F.S. Cater, Department of Mathematics, Portland State University, Portland, Oregon 97207.

A Global Implicit Function Theorem

1. In this paper, f(x, y) is a function of two variables defined on an open subset U of R^2 . Let $D_1f(D_2f)$ denote the partial derivative of f with respect to the 1-st place (2-nd place) variable. We let $D_1^+f(D_2^+f)$ denote the upper right Dini derivate of f with respect to the 1-st place (2-nd place) variable. Likewise $D_1^-f(D_2^-f)$ denotes the upper left Dini derivate of f with respect to the 1-st place (2-nd place) variable.

As in [C] we say that the function f on U is <u>locally bounded</u> at a point $(x, y) \in U$ if f is bounded in some neighborhood of (x, y). It follows that f is locally bounded at (x, y) if f is continuous at (x, y).

The standard result on implicit functions for functions of two variables [Ct] is:

Theorem 0. Let f be continuously differentiable on U and let $D_2 f$ never vanish on U. Then any point $(x_0, y_0) \in U$ lies in a segment $I = \{(x, y_0) : a < x < b\}$ for which there is a differentiable function g defined on I such that $g(x_0) = y_0$, and $f(x, g(x)) = f(x_0, y_0)$ for $(x, y_0) \in I$; moreover, $g' = -D_1 f/D_2 f$ for $(x, y_0) \in I$.

In the spirit of [C], we offer a global theorem in which boundedness replaces continuity of the derivatives,

Theorem 1. Let f be a continuous function on U and let D_1^+f , D_1^-f , D_2^+f , D_2^-f be each $< \infty$. Let $D_2^+f > 0$, and let $D_1^+(D_2^+f)$ be locally bounded on U. Then almost every point $(x_0, y_0) \in U$ lies in a segment $I = \{(x, y_0) \in U : a < x < b\}$ for which there is a continuous function g defined on I such that $g(x_0) = y_0$ and $f(x, g(x)) = f(x_0, y_0)$ for $(x, y_0) \in I$; moreover, at almost every point of I (relative to I) the derivatives $g', D_1 f$ and $D_2 f$ exist and $g' = -D_1 f/D_2 f$.

We also provide a variation, easier to prove, that employs Baire category instead of Lebesgue measure. We say that a set is <u>residual</u> if its complement is a first category set.

Proposition 1. Let f be a continuous function on U and let $D_1 f$ and $D_2 f$ exist on U. Let $D_2 f$ never vanish on U. Then there is a residual subset Z of U such that every point $(x_0, y_0) \in Z$ lies in a segment $I = \{(x, y_0) : a < x < b\}$

for which there is a continuous function g defined on I such that $g(x_0) = y_0$, and $f(x,g(x)) = f(x_0,y_0)$ for $(x,y_0) \in I$; moreover, there is a residual subset Wof I (relative to I) such that at every point of W the derivative g' exists and $g' = -D_1 f/D_2 f$.

Our arguments will not depend on differentiability of the function f.

2. We begin with:

Lemma 1. Let E be a subset of U of measure zero, and let $E_0 = \{(p, y) \in U :$ the set $\{w : (w, y) \in E\}$ does not have measure zero $\}$. Then $m(E_0) = 0$.

Proof. We deduce from the Fubini theorem applied to the characteristic function χ_E that the linear measure of the set of all y such that $\{(p, y) : (p, y) \in U\} \subset E_0$ has measure 0. We apply Fubini's theorem again to χ_{E_0} to prove that $m(E_0) = \int \chi_{E_0} = 0$. \Box

Lemma 2 does for category what Lemma 1 does for measure.

Lemma 2. Let *E* be a first category subset of *U*, and let $E_0 = \{(p, y) \in U :$ the set $\{w : (w, y) \in E\}$ is a second category set}. Then E_0 is a first category set.

The proof is similar to the proof of Lemma 1 so we leave it. It also can be deduced from [LW, Lemma 2.2]. \Box

Lemma 3. Let h(x) be a continuous function on an interval [a, b] such that $D^+h(x)$ is real for all x. Let h be differentiable on a set $E \subset [a, b]$ such that $m([a, b] \setminus E) = 0$. Then

$$\inf_{x\in E} h'(x) \leq (h(b)-h(a))/(b-a) \leq \sup_{x\in E} h'(x).$$

Proof. Suppose to the contrary, that M is a real number such that

$$\sup_{x\in E}h'(x) < M < (h(b)-h(a))/(b-a).$$

Let k(x) = h(x) - Mx on [a, b]. Then

$$\sup_{x \in E} k'(x) < 0 < (k(b) - k(a))/(b - a).$$

Moreover $D^+k(x)$ is real for all x, and by [S, p. 271], k maps sets of measure 0 to sets of measure 0. So $m(k([a,b] \setminus E)) = 0$. Now k(b) > k(a). Select q such

that k(b) > q > k(a) and $q \notin k([a,b] \setminus E)$. Let x_0 be the greatest number in the compact set $k^{-1}(q)$. Then $x_0 \in E$ and $k'(x_0) < 0$. It follows that $k^{-1}(q)$ contains a number between x_0 and b by the intermediate value theorem, and this is impossible.

We conclude that $(h(b) - h(a))/(b - a) \leq \sup_{x \in E} h'(x)$. The other inequality is proved analogously with the signs reversed. \Box

We return now to the function f in Theorem 1.

Lemma 4. Let f satisfy all the hypotheses of Theorem 1, and let u and v be nonzero numbers. Let the closed rectangle T with vertices $(x_0, y_0), (x_0 + u, y_0), (x_0, y_0 + v), (x_0 + u, y_0 + v)$ lie within U. Let $|D_1^+(D_2^+f)| \leq M$ on T. Then

$$|f(x_0+u,y_0+v)+f(x_0,y_0)-f(x_0+u,v_0)-f(x_0,y_0+v)|\leq |uv|M.$$

Proof. Put $h(y) = f(x_0 + u, y) - f(x_0, y)$ over the interval joining y_0 and $y_0 + v$. Then

$$f(x_0 + u, y_0 + v) + f(x_0 + y_0) - f(x_0, y_0 + v) - f(x_0 + u, y_0) = h(y_0 + v) - h(y_0).$$

Now $0 < D_2^+ f(x_0 + u, y) < \infty$ and $0 < D_2^+ f(x_0, y) < \infty$, so $f(x_0 + u, y)$ and $f(x_0, y)$ are increasing with y. Thus $|D^+h| < \infty$. Let E be the set of all y where $D_2 f(x_0 + u, y)$ and $D_2 f(x_0, y)$ exist. By [HS, pp. 264, 265]

$$m([\inf(y_0,y_0+v),\sup(y_0,y_0+v)]\setminus E)=0.$$

By Lemma 3,

$$|v| \inf_{y\in E} h'(y) \leq |h(y_0+v)-h(y_0)| \leq |v| \sup_{y\in E} h'(y).$$

But for any $y \in E, h'(y) = D_2 f(x_0 + u, y) - D_2 f(x_0, y), |D_2^+ f(x_0 + u, y) - D_2^+ f(x_0, y)| \le |u|M$ and $|h'(y)| \le |u|M$ by Dini's theorem [S, p. 204]. It follows that $|h(y_0 + v) - h(y_0)| \le |uv|M$, and the conclusion follows. \Box

Proof of Theorem 1. Let $(x_0, y_0) \in U$ and let d > 0. Then $f(x_0, y)$ increases with y because $D_2^+ f > 0$. Let y_1 and y_2 be such that $f(x_0, y_2) - f(x_0, y_1) < d, y_1 < y_0 < y_2, y_2 - y_1 < d$, and U contains the segment joining (x_0, y_1) to (x_0, y_2) . Then $f(x_0, y_1) < f(x_0, y_0) < f(x_0, y_2)$. Let x_1 and x_2 be numbers such that $x_1 < x_0 < x_2, x_2 - x_1 < d$, the closed rectangle T with vertices $(x_1, y_1), (x_2, y_1), (x_2, y_2), (x_1, y_2)$ lies within U, the function f exceeds $f(x_0, y_0)$ on the segment joining (x_1, y_2) to (x_2, y_2) , $f(x_0, y_0)$ exceeds f on the segment joining (x_1, y_1) to (x_2, y_1) , and such that the maximum of f on the segment joining (x_1, y_2) to (x_2, y_2) exceeds the minimum of f on the segment joining (x_1, y_1) to (x_2, y_1) by less than d. Now f(x, y) increases with y for fixed x because $D_2^+ f > 0$. So for fixed x between x_1 and x_2 there is a unique y such that $f(x, y) = f(x_0, y_0)$ and $(x, y) \in T$. Let g(x) denote this y; thus $f(x, g(x)) = f(x_0, y_0)$. This defines g(x) for $x_1 < x < x_2$ and moreover, $|g(x) - g(x_0)| < d$ for any such x. Of course, $g(x_0) = y_0$.

To show that g is continuous, let $\varepsilon > 0$ and $x_1 < x < x_2$. By the same argument in the preceding paragraph with ε in place of d and a rectangle lying within T in place of T, we find an open interval J containing x such that if $u \in J$, then $|g(x) - g(u)| < \varepsilon$.

Now suppose that $D_1f(x_0, y_0)$ and $D_2f(x_0, y_0)$ exist. Then for $x \neq x_0$,

$$\begin{array}{lll} 0 & = & f(x,g(x)) - f(x_0,y_0) = f(x,g(x)) - f(x,y_0) + f(x,y_0) - f(x_0,y_0) \\ & = & (f(x_0,g(x)) - f(x_0,y_0)) + (f(x,y_0) - f(x_0,y_0)) \\ & & + (f(x,g(x)) - f(x,y_0) + f(x_0,y_0) - f(x_0,g(x)). \end{array}$$

If $|D_1^+(D_2^+f)| < M$ on the rectangle with vertices $(x_0, y_0), (x, y_0), (x_0, g(x)), (x, g(x))$, then by Lemma 4 we have

$$(1) |f(x_0,g(x)) - f(x_0,y_0) + f(x,y_0) - f(x_0,y_0)| \le |(x-x_0)(g(x)-y_0)|M.$$

But $\lim_{x\to x_0} g(x) = y_0$, so there is a function p(x) such that $\lim_{x\to x_0} p(x) = 0$ and

$$f(x_0,g(x)) - f(x_0,y_0) = (D_2f(x_0,y_0) + p(x))(g(x) - y_0)$$

We deduce from (1) that

$$|(D_2 f(x_0, y_0) + p(x))(g(x) - y_0)(x - x_0)^{-1} + (f(x, y_0) - f(x_0, y_0))(x - x_0)^{-1}|$$
(2)
$$\leq |g(x) - y_0|M.$$

From (2) and the hypothesis that $D_1^+(D_2^+f)$ is locally bounded and $D_2f(x_0, y_0) > 0$, we deduce that $g'(x_0)$ exists and

(3)
$$D_2f(x_0, y_0)g'(x_0) + D_1f(x_0, y_0) = 0.$$

We deduce from the continuity of f that the set of points where $D_1 f$ exists is measurable. By [S, pp. 270-271] $D_1 f(x, y)$ exists almost everywhere in x for each y. We deduce from the Fubini theorem applied to the characteristic function of the set of points where $D_1 f$ exists, that $D_1 f$ exists almost everywhere on U. Likewise $D_2 f$ exists almost everywhere on U. Let E be a set such that m(E) = 0and $D_1 f$ and $D_2 f$ exist on $U \setminus E$. Let E_0 be the set as in Lemma 1. We let $(x_0, y_0) \in U \setminus (E_0 \cup E)$ to obtain the desired conclusion. \Box

By a similar argument it can be shown that under the hypotheses of Theorem 1, f is in fact differentiable at any point where $D_1 f$ and $D_2 f$ exist. We leave this argument.

Before tackling the proof of Proposition 1 we offer an example. By [HS, p. 296] there is a measurable subset S of the real line R such that S and $R \setminus S$ meet any interval in sets of positive measure. Put

$$f(x,y) = x^{6}y^{5} + x^{4}y^{3} + \int_{0}^{x} \chi_{S}(t)dt + \int_{0}^{y} (1 + \chi_{S}(t))dt$$

for $(x, y) \in \mathbb{R}^2$. Then f is a nontrivial function on \mathbb{R}^2 satisfying the hypothesis of Theorem 1. But $D_1^+ f$ and $D_2^+ f$ are continuous at no point.

Proof of Proposition 1. By [Sg], D_1f and D_2f are continuous at all points of a residual subset of U. The proof is completed by arguing as in [Ct] and using Lemma 2 as Lemma 1 was used in the proof of Theorem 1. We leave the rest.

References

- [C] F.S. Cater, Changing the order of partial differentiation, Real Analysis Exchange 14, no. 2 (1988-9) pp. 512-516.
- [Ct] Richard Courant, Differential and Integral Calculus, vol. 2, Interscience, New York, 1936, pp. 114, 115, 119-121.
- [HS] Edwin Hewitt & Karl Stromberg, Real and Abstract Analysis, Springer-Verlag, New York, 1965.
- [LW] K. Lau & Clifford Weil, Differentiability via directional derivatives, Proceedings of the Amer. Math. Soc. 70 (1978), pp. 11-17.
- [S] S. Saks, Theory of the Integral, Second Revised Edition, Dover, New York, 1964.
- [Sg] Karl Stromberg, An Introduction to Classical Real Analysis, Wadsworth, Belmont, 1981, problem 3, p. 198.

Received June 8, 1990