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 A Global Implicit Function Theorem

 1. In this paper, /(x,y) is a function of two variables defined on an open
 subset U of iE2. Let Dif(D2f) denote the partial derivative of / with respect to
 the 1-st place (2-nd place) variable. We let.D* f(Dj f) denote the upper right
 Dini derivate of / with respect to the 1-st place (2-nd place) variable. Likewise
 Dī f{Dļ f) denotes the upper left Dini derivate of / with respect to the 1-st
 place (2-nd place) variable.

 As in [C] we say that the function / on U is locally bounded at a point
 (x,y) G U if / is bounded in some neighborhood of (x,y). It follows that / is
 locally bounded at (x,y) if / is continuous at (x, y).

 The standard result on implicit functions for functions of two variables [Ct]
 is:

 Theorem 0. Let / be continuously differentiate on U and let D2f never
 vanish on U. Then any point (x0,yo) G U lies in a segment / = {(x,y0) : a <
 X < 6} for which there is a differentiate function g defined on I such that
 g{x0) = yo, and f(x,g(x)) = /(x0,y0) for (x,y0) 6 /; moreover, g' = -Dļf/D2f
 for (x, yo) G I.

 In the spirit of [C], we offer a global theorem in which boundedness replaces
 continuity of the derivatives,

 Theorem 1. Let / be a continuous function on U and let Dļ /, Dī /, Dļ f,
 Dī f be each < oo. Let Df f > 0, and let Dļ(D2 f) be locally bounded on U.
 Then almost every point (xo, yo) G U lies in a segment I = {(x, yo) G U : a < x <
 b} for which there is a continuous function g defined on I such that </(x0) = yo
 and /(x,y(x)) = /(x0,yo) for (x, y0) G /; moreover, at almost every point of /
 (relative to I) the derivatives g', Dxf and Dļf exist and g' = -Dif/Dļf.

 We also provide a variation, easier to prove, that employs Baire category
 instead of Lebesgue measure. We say that a set is residual if its complement is
 a first category set.

 Proposition 1. Let / be a continuous function on U and let Dļf and Dļf
 exist on U . Let Dļf never vanish on U . Then there is a residual subset Z of
 U such that every point (xo,yo) G Z lies in a segment I = {(x,yo) : a < x < 6}
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 for which there is a continuous function g defined on I such that g(x0) = y0,
 and f(x,g(x)) = /(x0,yo) for (x, y0) 6 I ; moreover, there is a residual subset W
 of I (relative to I) such that at every point of W the derivative g' exists and
 g' = -Dif/Dtf.

 Our arguments will not depend on differentiability of the function /.

 2. We begin with:

 Lemma 1. Let E be a subset of U of measure zero, and let E0 = {(p, y) 6 U:
 the set {w : ( w,y ) € E} does not have measure zero}. Then m(E0) = 0.

 Proof. We deduce from the Fubini theorem applied to the characteristic
 function xe that the linear measure of the set of all y such that {(p, y) : (p,y) G
 U} C Eq has measure 0. We apply Fubini's theorem again to xe0 to prove that
 m{E0) =ÍXEo= 0- □

 Lemma 2 does for category what Lemma 1 does for measure.

 Lemma 2. Let E be a first category subset of U, and let Eo = {(p,y) E U :
 the set {w : (w,y) € E} is a second category set}. Then Eq is a first category
 set.

 The proof is similar to the proof of Lemma 1 so we leave it. It also can be
 deduced from [LW, Lemma. 2.2]. □

 Lemma 3. Let h{x) be a continuous function on an interval [a, 6] such that
 D+h(x) is real for all x. Let h be differentiate on a set E C [a, 6] such that
 m([a,6] ' E) = 0. Then

 inf h'{x) < ( h(b ) - h(a))/(6 - a) < sup h!(x).
 Z€E šefi

 Proof. Suppose to the contrary, that M is a real number such that

 sup h'(x) < M < ( h(b ) - k(a))/(b - a).
 z€E

 Let k(x) = h(x) - Mx on [a, 6]. Then

 supfc'(x) < 0 < (fc(6) - fc(a))/(6 - a).
 zč£

 Moreover D+k{x) is real for all x, and by [S, p. 271], k maps sets of measure 0
 to sets of measure 0. So m(fc([a,6] ' E)) = 0. Now k(b) > k(a). Select q such
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 that k(b) > q > fc(a) and q £ fc([a, 6] ' E ). Let x0 be the greatest number in
 the compact set Then x0 € E and k'(x0) < 0. It follows that k~l(q)
 contains a number between x0 and b by the intermediate value theorem, and this
 is impossible.

 We conclude that ( h(b ) - h(a))/(b - a) < supze£ h'(x) . The other inequality
 is proved analogously with the signs reversed. □

 We return now to the function / in Theorem 1.

 Lemma 4. Let / satisfy all the hypotheses of Theorem 1, and let u and
 v be nonzero numbers. Let the closed rectangle T with vertices (xo,yo),(£o +
 u, yo), (ar0, yo + v), (x0 + u, y0 + v) lie within U. Let 'D+ ( D 2 f)' < M on T. Then

 |/(x0 + u,y0 + v) + f(x0,y0) - f{x0 + u,v0) - f{x0,y0 + v) ' < 'uv'M.

 Proof. Put h(y) = f(x o + u, y) - /(xo,y) over the interval joining yo and
 y0 + v. Then

 f(x o + u, y0 + v) + f(x o + y0) - /(x0, yo + v)- f(x0 + u, y0) = h(y0 + v) - h(y0).

 Now 0 < Dtf{x0 + u,y) < oo and 0 < Df /(xo,y) < oo, so /(xo + u,y) and
 /(x0,y) are increasing with y. Thus 'D+h' < oo. Let E be the set of all y where
 D2f(x0 + u,y) and D2f(x0,y) exist. By [HS, pp. 264, 265]

 m([inf(y0, y0 + v),sup(y0, y0 + v)] ' E) = 0.

 By Lemma 3,

 M úrf tí{y) < |Ä(y0 + v) -%o)| < |ü| supÄ'(y).
 y£E

 But for any y G E, h' (y) = D2f(x0 + u,y) - Dif(x0,y),'D^f(x0 + u,y) -
 Dtf{xo,y)' < 'u'M and |V(y)| < |u|Af by Dini's theorem [S, p. 204]. It follows
 that |/i(y0 + v) - /i(yo)| < |uv|M, and the conclusion follows. □

 Proof of Theorem 1. Let (xo,yo) G U and let d > 0. Then /(xo,y)
 increases with y because Df f > 0. Let yi and y2 be such that f{xo,yļ) -
 /(x0,yi) < d,yi < yo < y2,y2 - Vi < d, and U contains the segment joining
 (x0,yi) to (x0,yî). Then /(x0,yi) < /(x0,yo) < f{x0,y2). Let xx and x2 be
 numbers such that xx < x0 < x2, x2 - Xi < d, the closed rectangle T with vertices
 (zi»yi)j (x2,yi), (x2,y2), (xi,y2) lies within U, the function / exceeds /(xo, yo) on
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 the segment joining (xi, j/2) to (x2, y2), f(x0, yo ) exceeds / on the segment joining
 (ii, t/i) to (x2,î/i), and such that the maximum of / on the segment joining
 (xi,y2) to (x2, y2) exceeds the minimum of / on the segment joining (xi,yi) to
 (^2 j î/i) by less than d. Now /(x, y) increases with y for fixed x because Df / > 0.
 So for fixed x between Xi and x2 there is a unique y such that /(x,y) = /(xo,yo)
 and (x,y) G T. Let ^(x) denote this y; thus /(x,y(x)) = f(x0ty0). This defines
 g{x) for Xi < x < x2 and moreover, |<jf(x) - g(x0)| < d for any such x. Of course,
 ff(zo) = yo-

 To show that g is continuous, let e > 0 and X' < x < x2. By the same
 argument in the preceding paragraph with e in place of d and a rectangle lying
 within T in place of T, we find an open interval J containing x such that if u G J,
 then |ö(x) - <j(u)| < e.

 Now suppose that Dif(x0,y0) and D2/(x0, y0) exist. Then for x ^ x0,

 0 = f{x,g{x)) - /(*o,yo) = f(z,9(x)) - f{x,y0) + f(x,y0) - f(xQ,yQ)
 = (f(zo,g(z)) - f{xo,yo)) + ( f{x,y0 ) - /(x0,y0))

 + (f(x,g(x)) - f(x, y0) + /(x0,y0) - f(x0,g(x)).

 If 'Dļ(D2f)' < M on the rectangle with vertices (xo,yo)> (z, yo), (xo,</(x)),
 (x,g(x)), then by Lemma 4 we have

 (1) 'f{xo,g{x)) - /(x0,y0) + f(x,y0) - /(x0,y0)| < |(x - xo)^(x) - y0)|M.

 But limj.-»^ g(x) = y0, so there is a funtion p(x) such that lim,-,,,, p(x) = 0 and

 f(xo,g(x)) - /(x0,y0) = {D2f{x0,y0) + p(x)){g(x) - y0).

 We deduce from (1) that

 |(£>2/(x0,yo) + p(x))(s(x) - y0)(x - x0)_1 + ( f(x,y0 ) - /(x0,y0))(x - x0)_1|

 (2) < |^(x) - y0'M.

 From (2) and the hypothesis that Df (D% f) is locally bounded and Dļf{x o, yo) >
 0, we deduce that <7'(x0) exists and

 (3) D2f{x0t yo)g'(xo) + Dif(x0t y0) = 0.

 We deduce from the continuity of / that the set of points where D'f exists is
 measurable. By [S, pp. 270-271] Dif(x,y) exists almost everywhere in x for each
 y. We deduce from the Fubini theorem applied to the characteristic function of
 the set of points where D'f exists, that D'f exists almost everywhere on U .
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 Likewise D2f exists almost everywhere on U . Let E be a. set such that m(E) = 0
 and Dif and Dļf exist on U ' E. Let E0 be the set as in Lemma 1. We let
 (x0,y0) £ U ' {Eq U E) to obtain the desired conclusion. □

 By a similar argument it can be shown that under the hypotheses of Theorem
 1, / is in fact differentiate at any point where D'f and Dļf exist. We leave this
 argument.

 Before tackling the proof of Proposition 1 we offer an example. By [HS, p.
 296] there is a measurable subset S of the real line R such that S and R'S meet
 any interval in sets of positive measure. Put

 /(x,y) = xV + *V + Jo f Xs{t)dt + Jo ["(I + Xs(t))dt Jo Jo

 for (x, y) £ R2. Then / is a nontrivial function on R2 satisfying the hypothesis
 of Theorem 1. But Df f and Dļ f are continuous at no point.

 Proof of Proposition 1. By [Sg], D'f and D2f are continuous at all points
 of a residual subset of U . The proof is completed by arguing as in [Ct] and using
 Lemma 2 as Lemma 1 was used in the proof of Theorem 1. We leave the rest.
 □
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