Real Analysis Exchange Val 16 (1990-91)
F.S. Cater, Department of Mathematics, Portland State University, Portland, Oregon 97207.

A Global Implicit Function Theorem

1. In this paper, $f(x, y)$ is a function of two variables defined on an open subset U of R^{2}. Let $D_{1} f\left(D_{2} f\right)$ denote the partial derivative of f with respect to the 1 -st place (2 -nd place) variable. We let $D_{1}^{+} f\left(D_{2}^{+} f\right)$ denote the upper right Dini derivate of f with respect to the 1 -st place (2-nd place) variable. Likewise $D_{1}^{-} f\left(D_{2}^{-} f\right)$ denotes the upper left Dini derivate of f with respect to the 1-st place (2-nd place) variable.

As in [C] we say that the function f on U is locally bounded at a point $(x, y) \in U$ if f is bounded in some neighborhood of $\overline{(x, y)}$. It follows that f is locally bounded at (x, y) if f is continuous at (x, y).

The standard result on implicit functions for functions of two variables [Ct] is:

Theorem 0. Let f be continuously differentiable on U and let $D_{2} f$ never vanish on U. Then any point $\left(x_{0}, y_{0}\right) \in U$ lies in a segment $I=\left\{\left(x, y_{0}\right): a<\right.$ $x<b\}$ for which there is a differentiable function g defined on I such that $g\left(x_{0}\right)=y_{0}$, and $f(x, g(x))=f\left(x_{0}, y_{0}\right)$ for $\left(x, y_{0}\right) \in I$; moreover, $g^{\prime}=-D_{1} f / D_{2} f$ for $\left(x, y_{0}\right) \in I$.

In the spirit of [C], we offer a global theorem in which boundedness replaces continuity of the derivatives,

Theorem 1. Let f be a continuous function on U and let $D_{1}^{+} f, D_{1}^{-} f, D_{2}^{+} f$, $D_{2}^{-} f$ be each $<\infty$. Let $D_{2}^{+} f>0$, and let $D_{1}^{+}\left(D_{2}^{+} f\right)$ be locally bounded on U. Then almost every point $\left(x_{0}, y_{0}\right) \in U$ lies in a segment $I=\left\{\left(x, y_{0}\right) \in U: a<x<\right.$ $b\}$ for which there is a continuous function g defined on I such that $g\left(x_{0}\right)=y_{0}$ and $f(x, g(x))=f\left(x_{0}, y_{0}\right)$ for $\left(x, y_{0}\right) \in I$; moreover, at almost every point of I (relative to I) the derivatives $g^{\prime}, D_{1} f$ and $D_{2} f$ exist and $g^{\prime}=-D_{1} f / D_{2} f$.

We also provide a variation, easier to prove, that employs Baire category instead of Lebesgue measure. We say that a set is residual if its complement is a first category set.

Proposition 1. Let f be a continuous function on U and let $D_{1} f$ and $D_{2} f$ exist on U. Let $D_{2} f$ never vanish on U. Then there is a residual subset Z of U such that every point $\left(x_{0}, y_{0}\right) \in Z$ lies in a segment $I=\left\{\left(x, y_{0}\right): a<x<b\right\}$
for which there is a continuous function g defined on I such that $g\left(x_{0}\right)=y_{0}$, and $f(x, g(x))=f\left(x_{0}, y_{0}\right)$ for $\left(x, y_{0}\right) \in I$; moreover, there is a residual subset W of I (relative to I) such that at every point of W the derivative g^{\prime} exists and $g^{\prime}=-D_{1} f / D_{2} f$.

Our arguments will not depend on differentiability of the function f.
2. We begin with:

Lemma 1. Let E be a subset of U of measure zero, and let $E_{0}=\{(p, y) \in U$: the set $\{w:(w, y) \in E\}$ does not have measure zero\}. Then $m\left(E_{0}\right)=0$.

Proof. We deduce from the Fubini theorem applied to the characteristic function χ_{E} that the linear measure of the set of all y such that $\{(p, y):(p, y) \in$ $U\} \subset E_{0}$ has measure 0 . We apply Fubini's theorem again to $\chi_{E_{0}}$ to prove that $m\left(E_{0}\right)=\int \chi_{E_{0}}=0$.

Lemma 2 does for category what Lemma 1 does for measure.
Lemma 2. Let E be a first category subset of U, and let $E_{0}=\{(p, y) \in U$: the set $\{w:(w, y) \in E\}$ is a second category set $\}$. Then E_{0} is a first category set.

The proof is similar to the proof of Lemma 1 so we leave it. It also can be deduced from [LW, Lemma 2.2].

Lemma 3. Let $h(x)$ be a continuous function on an interval $[a, b]$ such that $D^{+} h(x)$ is real for all x. Let h be differentiable on a set $E \subset[a, b]$ such that $m([a, b] \backslash E)=0$. Then

$$
\inf _{x \in E} h^{\prime}(x) \leq(h(b)-h(a)) /(b-a) \leq \sup _{x \in E} h^{\prime}(x)
$$

Proof. Suppose to the contrary, that M is a real number such that

$$
\sup _{x \in E} h^{\prime}(x)<M<(h(b)-h(a)) /(b-a) .
$$

Let $k(x)=h(x)-M x$ on $[a, b]$. Then

$$
\sup _{x \in E} k^{\prime}(x)<0<(k(b)-k(a)) /(b-a)
$$

Moreover $D^{+} k(x)$ is real for all x, and by [$\mathrm{S}, \mathrm{p} .271$], k maps sets of measure 0 to sets of measure 0 . So $m(k([a, b] \backslash E))=0$. Now $k(b)>k(a)$. Select q such
that $k(b)>q>k(a)$ and $q \notin k([a, b] \backslash E)$. Let x_{0} be the greatest number in the compact set $k^{-1}(q)$. Then $x_{0} \in E$ and $k^{\prime}\left(x_{0}\right)<0$. It follows that $k^{-1}(q)$ contains a number between x_{0} and b by the intermediate value theorem, and this is impossible.

We conclude that $(h(b)-h(a)) /(b-a) \leq \sup _{x \in E} h^{\prime}(x)$. The other inequality is proved analogously with the signs reversed.

We return now to the function f in Theorem 1.
Lemma 4. Let f satisfy all the hypotheses of Theorem 1 , and let u and v be nonzero numbers. Let the closed rectangle T with vertices $\left(x_{0}, y_{0}\right),\left(x_{0}+\right.$ $\left.u, y_{0}\right),\left(x_{0}, y_{0}+v\right),\left(x_{0}+u, y_{0}+v\right)$ lie within U. Let $\left|D_{1}^{+}\left(D_{2}^{+} f\right)\right| \leq M$ on T. Then

$$
\left|f\left(x_{0}+u, y_{0}+v\right)+f\left(x_{0}, y_{0}\right)-f\left(x_{0}+u, v_{0}\right)-f\left(x_{0}, y_{0}+v\right)\right| \leq|u v| M
$$

Proof. Put $h(y)=f\left(x_{0}+u, y\right)-f\left(x_{0}, y\right)$ over the interval joining y_{0} and $y_{0}+v$. Then
$f\left(x_{0}+u, y_{0}+v\right)+f\left(x_{0}+y_{0}\right)-f\left(x_{0}, y_{0}+v\right)-f\left(x_{0}+u, y_{0}\right)=h\left(y_{0}+v\right)-h\left(y_{0}\right)$.
Now $0<D_{2}^{+} f\left(x_{0}+u, y\right)<\infty$ and $0<D_{2}^{+} f\left(x_{0}, y\right)<\infty$, so $f\left(x_{0}+u, y\right)$ and $f\left(x_{0}, y\right)$ are increasing with y. Thus $\left|D^{+} h\right|<\infty$. Let E be the set of all y where $D_{2} f\left(x_{0}+u, y\right)$ and $D_{2} f\left(x_{0}, y\right)$ exist. By [HS, pp. 264, 265]

$$
m\left(\left[\inf \left(y_{0}, y_{0}+v\right), \sup \left(y_{0}, y_{0}+v\right)\right] \backslash E\right)=0
$$

By Lemma 3,

$$
|v| \inf _{v \in E} h^{\prime}(y) \leq\left|h\left(y_{0}+v\right)-h\left(y_{0}\right)\right| \leq|v| \sup _{v \in E} h^{\prime}(y) .
$$

But for any $y \in E, h^{\prime}(y)=D_{2} f\left(x_{0}+u, y\right)-D_{2} f\left(x_{0}, y\right), \mid D_{2}^{+} f\left(x_{0}+u, y\right)-$ $D_{2}^{+} f\left(x_{0}, y\right)|\leq|u| M$ and $| h^{\prime}(y)|\leq|u| M$ by Dini's theorem [S, p. 204]. It follows that $\left|h\left(y_{0}+v\right)-h\left(y_{0}\right)\right| \leq|u v| M$, and the conclusion follows.

Proof of Theorem 1. Let $\left(x_{0}, y_{0}\right) \in U$ and let $d>0$. Then $f\left(x_{0}, y\right)$ increases with y because $D_{2}^{+} f>0$. Let y_{1} and y_{2} be such that $f\left(x_{0}, y_{2}\right)-$ $f\left(x_{0}, y_{1}\right)<d, y_{1}<y_{0}<y_{2}, y_{2}-y_{1}<d$, and U contains the segment joining $\left(x_{0}, y_{1}\right)$ to $\left(x_{0}, y_{2}\right)$. Then $f\left(x_{0}, y_{1}\right)<f\left(x_{0}, y_{0}\right)<f\left(x_{0}, y_{2}\right)$. Let x_{1} and x_{2} be numbers such that $x_{1}<x_{0}<x_{2}, x_{2}-x_{1}<d$, the closed rectangle T with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{1}, y_{2}\right)$ lies within U, the function f exceeds $f\left(x_{0}, y_{0}\right)$ on
the segment joining $\left(x_{1}, y_{2}\right)$ to $\left(x_{2}, y_{2}\right), f\left(x_{0}, y_{0}\right)$ exceeds f on the segment joining $\left(x_{1}, y_{1}\right)$ to (x_{2}, y_{1}), and such that the maximum of f on the segment joining $\left(x_{1}, y_{2}\right)$ to $\left(x_{2}, y_{2}\right)$ exceeds the minimum of f on the segment joining $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{1}\right)$ by less than d. Now $f(x, y)$ increases with y for fixed x because $D_{2}^{+} f>0$. So for fixed x between x_{1} and x_{2} there is a unique y such that $f(x, y)=f\left(x_{0}, y_{0}\right)$ and $(x, y) \in T$. Let $g(x)$ denote this y; thus $f(x, g(x))=f\left(x_{0}, y_{0}\right)$. This defines $g(x)$ for $x_{1}<x<x_{2}$ and moreover, $\left|g(x)-g\left(x_{0}\right)\right|<d$ for any such x. Of course, $g\left(x_{0}\right)=y_{0}$.

To show that g is continuous, let $\varepsilon>0$ and $x_{1}<x<x_{2}$. By the same argument in the preceding paragraph with ε in place of d and a rectangle lying within T in place of T, we find an open interval J containing x such that if $u \in J$, then $|g(x)-g(u)|<\varepsilon$.

Now suppose that $D_{1} f\left(x_{0}, y_{0}\right)$ and $D_{2} f\left(x_{0}, y_{0}\right)$ exist. Then for $x \neq x_{0}$,

$$
\begin{aligned}
0= & f(x, g(x))-f\left(x_{0}, y_{0}\right)=f(x, g(x))-f\left(x, y_{0}\right)+f\left(x, y_{0}\right)-f\left(x_{0}, y_{0}\right) \\
= & \left(f\left(x_{0}, g(x)\right)-f\left(x_{0}, y_{0}\right)\right)+\left(f\left(x, y_{0}\right)-f\left(x_{0}, y_{0}\right)\right) \\
& +\left(f(x, g(x))-f\left(x, y_{0}\right)+f\left(x_{0}, y_{0}\right)-f\left(x_{0}, g(x)\right) .\right.
\end{aligned}
$$

If $\left|D_{1}^{+}\left(D_{2}^{+} f\right)\right|<M$ on the rectangle with vertices $\left(x_{0}, y_{0}\right),\left(x, y_{0}\right),\left(x_{0}, g(x)\right)$, $(x, g(x))$, then by Lemma 4 we have
(1) $\left|f\left(x_{0}, g(x)\right)-f\left(x_{0}, y_{0}\right)+f\left(x, y_{0}\right)-f\left(x_{0}, y_{0}\right)\right| \leq\left|\left(x-x_{0}\right)\left(g(x)-y_{0}\right)\right| M$.

But $\lim _{x \rightarrow x_{0}} g(x)=y_{0}$, so there is a funtion $p(x)$ such that $\lim _{x \rightarrow x_{0}} p(x)=0$ and

$$
f\left(x_{0}, g(x)\right)-f\left(x_{0}, y_{0}\right)=\left(D_{2} f\left(x_{0}, y_{0}\right)+p(x)\right)\left(g(x)-y_{0}\right)
$$

We deduce from (1) that

$$
\left|\left(D_{2} f\left(x_{0}, y_{0}\right)+p(x)\right)\left(g(x)-y_{0}\right)\left(x-x_{0}\right)^{-1}+\left(f\left(x, y_{0}\right)-f\left(x_{0}, y_{0}\right)\right)\left(x-x_{0}\right)^{-1}\right|
$$

$$
\begin{equation*}
\leq\left|g(x)-y_{0}\right| M \tag{2}
\end{equation*}
$$

From (2) and the hypothesis that $D_{1}^{+}\left(D_{2}^{+} f\right)$ is locally bounded and $D_{2} f\left(x_{0}, y_{0}\right)>$ 0 , we deduce that $g^{\prime}\left(x_{0}\right)$ exists and

$$
\begin{equation*}
D_{2} f\left(x_{0}, y_{0}\right) g^{\prime}\left(x_{0}\right)+D_{1} f\left(x_{0}, y_{0}\right)=0 \tag{3}
\end{equation*}
$$

We deduce from the continuity of f that the set of points where $D_{1} f$ exists is measurable. By [S, pp. 270-271] $D_{1} f(x, y)$ exists almost everywhere in x for each y. We deduce from the Fubini theorem applied to the characteristic function of the set of points where $D_{1} f$ exists, that $D_{1} f$ exists almost everywhere on U.

Likewise $D_{2} f$ exists almost everywhere on U. Let E be a set such that $m(E)=0$ and $D_{1} f$ and $D_{2} f$ exist on $U \backslash E$. Let E_{0} be the set as in Lemma 1. We let $\left(x_{0}, y_{0}\right) \in U \backslash\left(E_{0} \cup E\right)$ to obtain the desired conclusion.

By a similar argument it can be shown that under the hypotheses of Theorem $1, f$ is in fact differentiable at any point where $D_{1} f$ and $D_{2} f$ exist. We leave this argument.

Before tackling the proof of Proposition 1 we offer an example. By [HS, p. 296] there is a measurable subset S of the real line R such that S and $R \backslash S$ meet any interval in sets of positive measure. Put

$$
f(x, y)=x^{6} y^{5}+x^{4} y^{3}+\int_{0}^{x} \chi s(t) d t+\int_{0}^{y}\left(1+\chi_{s}(t)\right) d t
$$

for $(x, y) \in R^{2}$. Then f is a nontrivial function on R^{2} satisfying the hypothesis of Theorem 1. But $D_{1}^{+} f$ and $D_{2}^{+} f$ are continuous at no point.

Proof of Proposition 1. By $[\mathrm{Sg}], D_{1} f$ and $D_{2} f$ are continuous at all points of a residual subset of U. The proof is completed by arguing as in $[\mathrm{Ct}]$ and using Lemma 2 as Lemma 1 was used in the proof of Theorem 1. We leave the rest.

References

[C] F.S. Cater, Changing the order of partial differentiation, Real Analysis Exchange 14, no. 2 (1988-9) pp. 512-516.
[Ct] Richard Courant, Differential and Integral Calculus, vol. 2, Interscience, New York, 1936, pp. 114, 115, 119-121.
[HS] Edwin Hewitt \& Karl Stromberg, Real and Abstract Analysis, SpringerVerlag, New York, 1965.
[LW] K. Lau \& Clifford Weil, Differentiability via directional derivatives, Proceedings of the Amer. Math. Soc. 70 (1978), pp. 11-17.
[S] S. Saks, Theory of the Integral, Second Revised Edition, Dover, New York, 1964.
[Sg] Karl Stromberg, An Introduction to Classical Real Analysis, Wadsworth, Belmont, 1981, problem 3, p. 198.

