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 Martin's Axiom implies a stronger version of Blumberg's Theorem

 Let R be the real line. In 1922, H. Blumberg proved the following theorem:

 Blumberg's Theorem [Bl]: If f:R- >R, then there is a dense subset D of R such that

 fID is continuous. Here, flD is the real valued function on D with the subspace

 topology.

 In any such theorem, it is of interest to ask how much the hypothesis can be

 weakened or the conclusion strengthened. The obvious way to weaken the

 hypothesis is to allow the domain of f to be some subset of R instead of R. A set

 XcY is categorically dense in Y if XnU is of second category in Y for every

 nonempty open subset U of Y. Trivial modifications in the proof of Blumberg's

 Theorem then give the following strengthening:

 Proposition: If X is a categorically dense subset of R, and f:X-»R, then there is a

 dense Dç^X such that fid is continuous.

 If every point of Xç^R is isolated, then the same result holds trivially. For

 similar reasons, this is also true if X is scattered (just let D be the set of isolated

 points of X). However, if X is dense, it is easy to see that the hypothesis cannot be

 weakened any further, for if XcR is dense and of first category, partition X into

 countably many sets Xn, n<cù, each nowhere dense. Let f(x)=n iff xe Xn, and f

 obviously cannot be continuous on any dense subset. If X is dense and of second

 category, but not categorically dense, the same trick can be used on Xnl for some

 interval I, letting f be constant outside I.

 Thus, for dense X, X being categorically dense is both necessary and

 sufficient (at least for subsets of R). It is perhaps somewhat surprising that the
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 other main notion of "largeness", namely measure, does not play a role here

 (Consider a first category set whose complement has Lebesgue measure zero).

 Trying to strengthen the conclusion is more complicated, as it turns out to be

 independent of the usual axioms of Set Theory. In particular, if the Continuum

 Hypothesis holds, then D cannot even be uncountable because of the following

 classical theorem of Sierpiński and Zygmund:

 Theorem (Sierpinski-Zygmund [SZ]): There is a function f:R- >R such that if

 XçR and IXI=c, then flX is not continuous. Here, c is the cardinality of the
 continuum.

 If the Continuum Hypothesis fails, then the Sierpinski-Zygmund function

 does not rule out the possibility of an uncountable set D. In 1973, J. Shinoda

 proved that "IXI=c" could not be replaced in the Sierpinski-Zygmund Theorem by

 "X is uncountable":

 Theorem (Shinoda [Sh]): Assume MA+-1CH. If f:X- >R, where XçR is

 uncountable, then there is an uncountable YçX such that flY is continuous.

 The set in Shinoda' s Theorem was not dense in general, so a natural

 question is: "Can the set D in the conclusion of Blumberg's Theorem be made

 uncountably dense?" The main result of this paper is to show that it is consistent

 that the answer is yes.

 1. Definition: Let XçzR, f:X- >R. If xe X, we will say that x is f-pleasant (or just

 pleasant if f is obvious from context) if for every e>0 there is a ô>0 such that

 {y: lf(y)-f(x)ke) is categorically dense in (x-5,x+8)

 2. Lemma: Let XçR, f:X- >R. Then A={xeX: x is not pleasant} is of first

 category in R.
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 Proof: Suppose not. For each xe A pick e(x)>0 witnessing that x is not pleasant,

 and pick rational numbers r(x) and s(x) such that f(x)-e(x)<r(x)<f(x)<
 s(x)<f(x)+e(x). For each pair (r,s) of rational numbers, let A(r,s)={xeA: r(x)=r,

 s(x)=s}. Since A is supposedly of second category and there are only countably

 many pairs (r,s), some A(r,s) must be of second category, and therefore

 categorically dense in some interval I. Fix such an r and s. Let xe InA(r,s) and let

 8>0 so that (x-6,x+5)cl. Then A(r,s)ç{y: lf(x)-f(y)ke(x)}, so {y: lf(x)-f(y)<e(x)}

 is categorically dense in (x-5,x+8), contradicting the definition of e(x).

 Our main result will be a consequence of MA+- iCH, but we can get by with

 less without any additional trouble. It is a well known fact that arguments

 involving forcing and Martin's Axiom do not generally require the antisymmetry

 property of the relevant partial orderings (see the treatment in [K], for example).

 Thus, we will define a partially ordered set ("poset") to be a set with a relation

 which is reflexive and transitive, but not necessarily antisymmetric. A subset S of

 a poset is called centered if every pair of elements of S is compatible. A partially

 ordered set P is called a-centered if it is the union of countably many centered

 subsets. Since a a-centered poset obviously satifies the countable chain condition

 ("ccc"), "MA(k) for a-centered posets" is a weakening of MA(k). We will need

 the following well known fact:

 3. Proposition: Assume MA(k) for a-centered posets. Then every subset of R of

 cardinality k is of first category.

 4. Theorem: Assume MA(k) for a-centered posets. Let XçzR be categorically

 dense in R, and let f:X- >R. Then there is a K-dense set DçX such that fID is

 continuous. Here, if k is a cardinal, a set is K-dense if it intersects every nonempty

 open set U in exactly K elements.

 Proof: Without loss of generality, we may assume that every element of X is

 f-pleasant and that XnQ=0, where Q is the set of rational numbers, for if this is
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 not the case, we could make both statements true by throwing away a first

 category set from X. Thus, we can note that f, considered as a subset of the plane,

 has the property that if U is any open subset of the plane intersecting f, then

 IUnfl>K. To see this, let (x,y)eUnf, where U is open in the plane. By

 pleasantness of x, there are positive 6, 8 such that (x-Ô,x+5)x(y-e,y+e)çU and the

 projection of fn((x-5,x+8)x(y-e,y+e)) onto the first coordinate is categorically

 dense in (x-Ô,x+Ô), and therefore (by Proposition 3) of cardinality greater than k.

 Thus, by induction on a<K we can define a collection {Xa:a<K} of pairwise

 disjoint subsets of X such that for each a<K, {(x,f(x)): xe Xa} is a countable dense

 subset of f. For each a<K, let fa=flXa. Let X'=kJ{Xa: a<K}, and let f=flX'.

 Since each point xe X is pleasant, we have the following property:

 (*) For every xeX and e>0 there is a 6>0 such that for every a<K, {yeXa: lf(x)-

 f(y)ke) is dense in (x-Ô,x+Ô).

 To see that this is true, suppose xeX and e>0, and let Ô>0 be such that the

 set {yeX: lf(y)-f(x)ke} is categorically dense in (x-6,x+6), and therefore dense in

 (x-Ô,x+Ô). Then, since {(x,f(x)): xeXa} is dense in f (as a subset of the plane), we

 have that {yeXa: lf(x)-f(y)ke} is dense in (x-8,x+8).

 Let Q*=Qu{-oo,«»}. By a rational rectangle we mean any subset of the

 plane of the form (a,b)x(c,d) where a, b, c, deQ*, a<b, c<d. Define the partial

 ordering (P,<) as follows: The set P consists of all ordered pairs (A,S) satisfying

 the following properties:

 (1) A is a finite subset of X'.

 (2) S is a finite set of rational rectangles.

 (3) If Tļ, T2 e S, Tļ*T2, then 7i(T1)njc(T2)=0,

 where k is projection onto the first coordinate.
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 (4) For each a<K, 7c(fanLJS) is dense in R.

 (5) {(x,f(x)):xeA}cUS.

 We partially order P by (A,S)<(A',S') iff A'çA and kJS^LJS'. Note that for

 every finite set S of rational rectangles, the set {(A,S): (A,S)eP) is centered, so P

 is G-centered, since there are only countably many such S. Thus, MA for c-

 centered posets is relevant for P. We now need to define our dense sets.

 Let {Un: ne co} be a countable basis of R, and for each ne co and a<K define

 D(a,n)={(A,S)e P: AnUnnXa*0}. To see that each D(a,n) is dense, let (A,S)eP

 and note that by (4), 7i(fan<sJS)nUn*0. Let xe Jt(fanLJS)nUn. Then

 (Au(x},S)eD(a,n) and (Au{x},S)<(A,S).

 For each xeX' and each necù-{0}, let D(x,n)={(A,S)eP: If (x,f(x))eT and

 TeS, then íť(T) has length less than 1/n}, where iť is projection onto the second

 coordinate. Then we claim that each D(x,n) is dense, for let (A,S)eP. Since x is

 not rational, by (4) we have that xe 7t('JS), so let T be such that xen( T) and TeS.

 If (x,f(x))gT, then (A,S)e D(x,n), so assume (x,f(x))eT. Let m>2n be such that

 c<f(x)-l/m<f(x)+l/m<d, where T=(a,b)x(c,d). By (*), there is a 8>0 such that for

 each a<K, {ye Xa: lf(x)-f(y)l<l/m} is dense in (x-6,x+6). Let u, v,eQ be such that

 x-Ô<u<x<v<x+Ô, a<u<v<b, and (u,v)nA is either {x} or 0 (depending on
 whether or not x is in A). Let r, seQ be such that f(x)-l/2n<r<f(x)-l/m,

 f(x)+l/m<s<f(x)+l/2n, and c<r<s<d. Let S'=(S-{T})u{(a,u)x(c,d), (u,v)x(r,s),

 (v,b)x(c,d)}. Then (A,S')<(A,S) and (A,S')e D(x,n).

 Thus, we have shown that the D(a,n)'s and the D(x,n)'s are all dense in P,

 so since I(kxg>)u(X'xco)I=k, there are only K-many such D(a,n)'s and D(x,n)'s, so

 there is a filter GçP meeting all of these dense sets. Let D=^{A: For some S,

 (A,S)eG}. Note that for every (A,S)eG, flD^LJS. We will see that D satisfies
 the conclusion of the Theorem.

 71



 First, let ñeco, cc<k. Then there is an (A,S)eGnD(a^i), so AnUnnXa*0

 and thus DnUnnXa*0 for each a<K. Thus D is K-dense in R.

 We now need to show that flD is continuous, so let xe D and e>0. Let ne co

 be such that l/n<e and let (A,S)e GnD(x,n). Since xeD, there is an (A',S')eG

 such that xe A'. Now, (A,S) and (A', S') must be compatible, so there must be a

 Te S such that (x,f(x))eT, and since (A,S)e D(x,n), tc'(T) has length <l/n<e.

 Pick 8 such that (x-Ô,x+Ô)çtc(T). Thus if ye D and lx-yl<5, then (y,f(y))eT, so

 lf(x)-f(y)ke. Thus flD is continuous at x, and we are done.

 Note that since MA(co) is true in ZFC, the original Blumberg Theorem is a

 corollary of Theorem 4.

 Theorem 4 is also true if R is replaced by Rn. In fact, as was pointed out by

 one of the referees, the theorem is true for any locally compact, separable metric

 space, since each such space contains a copy of the irrationals as a dense Gg.

 One possible further generalization, suggested to the author by Jack Brown,

 is the following: Suppose f:R- >R. Then is it possible to get a categorically dense

 D so that flD is continuous? If MA holds, then the answer is clearly no, since in

 that case a categorically dense D would have to have cardinality c, and the

 Sierpinski-Zygmund function would be a counterexample. This suggests the

 following question:

 Question: Is it consistent with ZFC that for every f:R- »R, there is an XçzR such

 that fIX is continuous and X is of second category (or non-Lebesgue measurable)?

 Clearly, Martin's Axiom would have to fail in any model of ZFC giving an

 affirmative answer to this question. As pointed out by one of the referees, asking

 that D be Lebesgue measurable of positive measure is asking too much, for such a

 set would have to contain a closed set of positive measure, which would be

 uncountable and therefore of cardinality c, making the Sierpinski-Zygmund

 function a counterexample.
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