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 A PROOF OF ABEL'S CONTINUITY THEOREM

 Let S be the spaces of sequences s = (sn)n_Q of complex terms of
 oo

 convergent series with norm defined by II s II = sup ¿ s. and J be the
 n>0 j =n

 space of all sequences ß = lßnJn=Q of bounded variation with norm
 oo

 II 3 II j = J Bo ļ + 1 |^n~^n-l|* f°H°w:'-n8 Holder's type of inequality holds:
 OO

 If s = v (s ny ) e S and ß « (ß ) e J, ' then I I s ß ļ < Ils IĻ S - II 8 II J T. v ny n ' I Ln n n| - S J
 n=u

 This may be seen easily by an application of summation by parts.

 An interesting application of this inequality is a simple proof of the

 Stolz form of the Abel Continuity Theorem:

 oo

 THEOREM: (Abel's Continuity Theorem). If £ a converges and
 n=0 n

 00

 f(z) = £ a z11, then lim f(z) = f(l), where z is restricted to approach
 n=0 n z+1

 I I <1 and J |1_Z| the point 1 in such a way that I z I <1 and J

 1- I z ļ

 Proof: First of all let C be a positive absolute constant such that

 I i-z I 00

 J .1 <_ C and J z | < 1. Notice that I ^NVP| 1 '<zP)p=N "j " "<ap)p"N 's

 for N > 1 and by the above inequality applied to the sequences (ap) an(^

 (zP), since (zP)p=N e J; in fact, since |z| < 1
 332



 i(iPWj = H" + |»N-zN+1|+lzNtl"zB+2| + "

 - ļ Ä ļ N + ļi-zļcļzļ*1 + ļzļN+^ +  1™ I Z

 Nom using the hypothesis we have 11 - 1 + C* Conse<Iuently>
 00

 I y a zP| < (1+C) II (a )00 „II-, + 0 as N > 00 since (a ) e S. Then
 Ipifl P I ~~ p p=N S n
 00 00 ļ ļ 00 00

 ļ I J a zP - I a pi I < I I a zP - [a| pl + | ¡¡azP-ļaļ pl = A+B. For e > 0, ļ I pio J a p - pio I a pi I - < 'pio I I a P - p=0 [a| pl + | p=N ¡¡azP-ļaļ P PÌn pl

 fix N so that B £ (2+C) ll(ap)^_Nlls £ e/2. For |z-1| sufficiently small,
 00 00

 A < e/2. Hence lim ' a zP = ' a , so that the theorem is proved,
 z+1 p=0 P p=0 P

 For more information about the space S the interested reader is

 referred to [1], however we would like to point out that J is the dual

 space of S.

 We especially wish to thank Daniel Waterman with whom we had some useful

 discussion.
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