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 SOME EXAMPLES ON CONTINUOUS RESTRICTIONS

 For a given function f : R ->R, how "large" or "thick" can

 a subset A be for which the restriction of f to A, f)A, is

 continuons? If f is nice enough topologically, in particular,

 of Baire class a, then A may be taken to be residual. In fact,

 it is known that [5]: f has the property of Baire (i.e., the

 inverse image of any open set is the symmetric difference of an

 open set and a first category set) ¿f and only if there exists .a

 residual set A such that f|A is continuous . On the other

 hand, surprisingly enough, if f : R -> R is an arbitrary func-

 tion. then there exists _a countable . dense subset A of R

 such that f|A is continuous (Blumberg [1]). The set A here

 cannot be taken to be uncountable, in general.

 It is then natural to ask the following question:

 Are there "nice" kinds of functions, f , not having the pro-

 perty of Baire, for which there exists m dense subset A of R

 with A uncountable such that f|A is continuous?

 The main purpose of this article is to show that two likely

 candidates for this property, namely the Lebesgue measurable

 functions and the connected functions (i.e., the graph is a con-

 nected set), fail to have this property.
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 Finally ve look at a somewhat related question: can a given

 function f:R->R be decomposed into countably many continuous

 functions, i.e., do there exist countably many disjoint sets

 {An}ñ-1 *hose union is R such that fļAfl is continuous

 for each n? Davies [3] has constructed a semi-continuous func-

 tion which cannot be decomposed into countably many functions.

 Ve improve this example by showing that such a function can also

 be approximately continuous.

 Notation and Terminology. For a planar subset A and an

 interval J of R, we define A|j = {(x,y) e A : x 8 J} . We will

 identify a function with its graph. We denote the cardinality of

 R by c, and will also identify the first ordinal equinumerous

 with R by Cf the context will distinguish between the two

 uses. For a set A,

 J A 1 denotes the cardinality of A. A set A is c-dense in R if

 |A A Ol 53 c for each open set 0 i' 4.

 The following example appears in Kuratowski [5] . We repeat

 it here because we need the ideas in its proof for Examples 2 and

 3.

 Example 1. There exists ji function f:R->R such that f|A

 is discontinuous for each set A with cardinality c.

 Proof. First note that if f I A is continuous then, defin-

 ing g(x) ■ lim sup f ( z) , g becomes an upper-semi-

 continuous function defined on À such that f = g on A.

 Therefore, if f |'A is continuous then there exists a Baire 1
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 fonction defined on R containing f]A.

 Since the class of Baire 1 functions has cardinality c ve

 may well-order it as {g0ła<c Also well-order S as {raîa<c*

 By transfinite induction on c we define f by

 f(ra) e R - tgß(rjs) : ß,5 i a}.

 For ß fixed we have f(r0) ^ gß(ra) whenever ß < o. Therefore

 {x : gß(x) « f(x)} C {rç: Ç ¿ ß} . Therefore

 I {x : gß(x) = f(x)}| < |{rç: Ç < ß}| » Ißl < c. Hence, f agrees
 with each Baire 1 function on a set of cardinality less than c.

 So if f|Â is continuous, then ) A 1 < c.

 By Lusin's theorem a measurable function agrees with a con-

 tinuous function on a set of positive measure. Hence, there

 exists an uncountable set A upon which the restriction is con-

 tinuous. However, this uncountable set cannot be taken to be

 c-dense in R as shown by the next example. Observe that

 although a measurable function f agrees with a Baire 2 function

 g almost everywhere, the residual set A such that g|A is

 continuous may coincide with {f ï g} .

 Example 2. There exists ¿ measurable function f : R->R

 such that f I A is, discontinuous for each A which is c-

 dense in R.

 Proof. Choose E to be a Gg set dense in R and having
 09

 measure zero. Then we may express R - E as U where
 n=l

 each Cn is closed and nowhere dense and O Cq » i when m

 Ý n.
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 Since E is a complete metric space, we may use the con-

 struction in Example 1 to find a function g : E- >(-®,0) such,

 that g)A is discontinuous for each uncountable set ACE. Nov

 define f by

 g(x) if X e E

 f(x) =<

 1 - 1/n if X e Cn .

 Obviously f is measurable. Suppose A is c-dense in R. If

 ļAOE| = c then f)AP'E=gļA/^E is discontinuous. Hence,

 f|A is discontinuous. So let us assume that lA("'E' < c.

 Then A - E is c-dense in R. Find n and x such that x e (A

 - E) C^. Then we may select a sequence {zj.}ļ?=i such

 that if z^ s Cqj,, then {nj.} is strictly increasing, and

 Zfc->x. Obviously f(zj-) -> 1 f f(x) = 1 - 1/n . Therefore, in

 this case too, f|A is discontinuous.

 A likely candidate for a class of functions admitting a c-

 dense set upon which the restriction is continuous would be the

 class of all connected functions, a smaller class than the class

 of Darboux functions. However, by the following example a con-

 nected function may not even admit an uncountable set upon which

 its restriction is continuous.

 Example 3 . Assuming the Cont inuum Hypothesis there exists

 ,a connected function f : R -> R such that f|A .is discontinu-

 ous for each uncountable set A.
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 Proof. Let {gcJa<c ^e a *ell~ordering of all Baire 1

 fonctions. By the argument in Example 1 it will suffice to con-

 struct a connected function f such that |f/""'gal < c for each

 a.

 Let {'a^a<c ^e a veil-ordering of R, and for a planar

 point z let L(z) be the vertical line through z.

 Ve will construct by transfinite induction on c families

 of countable sets (Bß}ß<c and (Dß)ß<c as follows:

 For notational convenience, define B-.¿ = D_i = i. Having

 selected Bß and Dß for each ß < o, define

 E0 » ga - Uigß: ß < o} - VjíL(z) : z e U(Dß: ß < a}}.

 If Ea = i, we put Da = i. If E0 fi, pick Da to be a

 countable dense subset of Ea such tht Da C' Ea C' Ca is

 also dense in Ea/"' Ca where Ca = {(x, ga(x)) : ga is con-

 tinuous at x} . (Note that dom Ca is residual in R.)

 If ra e domVJiDß : ß < a} put Ba * Da. If ra i dom

 UtDß : ß < a} put B0 = Da 'J {(ra,ga(r0) ) } . Finally put

 f " U IB® : a •

 Clearly Baf' Bç ■ 6 when a # Ç. It follows that f

 is a function. Moreover, for each a, ra e U (dom Dß : ß <

 a} so that dom f = R. In addition, for each a,

 Un gai »

 I V (Bç ga)l = I 'J (Bç ga)' =
 Ç<c Ç<a

 lai Ko =* lai < c.
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 By a resnīt in [4] it will suffice to show that f hits

 each continuum with domain a non-degenerate interval. Let H be

 a continuum with I dom H| >1. For x e dom H define

 h(x) = lim {sup{rng[H | (x- 1/n, x+ 1/n)]}}.

 Then h is upper-semi-continuous and h C H. Hence, there

 exists a Sy such that dom(gy/"' H) is somewhere dense.

 Now let a be the first Ç such that dom(g H) is some-

 where dense. Suppose dom(g0A H) is dense in an open interval

 J. If ß < a, then dom(gßAH) is nowhere dense in J. It

 follows tht dom(E0/"' H) is residual in J. Since domCa is

 residual in J the set domCa/°k dom(Ea A H) is also residual in

 J. Since H is closed it follows that Ca CS Ea is a dense sub-

 set of E aC' E. Therefore, Da intersects H and f inter-

 sects H.

 It is unknown whether the requirement of the Continuum

 Hypothesis can be omitted from Example 3.

 Example 4. There exists & bounded, approximately continu-

 ous . lower- semi- continuous function which cannot be decomposed

 into count ab lv many continuous functions .

 Proof. By Theorem 2 of Davies [2] it suffices to construct

 a function f on I = [0,1] to I such that (*) f A A î i for

 each closed set A C I x I for which domA = I. In [3] Davies

 constructs a lower-semi-continuous function f with property

 (*). Actually he shows that there exists a perfect, nowhere
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 dense null set J such that for each closed set A with domA =

 I there exists x e J such that (x,f(x)) e A. Let

 {In)ñ-1 be an enumeration of the components of I - J. On

 each Ia choose a continuous function gn such that rng gn = I

 and gn(a) = f(a) if a is an endpoint of In. Now put

 Íf ga(x) (x) if if X X e 8 Itt. J ga(x) if X e Itt.

 Obviously g is lower- semi-continuous, Darboux, and has

 property (*). By Maximof f 's theorem [6] there exists a

 homeomorphism h from I onto I such that goh is approxi-

 mately continuous. Clearly goh is also lower-semi-continuous.

 If A is a closed set with dom A = I, then {(h(x),y) : (x,y) e

 A} is a closed set with domain I and hence, intersects g.

 But then goh intersects A. Therefore, geh has property *

 and is the desired function.

 Observe that the function of Example 4 must also be a

 derivative.
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