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 SOME THEOREMS ON DI NI DERIVATES

 The relationships between the density of

 sets of points where the various Dini derivates of a

 function are nonnegative are studied.

 Theorem 1: If f(x) is a real valued function of a

 real variable, X any real number and { x : D_f(x) >_ X }
 +

 is dense , then {x:Df(x)^X} is dense.

 Proof : Without loss of generality, assume X = 0. Let

 (a,b) be any interval. There exists Xj in (a,b) such

 that D f(x ) > -1. Therefore, there is some <5 1 > 0 such
 i

 that for every t in (xi -5i,Xj),

 f(t) < f(Xj) + (Xļ-t).

 Choose 6i < 1 and such that Xi-ói > a. There is x2

 in (xl-6l,x1) such that D_f(x2) > -1/2. Therefore, there

 is some 62 > 0 such that for every t in (x2-ó2,x2),

 f(t) < f(x2) + (l/2)(x2-t).

 Choose S2 <1/2 and such that x2-<52 > Xi-01.

 Continuing in this manner we obtain a decreasing

 sequence of intervals {(x -6 ,x ) } such that 6 < 1/n.
 n n n n
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 co

 Let w = ft U -6n,xn).
 n=l

 Then f(w) < f(x_) n + (l/n)Cx -w) for every n. n n

 f (w) - f(x )
 i.e.

 w - xn

 Since xn w+ , we conclude that D+f(w) ^ 0.
 The converse of the above theorem is not true

 as can be seen by considering

 f 1-x X rational
 f(x) = Y

 V. -x X irrational.

 Example : In the context of the above theorem

 we mention the following example.

 Let m 0 denote the following sequence:

 0) lj 1} ^ J 1 , 1^ } 3 ) . . «
 2448888" Ï6 16

 The set { x : x=a } is dense in [0,1].
 m

 For each m £ 1, there is a positive integer n^
 such that

 Hm"1 n
 o ¿ . „ < - 0 2 m o ¿ . m „ < - 0 2 .

 Thus
 n

 a„ = 2m +1-2 for m > 1.
 m

 n

 2 m

 Set
 n

 "tm " 2m - 2 m for m >_ 1.
 n

 2 m
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 We define a sequence of functions { fm(x) } for

 X in [0,1] by induction, as follows:
 2

 Set s (x-1) and for m j> 1, set

 f m (x) = < f .(t m )-f 111-1 , (a) m , m f- ,Ca_) + m 111-1 , m (x-a )2 , xeCt ,a ]
 m-l m - _ m m m

 (t-a)2
 m m

 { fm(x) } is a monotonically decreasing sequence
 of bounded, continuous functions on [0,1].

 Let lim f„(x) = f (x) . in
 m -H»

 We note that for each m £ 0 , the right hand deri-

 vative of is negative for x in [0,1) and the left

 hand derivative is zero whenever x = a^, k jÇ m and neg-
 ative otherwise , for x in (0,1].

 Since the left hand derivative of f(x) is zero

 whenever x = a^, m > 1, it is interesting to note that
 the above theorem implies that { x : D+f(x) = 0 } is

 dense in [0,1],

 Lemma: If f(x) is a real valued function of a

 real variable which is continuous on the left and if

 { X : D+f (x) ¿ X > is dense for same, real minhsr then

 { x : D~f(x) £ X } is dense.

 Proof: Without loss of generality, assume X = 0.

 Let (a,b) be any interval. There exists Xļ in (a,b) such
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 that D+f(xx) > -1. Therefore, there exists > 0 such

 that for some t in (x1,x1+61),

 f(t) > f(x:) - (t-Xj).

 Since f(t) = lim f(u), it can be seen that there
 u-»-t"

 exists r > 0 such that for every u in (t-r,t)

 f(u) > f(x:) - (u-xx).

 Choose r such that (t-r,t) C. (x^xj+ói). There

 exists x2 in (t-r,t) such that D+f(x2) > -1/2. Therefore,

 there exists ó2 > 0 such that for some v in (x2,x2+52),

 fCv) > f(x2) -(1/2) ( v-x2 ) .

 The number <S2 can be so chosen that 0 < <S2 < 1/2

 and x2 + ô2 < xx + 5 x .

 We can find x3 in (x2,x2+ô2) such that D+f(x3) >

 -1/3 and f(x3) > f(x2) -Cl/2 ) (x3-x2 ) .

 Continuing in this manner we obtain a decreasing

 sequence of intervals { (x .x +5„) } where ¿ < 1/n and
 n n n n

 f(x ^ ) > f(x ) - (l/n)(x .-,-x ) for each positive
 n+i ^ n n+1 n

 integer n.
 00

 Let w = f"ļ (x ,x +6_).
 In n n

 If m and p are positive integers such that p > m,

 then it can be seen that

 f(x ) > f(x ) - (l/m)(x -x ).
 p m Pm

 Keeping m fixed and taking the limit as p goes

 to infinity and noting that x w~ so that f(w)=lim f(x )
 n n-*00 n
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 we get f (w) > f (x ) - (l/m)(w-x m ). m m

 f(w) - f(x)
 i.e.

 w * xm

 Since this is true for each m, we get D*"f(w) ^ 0.

 Theorem 2: If f(x) is a continuous, real valued

 function of a real variable and X any real number, then

 the following statements are equivalent.

 (a) { x : D f(x) >, X } is dense.

 (b) { x : D+f(x) j> X } is dense.
 Proof : Follows immediately from the above lemma.

 Remark : Let f(x) be a continuous, real valued

 function of a real variable. The following six statements

 are equivalent .

 (1) { x : D f(x) > -a } is dense for each a > 0.

 (2) { x : D~f(x) > -a } is dense for each a > 0.

 (3) { x : D+f (x) > -a } is dense for each a > 0.
 (4) { x : D+f(x) > -a } is dense for each a > 0.
 (5) { x : D~f(x) > 0 } is dense.

 (6) { x : D+f (x) £ 0 } is dense.

 The first four statements are equivalent because,

 of Dini's theorem [1]. In the proof of theorem 1 we have

 actually proved that statement 1 implies statement 6 .

 Clearly statement 6 implies statement 4-. Statement 6 and

 statement 5 are equivalent by theorem 2 .

 153



 Whether the following 2 statements for
 continuous functions :

 (1) { X : D_f(x) > 0 } is dense,

 (2) { X : D f(x) 0 } is dense,

 are (a) equivalent to each other and (b) to the above

 mentioned six statements remain open questions.

 I wish to thank professors D. W. Solomon and

 R. J. O'Halley of the University of Wisconsin, Milwaukee

 for many helpful discussions relating to theorem 1.
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