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 MEASURABILITY OF PEANO DERIVATES

 AND APPROXIMATE PEANO DERIVATES

 Abstract

 We prove that Peano derivatives and approximate Peano derivatives
 of measurable functions are measurable.

 The measurability of Peano derivates of order k > 2 of a measurable func-
 tion does not seem to be covered in the literature, although some authors
 sometimes used this while proving related results. Since the measurability of
 the Peano derivates of measurable functions is not automatic it is desirable

 that it is proved somewhere. The purpose of the present note is to offer the
 proofs of the measurability of the Peano derivates and approximate Peano
 derivates of measurable functions. It is worthwhile to mention that this work

 was inspired by valuable communications from Professor C.E. Weil which are
 gratefully acknowledged.

 2. Preliminaries

 Let / be a real function defined in some neighborhood of x. Then / is said to
 have Peano derivative (resp. approximate Peano derivative) at x of order k if
 there exist real numbers a, , 1 < i < k depending on x and / only such that

 k ^ ¿X ļk
 f{x+t ) = f(x) + ^2 ^ -a,- + - ek(x,t,f)

 i = 1

 where

 lim £k{x,t,f) = 0 (resp. lim ap ek(x,t,f) = 0).
 t ,mY 0
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 The number a* is called the Peano derivative (resp. approximate Peano
 derivative) of / at x of order k and is denoted by /(/t)(x) (resp. /(*),a(®))-
 For convenience we take ao = f(x) = /(o)(x) = /(o),a(*)-
 Suppose that / has Peano derivative (resp. approximate Peano derivative)

 at x of order k. For t ^ 0 write
 k

 wfc+i(*. *; /) = w*+i(*. <) = + *) - ¿ ļr «J-
 i=0

 The right-hand upper (resp. approximate upper) Peano derivate of / at x of
 order k + 1 is defined by

 /(fc+i)(*) =limsupwfc+i(x,ť) (resp. /<t+i),a(x)

 = lim sup ap u>k+i (x,t)).
 t- f

 The other derivates are defined analogously. If all the four Peano derivates
 (resp. approximate Peano derivates) at a point x are equal then the common
 value is called the Peano derivative (resp. approximate Peano derivate) of /
 at x (possibly infinite) of order k - 1-1.

 The first order derivates (resp. approximate derivates) of / at x are denoted

 by $)(*). Z(+i)(x)' foi*)' (resp- Îï),«(*)«
 /~) a(x)). The Lebesgue measure will be denoted by /2, the set of all positive
 integers by N and the set of all real numbers by R.

 3. Measurability of Peano derivates

 Theorem 1 Let f : R - ► R be measurable and let k 6 N. Then the set Ek C R
 of points x such that f(k){x) exists finitely is measurable and f^) is measurable

 on Ek. Further f++ļ), f£k+1), l^k+i) are a 11 measurable on E>=-

 Proof. For each n E N, let

 Fn(*) = n*£(-l)fc-ť (*) ^ /(*+£)• *'= 0 ^ '

 Since / is measurable, Fn is measurable. Also

 /(*)(«)= ļimi £(-1)*-' Q) ^ f(x + it) = lim Fn(x) 1=0 ^ '
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 for X G Ek- Hence the first part is clear. We prove the second part. For n € N,
 define

 gn(x)= sup uik+i{x,t), X € Ek.
 0<t< 1/n

 Let 77, £ be arbitrarily small positive numbers. Since by the above, /,
 /(i)» • • • > /(*) are measurable on Ek , there is a perfect set P = Pv C Ek such
 that fi(Ek ~ P) < T) and the functions /,/(1), • • •>/(*) are continuous on P
 relative to P. Let xo G P. Then there is £, 0 < £ - xo < 1/n such that

 (3.1) gn(x 0) - e< Wfc+i(a?o,Ç- x0).

 Since cj/c+i(x, £ - x), as a function of x, is continuous at xo relative to P, there
 is 0 < S , min[£ - xo, 1/n - £ + xo], such that

 (3.2)
 'u>k+i{x,£ - x) -u^+i(x0,£ - x0)| < e for x G P H (x0 - Í, x0 + 6).

 From (3.1) and (3.2)

 (3.3) gn{xo) - 26 < u;/c+i(x,£ - x) for x G P H (x0 - Í, x0 + ¿).

 Now, if x G P H (xo - Í, xo + á) then

 £ - x = £ - x0 4- x0 - x < f - x0 -f J < £ - x0 + 1/n - f + x0 = 1/n

 and

 £ - x = £ - x0 4- x0 - x > S + x0 - x > 0.

 Hence from (3.3)

 9n{x 0) -2e < gn{x) for x G P H (x0 - <S, x0 + S).

 So gn is lower semicontinuous at x0 relative to P. Since xo is any point of
 P, gn is lower semicontinuous on P relative to P. Thus gn is measurable on
 P. Since 77 is arbitrary, it follows that for each j/EN, there is a perfect set
 Pi/ C Ek such that fi(Ek ~ Pu) < l/v and gn is measurable on Pv . Hence gn
 is measurable on U^Li Since

 00 00

 fi(Ek ~ (^J Pi/) = //(pļ {Ek ~ Pu)) < l¿{Ek ~ Pu) < l/v
 u=ì v=l

 for all v G N, ļi(Ek ~ U^Li ^u) = 0 and so gn is measurable on Ek- Since

 f(k+ i)M = x €

 it follows that is measurable on Ek • Similar arguments hold for

 ¿(I- + 1)' and £(& + !)■
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 Corollary 1 Let f : M - > M' be measurable. Then the set E Cl of points x
 such that f(k)(x) exists (possibly infinite ) is measurable and f(k) is measurable
 on E.

 Proof. Since /(fc) = f£k) = /+ } whenever Ąk) exists (possibly
 infinite) the proof follows from the above theorem. □

 4. Remarks

 1. Since the Cesaro deri vates of order k (for definition see [5]) are Peano
 derivates of order k + 1 of continuous function [1], the Cesaro derivates are
 also measurable.

 2. In [2, p. 54] the authors proved that a finite n-th Peano derivative of
 a measurable function / is measurable and remarked that similar argument

 would give the measurability of f(n+i) and /(n+1j which is not true [6, p. 20].

 Now from Theorem 1 the measurability of /(n+i) and /^n+1j follows and the
 results obtained there remain valid. (We take this opportunity to mention
 that the defect mentioned in [6, pp. 19-20] has been corrected in two ways
 [3,7])-

 3. It may be of some interest to note that the set

 {x : x £ Ek'y |wfc+i(x-,ť)| < m for 0 < 't' < l/n} Gmn -

 is measurable. In fact, from the second part of the above proof, the function

 hn{x) = sup |wfc+i(x,*)|, x £ Ek
 0<|i|<l/n

 is measurable. Since Gmn = {x : x E Ek) hn(x) < m} the result follows.
 Similarly for every e > 0 the set

 Hen = {x : x e Ek] < e for 0 < 't' < l/n}

 is measurable. The measurability of the sets Gmn and Hen are used in various
 cases before.

 5. Measurability of approximate Peano derivates

 Lemma 1 Let Q C M be a measurable set and let f : Q - ¥ M be measurable.
 Let ¿gN. Let

 Eo = Q

 Ei = {x : x G /(,),n(x) exists finitely }, 1 < i < k.
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 Suppose that E, is measurable and 2S measurable on E¡ for 1 < i < k.

 Then /¿+1)>a, Ķ+l)>a, £¡k+1)¡a, /J+i),« are alł measurable on Ek.

 Proof. We first suppose, as a special case, that Q is bounded and closed,
 Q = Ek and /, /(i),a> • • • > /(fc).a are all continuous on Q relative to Q. Let

 P = {x : X e Q] f+k+lU{x) < a}

 where a G M. Let D be the set of all points of Q which are also points of
 density of Q. For each x G Q and n E N, let

 (5.1) Gn(x) = {t :t>x, t € Q; f(t) - ^2 ^ ^ /(,•), a (g)
 i = 0

 (f _ xi^ + 1

 [,2cm] < (a + i/n)iLr|Lr}. (f _ xi^ +

 Then Gn(x) is measurable. For ra, n G N, let

 (5.2)

 <?£,m,n = {* : X € Q; /j(Gn(x) n [x, x + ft]) > (1 - l/m)h for 0 < h < Ì}.

 Then

 (5.3) P n £> c fļ D U c P-
 n m l

 To see this let x £ P D D. Then /(t+i) a(x) - a an<^ x *s a P°^ density of
 Q. So for each n G N, x is a point of right density of Gn(x). Hence for any
 m G N there is £ G N such that x G Qt,m,n • This proves the first inclusion in
 (5.3). Next, let x G Q¿,m,n for each m, n G N and some i G N. Then x is a
 point of right density of Gn(x) for each n G N. Hence x G Pì which proves
 the second inclusion in (5.3).

 Let ti ra, n be fixed. We show that Qi.m.n is closed. Let {xt} be any
 sequence in Q¿1n,m which converges to xo- Then since Q is closed, xo G Q .
 Let 0 < h < ifi. Let

 (5.4) Hi = Gn{xi ) H fa, Xi + ń], i G N U {0}.

 Then from (5.2)

 (5.5) ß{Hi) > (1 - l/m)h for i G N.
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 Let £ G Hi for infinite values of i. So there is a sequence {iv} C N such
 that f G Hiv for all v G N. Hence £ G [xo, xo + A]. Since £ G ^or
 v G N, we have from (5.1) f > xti/, f G Q and

 * K) 2^f j' hò),*'xi») ^ (a + Vn) ^ + ļj,

 for all i/- G N. Since /, /(i),a> • • • , f(k),a are continuous on Q, £ > xo, f G Q
 and

 X/Ć' (i - XoV £ { ' ^ i . 1 / ' (£ ®o)fc+1
 - ļL

 and hence f G Gn(xo). So £ G i/o- Thus

 oo oo

 fl (J Hi C iřo.
 r=l izzr

 Since Fr = U^r *s decreasing and F' is a bounded set,
 oo

 lim M(Fr)=p(pl 1 1 fi-) <*«(#>). r- >oo 1 1
 r= 1

 Since li(Hi) < /¿(-Fr) for i > r we have

 lim sup /¿(/ft ) < lim /i(iV) < p{Hq).
 1-foo r-+oo

 Hence from (5.5) (1 - 1 /m)h < fi(Ho). Since h is arbitrary, this gives, using
 (5.4) and (5.2), that x0 € Qi,m,n • So, Q/,m,n is closed. Hence fļ„ fim U/ Qt,m,n
 is measurable. Since P and P fi D differ by a set of measure zero, P is
 measurable.

 Now we come to the proof of the general case. Let Q be bounded. Let
 e > 0 be arbitrary. Since Ek is measurable and /, /(i),a> ••• >/(*),<* are mea-
 surable on Ek there is a perfect set Qo C Ek , such that //(£* ~ Qo) < e
 and /, /(i),aj • • • j f(k),a are continuous on Qo relative to Qo- Then, by the

 above special case, /(£+1) a is measurable on Qo- Since e is arbitrary, f(k+i) a
 is measurable on Ek • If Q is unbounded, we apply the argument on Qn =
 Q fi [- n,n], n G N. Since Q = U Qn, /(l+i) a *s measurable on Ek - Simi-

 larly /^+1) a> f[k+ 1) a' Í(L+ 1) a are measurat>le on This completes the
 proof.
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 Theorem 2 Let Q be a measurable set and let f : Q - > M be measurable.
 Let k G N. Let Ek be the set of points x G Q such that f(k)ta(x) exists and
 is finite. Then Ek is measurable and f(k),a is measurable on Ek - Further

 /£+!),„. /J+D.a- Ķ+I),a> 47.+i),a are M measurable on Ek.

 Proof. Since / is measurable, a, etc. are all measurable [8, p. 299; 4].
 Hence the set

 = {*:*€ G; - oo < /J)>a(*) = /J)i0(«) = f(i),a(x) = L(1)>a(x) < °°>

 is measurable and /(i),a is measurable on E'. Putting k = 1 in the lead we

 have that ^ a, a, ^ a are all measurable on E'. Hence the set

 E2 = {x : z € Ei' -oo < f?2)t„(x) = f*2ha{x) = /(¡),0(x) = í(~a),«(x) < 00 }

 is measurable and /(2), a is measurable on E'o- Putting k = 2 in the lemma

 /(3) a etc-> are measurable on i?2- Proceeding inductively the set

 = {x : 2 G J5fc-lî "OO < /(t),a(X) = Z(*)|fl(X)> = f(k),a(X) = Z(/c),a(X) < °°^

 is measurable and f(k),a is measurable on Ek- By the lemma /(*.+1) a are all
 measurable on Ek- This completes the proof.

 Corollary 2 Let f : Q - » R be measurable . Then the set E C Q of points x
 such that f(k),n (z) existe (possibly infinite ) is measurable and f(k),a is measur-
 able on E.

 The proof is similar to that of Corollary 1 .

 The authors wish to thank the referee for his suggestion which improves
 the presentation of the paper.
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