Krzysztof Ciesielski, Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, e-mail: kcies@wvnvms.wvnet.edu

UNIFORMLY ANTISYMMETRIC FUNCTIONS, UNIFORMLY ANTI-SCHWARZ FUNCTIONS

A function $f : \mathbb{R} \to \mathbb{R}$ is symmetrically continuous if for every $x \in \mathbb{R}$

$$\lim_{h \to 0^+} |f(x-h) - f(x+h)| = 0.$$

As an opposite to this notion we say that a function $f : \mathbb{R} \to \mathbb{R}$ is uniformly antisymmetric (or nowhere weakly symmetrically continuous) provided for every $x \in \mathbb{R}$

(1)
$$(\exists g > 0)(\forall 0 < h < g) |f(x - h) - f(x + h)| \ge g.$$

It is easy to see that that for $f \colon \mathbb{R} \to \mathbb{N}$ condition (1) is equivalent to

(2)
$$(\exists g > 0)(\forall 0 < h < g) \ f(x - h) \neq f(x + h).$$

Moreover, if

$$S_x = \{h > 0 : f(x - h) = f(x + h)\}$$

then (2) is equivalent to

 $\inf S_x > 0.$

Theorem 1 [3] There exists a function $f : \mathbb{R} \to \mathbb{N}$ for which S_x is finite for every $x \in \mathbb{R}$. In particular, f is uniformly antisymmetric.

Open Problem 1 [3, 6] Does there exist a uniformly antisymmetric function $f : \mathbb{R} \to \mathbb{R}$ with bounded range?

Open Problem 2 [3] Does there exist a uniformly antisymmetric function $f : \mathbb{R} \to \mathbb{N}$ with finite range?

Known facts concerning Problem 2.

Theorem 2 [5] There is no function $f : \mathbb{R} \to \mathbb{N}$ with finite range for which every set S_x is finite.

For $g: \mathbb{R} \to (0, \infty)$ let G_g be an infinite graph on \mathbb{R} such that vertices x + hand x - h are connected in G_g if and only if 0 < |h| < g(x).

Theorem 3 [1] There exists a uniformly antisymmetric function $f: \mathbb{R} \to \{1, 2, ..., n\}$ if and only if there exists $g: \mathbb{R} \to (0, \infty)$ such that graph G_g is n-colorable.

Recall that for a natural number n > 1 symbol K_n stands for the graph with n vertices and all possible edges. Clearly K_{n+1} is not n-colorable.

Theorem 4 [1] For every $g : \mathbb{R} \to (0, \infty)$ graph G_g contains K_4 as a subgraph. In particular, there is no uniformly antisymmetric function with three element range.

Theorem 5 [2] If the Continuum Hypothesis holds then there exists $g: \mathbb{R} \to (0,\infty)$ such that K_5 cannot be embedded into G_g .

A notion dual to that of symmetric continuity is Schwarz continuity [6]. More precisely, a function $f: \mathbb{R} \to \mathbb{R}$ is Schwarz continuous if for every $x \in \mathbb{R}$

$$\lim_{h \to 0^+} |f(x-h) + f(x+h) - 2f(x)| = 0.$$

In opposite to it we say that a function $f: \mathbb{R} \to \mathbb{R}$ is uniformly anti-Schwarz if for every $x \in \mathbb{R}$

$$(\exists g > 0)(\forall 0 < h < g) |f(x - h) + f(x + h) - 2f(x)| \ge g.$$

Theorem 6 [2] There exists an anti-Schwarz function $f : \mathbb{R} \to \mathbb{R}$ with bounded countable range.

Open Problem 3 [2] Does there exist an anti-Schwarz function $f : \mathbb{R} \to \mathbb{R}$ with two element (or finite) range?

The existence of uniformly antisymmetric function $f : \mathbb{R}^2 \to \mathbb{N}$ seems to be also related to the following problem of P. Erdös.

Open Problem 4 [4, p. 314] Does there exist a decomposition of \mathbb{R}^2 into countable many sets such that none of the sets spans an isosceles triangle?

Such a decomposition is known to exist under the Continuum Hypothesis.

References

- K. Ciesielski, On range of uniformly antisymmetric functions, Real Analysis Exchange 19(2) (1993-94), 616-619.
- [2] K. Ciesielski, Uniformly antisymmetric functions and K_5 , preprint.
- [3] K. Ciesielski, L. Larson, Uniformly antisymmetric functions, Real Analysis Exchange 19(1) (1993-94), 226-235.
- [4] Set theoretic constructions in Euclidean spaces, in: New Trends in Discrete and computational Geometry, (J. Pach, ed.) Algorithms and Combinatorics 10, 1993, Springer-Verlag, 303-325.
- [5] P. Komjáth and S. Shelah, On uniformly antisymmetric functions, Real Analysis Exchange 19(1) (1993-94), 218-225.
- [6] Brian Thomson, Symmetric Properties of Real Functions, Marcel Dekker, 1994.