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 WHERE ANALYSIS, TOPOLOGY AND SET
 THEORY MEET:

 WHICH MATHEMATICAL OBJECTS CAN

 BE INTERESTING FOR TOPOLOGISTS?

 The apparent success of topology as a branch of mathematics can be un-
 doubtedly attributed to its wide applicability to the problems originated from
 the other parts of mathematics. Such applications include a large variety of
 results from the theory of real functions leading to the creation of functional
 analysis. All these early applications, however, were limited to the objects (like
 normed vector spaces) in which the topological structure was naturally exist-
 ing. Can we apply topological methods for other natural "non-topological"
 mathematical objects? Can such "non-topological" objects be "made topolog-
 ical?" Here, we "make object topological" by finding a topological structure
 on a space (or spaces) involved from which the object under consideration can
 be defined in purely topological terms. For example, a family Q of subsets of
 a set X can be made topological by finding a topology r on X such that Q is
 equal to either of: the topology r, the family of all r-closed sets, the family of
 all r-Borel sets, the family of all G s sets, the ideal of all r-nowhere dense sets,
 the (7-ideal of all r- meager sets, etc. Similarly, a family T of functions from a
 set X into a set Y can be made topological by finding the topologies a and r
 on X and Y , respectively, such that the family T is equal to the family of: all
 continuous functions from (X, <r) into (Y, r), all Baire one functions, all Borei
 functions, etc.

 This note sketches the recent study in this direction. It is based on articles
 [2], [1], and [3] and consists on three corresponding parts.

 Which classes of real functions can be topologized? In particular,
 can we topologize the following classes: A - of differentiate functions, A - of
 analytic functions, V - of polynomials, or C - of linear functions f(x) = ax +6?

 Theorem 1 Let C°° C T C KR be o-closed. If T can be topologized then
 T is closed under max and min. In particular , classes C°° and A cannot be
 topologized.
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 Theorem 2 Let A = real or complex analytic functions. If GCH holds then
 there is a Hausdorff ' connected topology r s.t. T = C{tw , r) for every T C A
 with Const C T . Moreover, it is consistent that rw and r are completely
 regular.

 Corollary 1 It is consistent that there are completely regular , connected topo-
 logies rA, tv and tc s.t., A = C(rAvrA), V = C(rViTV), and C = C(tc,tc).

 Harmonic functions from Mn into M can be topologized the same way.

 Problem 1 Can we prove Thm 2 without any additional set-theoretical as-
 sumptions? Can topologies from Thm 2 be normal? Lindelöf? hereditarily
 Lindelöf? compact? metrizable?

 There is, in ZFC, a HausdorfF, connected topology r s.t. T = C(rWir) n
 C(To,To) for every T C A with Const C T.

 Topologizing uniformly continuous functions. For which metric
 spaces X and Y the class U(X , Y) of all uniformly continuous functions from
 X to Y can be topologized as C(cr, r)?

 If X is compact or discrete then U ( X , Y) = C(XÌ Y) for any Y.

 Theorem 3 TFAE for any metric space ( X , d)

 -U(X, R) can be topologized;

 -U(X, Y) can be topologized for some Y containing an arc;

 - U{X , Y) can be topologized for any Y .

 Example 1 - U(D , D ) cannot be topologized for any dense Del.

 - There are Bernstein sets D,Y C M s.t. U(D,Y) can be topologized. In par-
 ticular, U{D,Y) can be topologized, whileU(D,D ) and U{D, M) cannot
 be.

 For a connected C CM, K{Ci C) can be topologized iff C is compact.

 Theorem 4 There is connected closed unbounded subset X C M 2 such that
 U(XÌ X) = C(r, r) for some connected Polish top. r on X .

 Making ideals nowhere dense or meager. Let J be an ideal on a
 set X. Can we find a topology r on X such that J is equal to the ideal of
 r-meager sets? or r- nowhere dense sets? How good such topologies can be?
 All ideals will be ^ V(X).

 If J is a (T-ideal and r makes J nowhere dense then r makes J meager.
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 Theorem 5 For every ideal J onX the family tj = J)'J{X'A : A 6
 J} is a To top. making J nowhere dense. Moreover , tj is T' if{JJ = X.

 Since now, all topologies will be at least T'. They will be T2, if (J J = X.

 Theorem 6 There is metrizable top. making V(S) nowhere dense 2j¡f|X'S| >
 u and IXXSI" > 'S'.

 Theorem 7 (GCH) TFAE:

 (i) there is compact T2 making V{X) nowhere dense;

 (ii) there is T2 making V(X) nowhere dense;

 (iii) 'X ' S| > u) and |5| < 22,XVSI.

 Problem 2 Can Thm 7 be proved on ZFC?

 Since now, all ideals will be ^-ideals containing all singletons.
 An uncountable separable metric space is a Lusin space if M eager (X ) =

 [X]-w. It is known that CH implies that there is Lusin space, while MAH - 'CH
 implies that there is no uncountable Hausdorff space X with Meager(X) =
 [X]-w. Thus, Theorems 8 and 9 cannot be proved in ZFC.

 Theorem 8 (CH) For any a-ideal J on a set. X of cardinality continuum
 there is a Hausdorff top. making J meager.

 Theorem 9 It is consistent with ZFC+GCH that for every a -ideal J on M
 s. t.

 [M]-"1 CJC Meager U Null
 there is Hausdorff zero dimensional top. on M making J nowhere dense.
 Moreover , for the ideals with cofinality < <jJ' the conclusion follows from CH.

 Corollary 2 (CH) Ideals of strong measure zero sets and of null sets can be
 made nowhere dense by Hausdorff zero dimensional top.

 Corollary 3 It is consistent with ZFC+GCH that ideals of perfectly meager
 sets and universally measure zero sets can be made nowhere dense by Hausdorff
 zero dimensional top.

 Problem 3 Can we find in ZFC a zero dimensional Hausdorff topology on IR
 making meager sets nowhere dense?

 It is easy to see that under Martin's Axiom such a topology exists.

 Problem 4 Can topologies from Thm 9 be normal? compact? metrizable? In
 particular j can we have such topologies for the ideals of meager sets or null
 sets?
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