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APPROXIMATE CORE TOPOLOGIES

1 Introduction

The purpose of this paper is to introduce some topologies connected with
the notions of density and Z-density in ways which are analogous to the core
topology on the plane. The core topology can be considered in every linear
space X and is related to the linear structure of the space. It is an example
(important in the theory of functional equations) of a semilinear topology
which is not linear if the dimension of X is greater than one (cf. [K], [KK],
[Ko], [V]). Topologies presented here are modifications of the core topology
similar to the d-crosswise topology (cf. [LMZ], page 98.)

Recall the basic notions.

Let A C R% A point z € A is said to be an algebraically interior point of
A if and only if for each y € R? there exists € > 0 such that z + ty € A for
t € (—¢,¢€), i.e. A contains an open segment centered at z in every direction.
The set of all points which are algebraically interior to A is denoted by core A.
A set A C R? s called algebraically open if A = core A. The family

T:{ACRZ:AzcoreA}

forms a topology in R called the core topology. »

The paper consists of two parts. In the first one we introduce two topolo-
gies: T;,. and Tgpc analogous to the core topology on the plane. Here the role
of the Euclidean topology on the real line in every direction is played by the
density topology d; on the real line. We demonstrate that 7gp. is stronger
than d; x d; and weaker than the ordinary density topology ds on the plane;
the topologies 75y and d4 (strong density topology on the plane) are incom-
parable. For the terminology and definitions of density point and the density
topologies on the real line and on the plane, see [GNN].

In the second part, analogous considerations are carried out for Baire cat-
egory, but different results are obtained. The topology Tzap. is stronger than
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the product of Z-density topologies dz, x dz,, but the topologies 7145 and dz,,
and also 7z4pc and d’z,: are incomparable, where dz,, d%; denote the Z-density
topology and the strong Z-density topology on the plane, respectively. For the
terminology and definitions of Z-density point and the Z-density topologies on
the real line and on the plane, see [PWW1], [PWW2], [W] and [CW].

2 The Measure Density Case

Let R denote the real line, R?, the plane and N, the set of positive integers.

The ball centered at a point (z,y) and with radius r will be denoted by
K((z,y),r).

i We denote by my (m}) Lebesgue measure (outer Lebesgue measure) on
R k=1,2.

Let di(E, p) denote the density of the measurable set E at a point p in R,
k=1,2.

If a plane set is contained in a line, then we shall consider its linear measure
and we use the linear density (d;).

It will be necessary to consider various topological operations such as clo-
sure (Cl) or interior (Int), with respect to several different topologies. For this
reason, we have adopted the convention of preceding any such notion by the
symbol of the topology. When no prefix appears, it should be assumed that
the Euclidean topology is meant.

Let A A B denote the symmetric difference of A and B.

Definition 2.1 We say that a point (zo,y0) € R? is an approzimate core
interior point or simply an apc-interior point of a set A C R? if and only if
(z0,y0) € A and, for each line p passing through the point (zo,yo), the inner
density of ANp at (zo,yo) is 1, that is there exists a linearly measurable set
B Cc ANp such that

(1) di(B, (2o, %)) = 1.

The set of all apc-interior points of A C R? will be called the approximate
core of A and denoted by ap—core A:

ap—core A = {a € A : a is an apc-interior point of A}.

Put 7;,. = {A C R?: A = ap—core A}. Since (1) is preserved under finite
intersections and arbitrary unions, we obtain that 7;,. is a topology on the
plane, which we may think of as the unrestricted approximate core topology.

Obviously, Tg,.- Int A C ap—core A for each A C R2. The inverse inclusion
need not hold. Indeed, let E = |52, (an,bn) U{0} U U, (—bn, —as) where
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Gn41 < bpy1 < ap for n €N, limy 0 by, = 0 and dq(E,0) = 1. Put
A=K((1,0),1)UK((-1,0),1)U ({0} x E).

Then (0,0) € ap—core 4, but (0,0) ¢ 7,,.-Int A.

It would be easier to take the interval [—1, 1] instead of the more compli-
cated set E, but we obtained simultaneously an example of a set A, for which
(0,0) belongs to ap-core A and does not belong to core A.

If EC R?2and if ¢ € R, then let

(a,a)E = {(az,ay) : (z,y) € E} = {(O,ar) : (O,r) € E}

(the last description in polar co-ordinates), and let (E), denote the set E
rotated by an angle a.
Let dy x d; denote the product of two density topologies.

Theorem 2.1 di x di G Tg..

PrROOF. Let E C R? E € d; x d; and let (zo,y0) be an arbitrary point
of E. We may assume that zo = yo = 0. There exist two dj-open sets A,
B such that 0 € A, 0 € B and A x B C E. We shall show that (0,0) is
an ape-interior point of E. Let p be an arbitrary line passing through (0, 0),
p = {rcosa,rsina), r € R}. Since the desired conclusion is clear if p lies on
coordinate axes, we may assume that cosa # 0 and sina # 0. If

1 AN 1

cos a sin a

Cq =

B,

then di(Cq,0) = 1, and clearly {(rcosa,rsina) : r € Co} C pNE, so
di(pN E, (0,0)) = 1. Consequently, (o, yo) is an apc-interior point of E, and
E € T

Observe that dy x di # T, because T, is rotation invariant and d; x dy
does not have this property (see [WB]).O

It is easy to see that in the topology 7, there are also non-measurable
sets. Sierpinski proved (Fund. Math. vol. 1, page 112, see also [O], th. 14.4)
that there exists a plane set E such that E meets every closed set of positive
plane measure, and no three points of E are collinear. It is clear that such
a set E cannot be measurable. Obviously, R?\E is also non-measurable, and
R?\E € T,,.. However, if A € T, and p is a straight line, then ANp is
measurable (as a linear set).

Definition 2.2 We say that a set A C R? is approrimately core open or
simply apc-open if and only if A is a measurable set and each point (z,y) € A
is an apc-interior point of A.
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Let £, denote the family of all Lebesgue measurable subsets of the plane.
Put Tape = {A € L3 : A = ap—core A} Obviously, the family Tgp is identical
with the family of all apc-open sets, and Tapc = T, N L2. We shall show that
Tape is a topology on the plane, stronger than d; x d; and weaker than the
ordinary density topology d; on the plane. We may call 75, the approximate
core topology on the plane.

Let pe denote the half-line running from the origin and forming an angle
© with the z-axis, @ € [0,27). We shall need the following lemmas:

Lemma 2.2 Let H C [0,27) be a measurable set and let 0 < a < r. If
E C K((0,0),r) is a plane measurable set (E € L3) such that

19 Eg = E Npe is linearly measurable for each © € H,
2° my(Eg) < a for each © € H,

/H (/0 Xoo (t)tdt)d@ < ii(;—_"—)?ml(ﬂ).

PROOF. Let @ € H. Observe that

r r 2 _ (p_ )2
/er(t)tdtS/ t»dt:—r———(r—i.
0 r—a 2

2 (n_ )2
Consequently, [, ( Jo xs, ()2 dt) de < #

then

my(H). So, the proof of

Lemma is accomplished. O
Let pe(h) denote the interval on the half-line pg, with endpoint at the
origin and with length .

Lemma 2.3 If G C K((0,0),r) is open, then the set
{©@ €[0,27) : m1(GNpe(r)) > r'}
is open for each r' < r.

PROOF. Let ©g € {© € [0,27) : m1(GNpo(r)) > r'}. The set G N pe,(r) is
open on the line pg,, so it can be represented as the union of a sequence of
nonoverlapping intervals (a,, b,), n € N. Obviously, m; (U;‘”:l(an, b,,)) >
o

n=1

Determine ng so that m; (U (an, b,.)) > r' and let [c,, dp] be a closed inter-

val such that [c,,dn] C (@n,bn) forn=1,...,n9 and m; (U:":l[cn,dn]) >l
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For each point p € |J,2,[cn,dn] there exists an open set V, (in the polar
co-ordinates) of the form

Vp = {(9,1‘) 10 € (90_61” 90+6P)’ re (p((0,0),p)—T’p, p((0,0),p)+1’p)},

where @, > 0, r, > 0, such that p € V;, V, C G and p denotes the Euclidean
distance in R?. The family of sets {V,Npe,, p € Un2,[cn, dn]} is an open cov-
ering of |J2, [cn, dn]. By the Borel-Lebesgue theorem there exists a finite sub-
family such that (%, [e, dn] C UY_, Vp: N o, Put @ = min{&,,, ...,0,}.
Then m; (G Npe(r)) > ml(UZ‘;l[cn,dn]) > 1/ for ©® € (@p — o, O + ),
which completes the proof.0]

Theorem 2.4 7;,. is a topology on the plane, stronger than d; x d; and
weaker than the ordinary density topology d2 on the plane.

ProOF. The only difficulty in this proof is to show that the union of an
arbitrary subfamily of 7,,. is a measurable set on the plane. For this purpose,
it is sufficient to demonstrate that 7apc C d2. Let A € Tape and (zo,y0) € A.
We may assume that zo = yo = 0. Let ¢ > 0. For each @ € [0,2r), there
exists 7@ > 0 such that if 0 < h < re, then m; (4 N pe(h)) > h(l — £/4).
(Recall that all sets A Npe(h) are measurable.)

Suppose that we have chosen re with the above mentioned property for
each @ € [0,27). Put B, = {@ € [0,27) : re > 1/n}. We have B,, C By, for
every n, and ;> B, = [0,27). Thus m}(B,) — 2m. There exists ng € N

such that m}(B,,) > 27 — €. Consequently, if ©® € B,,, and 0 < h < 1/nq,
then m; (A Npe(h)) > k(1 — e/4).
Let 0 < h < 1/no. Obviously, 41 K((0,0),) 5> AN (Usees,, po(h)).

We shall show that mj} (A N U@eB,.D p@(h)) > 7h%(1 —€). Let G be an
arbitrary open set such that A N Ugep, Po(h) C G.C K((0,0),h). For
© € By, we have ANpe(h) C GNpe(h), so mi(GNpea(h)) > h(1 —e/4).
Let us consider the set H = {@ € [0,27) : m1(G Npe(h)) > k(1 — /4)}.
Obviously, B,, C H. From Lemma 2.3 it follows that H is open. Clearly,
my(H) > m}(Bp,) > 27 —¢. Put E = K((0,0),h)\G. For ©® € H, we have
mi(Ee) = mi(pe(h)\(GNpe(h))) < h-e/4, so, by Lemma 2.2,

ma(E) = /0 " ( /0 ' Xse (t)tdt)dO = /H ( /0 ' Xz, (1)t dt)dO

2 2

h h € h
+/ / tdt)do< —(1-(1--)?) - 2n4+ — -¢
ooy Ly Koo (01)40 < (1= (1= 2)%) 2m 4 5

< whle.
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Hence my(G) > mh%(1 — €) and, consequently, by the arbitrariness of G

m} (Aﬁeg p@(h)) > mh?(1 —¢).

Therefore ma(AN K((0,0), k) > mh%(1 —¢). Letting ¢ — 0, we conclude that
da(4, (0,0)) = 1.

We have thus shown that 7;,c C d2. By Theorem 2.1 dy x d; C 7;’,,6.
Simultaneously, dy x dy C L3, so dy x di C Tape. Evidently, dy x dy # Tape
because 7gp. is rotation invariant and d; x d; does not have this property. We
shall prove that Tpc # da. Put E = R%\{(z,y) e R%: 0< 2, —z% <y < z?}.
Then E € dy\Tapc because di(E N po, (0,0)) = 3.0

We show that the topologies 7apc and d3 are incomparable.

Theorem 2.5 d3 ¢ Tapc, Tape € d.

PrROOF. Put A = (R%\{(z,y) € R?: y =0}) U{(0,0)}. It is easy to see that
A € d3\Tapc because dy(A N po, (0,0)) = 0.

Now, let E = Uff:l(a,,, bn) where ap41 < bpy1 < an forn € N, lim, 00 by =
0 and dy((—o0,0]U E,0) = 1. Let G, be an open set on the plane such that
(@n,bs) x {0} C Gn C {(z,y) eR?:0< z, —2* < y < z*}. Put

B = (R:\{(z,y) eR?:0< z, —2? <y<2?})U U Ghp.

n=1

Clearly, B € Tapc. On the other hand,

ma((R2\B)N[0,1/n) x [0,1/n%))
m2([0,1/n) x [0,1/n%))

v

i _iso
5 3N naoo 5 ’
so the upper strong density of R%\B at (0,0) is positive. Consequently, B ¢
d;.0

It is easy to see that the core topology is weaker than 7,p. and the set B
from Theorem 2.5 shows that, in fact, the last is essentially stronger.

3 The Category Density Case

Let Z; and Z; denote the families of meager sets on the real line and on the
plane, respectively. If a plane set is contained in a real line, then we shall
consider its linear Z-density (dz,).
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Definition 3.1 We say that a point (zo,y0) € R? is an I-approrimate core
interior point or more simply an Lapc-interior point of a set A C R? if and
only if (zo,yo0) € A and, for each line p passing through the point (zo,yo), the
inner I-density of ANp at (zo,yo) is 1, that is there exists a set B having the
Baire property such that BC ANp and

(2) dz, (B, (z0,%0)) = 1.

The set of all Zapc-interior points of A will be called Z-approximate core
of A and denoted by Z ap—core A:

T ap—core A = {a € A: a is an Zapc-interior point of A}.

Put 77,,. = {4 C R?: A = Zap-core A}. Since (2) is preserved under finite
intersections and arbitrary unions, we obtain that 77,,. is a topology on the
plane, which we may think of as the unrestricted Z-approximate core topology
on the plane.

Let dz, denote the Z-density topology on the real line (see [PWW1],
[PWW2]) and let dz, x dz, denote the product of two Z-density topologies.

Theorem 3.1 dz, x dz, G T7apc-

The proof of this theorem is analogous to that of Theorem 2.1.00

It is easy to see that the topology 77,,, contains some sets without the
Baire property. There exists a plane set E of the second category such that
no three points of F are collinear (see [O], th. 15.5). It is clear that such a
set E cannot have the Baire property. Obviously, R?\ E lacks the property of
Baire and R%\F € TZape- As in the case of measure, if A € 77,,, and pis a

straight line, then A N p has the Baire property (as a linear set).

Definition 3.2 We say that a set A C R? is Z-approzimate core open or
simply Zapc-open if and only if A has the Baire property and every point
(zo,y0) € A is an Zapc-interior point of A.

Let Bz denote the family of all sets having the Baire property on the
plane. Put 7745 = {A € B2 : A = Zap-core A}. Obviously, the family 7Tzapc
is identical with the family of all Zapc-open sets, and Tzapc = 7'1’01,c N B,.
We show that 7zqp. is a topology on the plane, stronger than dz, x dz,,
but incomparable with ordinary Z-density topology dz, on the plane (for the
definition and properties of dz, see [W], [CW]). We may call Tzqp. the Z-
approximate core topology on the plane.

Lemma 3.2 If A € Tzapc and A = (G\P1) U P,, where G is an open set and
P, P, € I,, then P, C ClIG.
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PRrOOF. Let (z,y) € P, and suppose that (z,y) ¢ ClG. We may assume that
z = y = 0. Then there exists 7 > 0 such that K((0,0),7) N A € Z5. From the
Kuratowski-Ulam theorem for polar co-ordinates, the set K((0,0),7) N ANpe
is of the first category (on the half-line pg) for all © € [0, 27) except a set of
the first category. Simultaneously, (0,0) € A and A € Tz4p.. Consequently,
(0,0) is an Zapc-interior point of A - a contradiction.O

Theorem 3.3 Tzqp. is a topology -on the plane, stronger than dr, x dz,.

ProoF. The only difficulty in this proof is to show that the union of an
arbitrary subfamily of 7Tzapc is a set having the Baire property on the plane.
Let A = {Aq, @ € I'} C Tzape. Then Ay = (Go\Pia) U Paq, where G4 is an
open set and P4, P2y € I for a € I'. By the theorem of Lindel6f there exists
the sequence {an}nen C I' such that J,ep Ga = Uz, G4, . From Lemma
3.2 we have

G Ga,,,\ O Pla,. C D (Ga,,\Pla,.) C U [(Ga\PIa) U P2oz]
n=1 n=1 n=1 a€l’

cU ClGaCCl(DGan) = (J GarU Py,

a€el n=1 n=1

where Py = Fr (Uf.°=1 Ga,.)- Obviously, Py € I, 50 Uqer Aa A Unzy Ga, €

7, and UaGF Ay € Bs.

By Theorem 3.1, dz, x d1, C T74p.. Simultaneously, dz, x dz, C Ba, so
dz, X dz, C Tzapc. Evidently, d1, x dz, # Tzapc, because Tzap. is rotation
invariant and dz, x dz, does not have this property (see [WB]).O

But here ends the analogy between the properties of 7apc and Tzapc, be-
tween the measure and category. We show that the topologies Tz4p. and dz,,
where dz, is an Z-density topology on the plane (cf. [W], [CW]), are incom-
parable.

Theorem 3.4 There erists a set A C R? having the Baire property on the
plane such that

1° (0,0) is an Z,-dispersion point of AN pe for each O € [0,2r),
2° (0,0) is not an I,-dispersion point of A.

PROOF. Let {an}nen be a decreasing sequence of positive numbers tending
to 0 such that an41/an, —— 0. Fixn € N. If j € {0,1,2,...,n2 — 1}.

n—o0o



200 E. WAGNER-B0OJAKOWSKA, W. WILCZYNSKI

Then j can be uniquely represented in the form j = n - k; + ¢;, where k;,1; €
{0,1,2,...,n—1}. Put

, m .
Anj ={(O,7)n i + k) 5 SO < (n-ij +k; + 1),
an - 26/™ < r < q, - 2K/

forn€Nandj€{0,1,2,...,n2~1} set Ap = y" Anj and A = U, Ap.
To prove 1° fix @ € [0,7). For each n € N there exists exactly one j €
{0,1,2,...,n%—1} such that pe intersects A, ;. Thus ANpg treated as a linear
set is of the form (J;—,[cn,dn), where [c,,dn) C [an,2a,) and d, = c,, - 21/7.

Hence dn41/cn —— 0, because dny1/¢n < 2anti1/an, (dn — ¢n)/cn ——
n—00 n—o00

and it suffices to use Theorem 2 from [W]. If @ € [, 27), then AN pe = 0.
To prove 2° take a sequence {t,}nen defined by ¢, = 1/(2a,). Ob-
serve that if (@g,r7) € P = {(©,r) : 0 < @ < m 1/2 < r < 1}, then
dist((¢n,tn) - A, (Oo,10)) = dist((tn,tn) - An,(@0,7m0)) < m/n. Hence for
arbitrary subsequence {n,}men and for arbitrary p € N we obtain that
Uzq’((t”m,tﬂm) - A) includes an open set dense in P. Consequently

limsup((tnm)tnm) : A) n -K((O’O)) 1) ¢ IZ;

which completes the proof.[]
Corollary 3.5 The topologies Tzqp. and dz, are incomparable.

PrROOF. Put E = (R?\ClA) U {(0,0)}, where A is the set from the last
theorem. Obviously, E € B2. If (z,y) € E and (z,y) # (0,0), then it is an
interior point of E in the Euclidean topology, so it is an Zapc-interior point
of E. From the last theorem (0, 0) is an Z;-dispersion point of Cl A N pe for
each © € [0,27). Hence (0,0) is an Z;-density point of pe\(ClA N pe) =
(R2\ C14) N pe. Consequently, (0,0) is an Zapc-interior point of E and E €
Tzape. From the second condition in Theorem 3.4 it follows that E ¢ dz,. Now
put B = (R:\{(z,y) : y = 0})U{(0,0)}. It is easy to see that B € dz,\Tz4pc.0

Let d7, denote the strong Z-density topology on the plane (see [W], [CW]).

Corollary 3.6 The topologies Trap. and dz, are incomparable.

The proof is analogous to the proof of Corollary 3.5.00

Obviously, the theorem analogous to Theorem 3.4 for measure does not
hold. On the other hand, both for measure and category it is possible to
construct a set A which has a “plane” dispersion point in (0,0), but (0, 0) is
not a “linear” dispersion point of A N pe for each © € [0, ).
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Theorem 3.7 There erists a set A C R? which is measurable and has the
Baire property such that

% (0,0) is a do- and Z,-dispersion point of A,

2° (0,0) is neither a d;- nor a I;-dispersion pomt of ANpe for each @ €
[0, 7).

PROOF. Let {an}nen be a decreasing sequence of positive numbers tending

to 0 such that ap41/a, —— 0. Each natural number n can be uniquely
n—00

represented in the following way: n = 2¥» 4+ 4,,, where k, is a natural number
or zero and i, € {0,1,2,...,2%» —1}. Put ©, = 7 -4, /2%~ and

A, ={(O6,r):0, <0< @,,+1r/2"", an <r<2a,}

Let A =J;~, An. Obviously, A is measurable and has the Baire property.

To prove 1° take an arbitrary increasing sequence {t, }nen of real numbers
tending to infinity. Let j, denote the natural number such that a;, < 1/
tn < aj,—1. (In any case additionally put ap = 1 + max(ay, 1/t1).) Observe
that

((tn,tn) - A) N K((0,0),1) C Sec(0;,,O;, + /2%)
U K((0,0),2a;,+1 - tn),

where Sec(@',0") = {(©,r):0'<O<O" r<1}.

Choose a subsequence {n;,}men such that {©;, }men is convergent. Put
6Oy = limpy 400 ©j,, . We show that limsup,,((ts,,,tn,.) - 4) N K((0,0),1) C
P@,, Which is obviously sufficient to show that (0,0) is simultaneously a ds-
and Z,-dispersion point of A.

Indeed, lim sup,, ((¢n,,,tn,.) A)ﬂK((O 0),1) C limsup,, Sec(®;, ,0;, +
7/2%i2m ) U lim sup,,, K((0,0), 2a;j, +1 - ta,). But the first upper limit is in-
cluded in pg,, since k, tends to mﬁmty together with n and the second is
included in {(0,0)}, since 2a;, 41 -tn,, — 0, by virtue of a;, -tn, <1

and ¢j, , +1/4j,, — 0.

To prove 2° fix @ € [0, 7). There exists a sequence {nm,}men tending to
infinity such that © € [O,,,,O,,, + m/2%"=) for each m € N. Thus AN pe
treated as a linear set is of the form (J;._,[an,.,2a,,.], so (0,0) obviously is
neither d;- nor Z;-dispersion point of A N pe.0

Let us observe also that if we define the operators ® : 28° — 2R” and
o1, : B? _y oR? by the formulae:

®(A) = {(z,y) € R?: (z,y) € ap-core (AU {z,y})}
91,(A) = {(z,y) €R’: (z,9) € Zap-core (AU {z,3})},
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then neither @ nor &7, is a lower density operator. Indeed, if A = R?\ E,
where E is the Sierpiniski set ([O], th. 14.4), then $(4) = R% s0 A A &(A) is
not of Lebesgue plane measure zero. Similarly, if E is the set from th. 15.5 in
[0], then for A = R?\E we have &7,(A) = R? and A A &1,(A) is not of the
first category. Also if A A B is of Lebesgue plane measure zero (of the first
category in the plane), then ®(A) need not be equal to #(B) (¥7,(A) need
not be equal to ¢7,(B)). To verify this it is sufficient to change A essentially
on one chosen straight line.
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