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 APPROXIMATE CORE TOPOLOGIES

 1 Introduction

 The purpose of this paper is to introduce some topologies connected with
 the notions of density and 2-density in ways which are analogous to the core
 topology on the plane. The core topology can be considered in every linear
 space X and is related to the linear structure of the space. It is an example
 (important in the theory of functional equations) of a semilinear topology
 which is not linear if the dimension of X is greater than one (cf. [K], [KK],
 [Ko], [V]). Topologies presented here are modifications of the core topology
 similar to the d-crosswise topology (cf. [LMZ], page 98.)

 Recall the basic notions.

 Let Act2. A point x G A is said to be an algebraically interior point of
 A if and only if for each y G M2 there exists e > 0 such that x + ty G A for
 t G (-£,£), i'e • A contains an open segment centered at x in every direction.
 The set of all points which are algebraically interior to A is denoted by core A.
 A set A C M 2 is called algebraically open if A = core A. The family

 T = {A C M2 : A = core A}

 forms a topology in M 2 called the core topology.
 The paper consists of two parts. In the first one we introduce two topolo-

 gies: T'apc an<3 Tape analogous to the core topology on the plane. Here the role
 of the Euclidean topology on the real line in every direction is played by the
 density topology d' on the real line. We demonstrate that Tape is stronger
 than d' x d' and weaker than the ordinary density topology di on the plane;
 the topologies Tape and dm2 (strong density topology on the plane) are incom-
 parable. For the terminology and definitions of density point and the density
 topologies on the real line and on the plane, see [GNN].

 In the second part, analogous considerations are carried out for Baire cat-
 egory, but different results are obtained. The topology Tjapc is stronger than
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 the product of Z-density topologies djí x dj1 , but the topologies Tiapc and dj2 ,

 and also Tiapc and dja, are incomparable, where dj2, dļ2 denote the Z-density
 topology and the strong Z-density topology on the plane, respectively. For the
 terminology and definitions of Z-density point and the Z-density topologies on
 the real line and on the plane, see [PWW1], [PWW2], [W] and [CW].

 2 The Measure Density Case

 Let M denote the real line, M2, the plane and N, the set of positive integers.
 The ball centered at a point (z,y) and with radius r will be denoted by

 K{{xty),r).
 We denote by rrik (mj) Lebesgue measure (outer Lebesgue measure) on

 IR*, k = 1,2.
 Let dk(E,p) denote the density of the measurable set E at a point p in M*,

 k= 1,2.
 If a plane set is contained in a line, then we shall consider its linear measure

 and we use the linear density (di).
 It will be necessary to consider various topological operations such as clo-

 sure (CI) or interior (Int), with respect to several different topologies. For this
 reason, we have adopted the convention of preceding any such notion by the
 symbol of the topology. When no prefix appears, it should be assumed that
 the Euclidean topology is meant.

 Let A A B denote the symmetric difference of A and B.

 Definition 2.1 We say that a point (xo,2/o) £ M2 is an approximate core
 interior point or simply an ape-interior point of a set A Cl2 if and only if
 (^o,2/o) £ A and , for each line p passing through the point (xo,yo), the inner
 density of A C'p at (xo,yo) is 1, that is there exists a linearly measurable set
 B C A fi p such that

 (1) d'(B, (aj0, j/o)) = 1.

 The set of all ape-interior points of A C M 2 will be called the approximate
 core of A and denoted by ap-coieA :

 ap-coieA = {a E A : a is an ape-interior point of ^4}.

 Put Tápe = M C M2 : i = ap-coieA}. Since (1) is preserved under finite
 intersections and arbitrary unions, we obtain that T'apc ls a topology on the
 plane, which we may think of as the unrestricted approximate core topology.

 Obviously, 7^pc-Int A C ap-coieA for each A C M2. The inverse inclusion
 need not hold. Indeed, let E = L£°=i(an>M U {0} U -an) where
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 an+i < bn+ 1 < a„ for n G N, bn = 0 and di(E, 0) = 1. Put

 A = K(( 1, 0), 1) U K((-l, 0), 1) U ({0} X E).

 Then (0,0) G ap-coieA , but (0,0) £ T¿pc-lntA.
 It would be easier to take the interval [-1,1] instead of the more compli-

 cated set E, but we obtained simultaneously an example of a set A, for which
 (0, 0) belongs to ap-core A and does not belong to core A.

 If E C M2 and if a G M, then let

 (a, a)E = {(ax, ay) : (x, y) e E} = {(0, ar) : (0, r ) G E}

 (the last description in polar co-ordinates), and let ( E)a denote the set E
 rotated by an angle a.

 Let d' X d' denote the product of two density topologies.

 Theorem 2.1 d' x d' C 7^pc.

 Proof. Let E C M2, E G d' x d' and let (xo.yo) be an arbitrary point
 of E. We may assume that xq = yo = 0. There exist two di-open sets A ,
 B such that 0 G A, 0 G B and A x B C E. We shall show that (0,0) is
 an ape-interior point of E. Let p be an arbitrary line passing through (0,0),
 p = {reos a, rsina), r G M}. Since the desired conclusion is clear if p lies on
 coordinate axes, we may assume that cosa ^ 0 and sina ^ 0. If

 Ca = ~^-A n - -B,
 cos a sin a

 then di(Ca,0) = 1, and clearly {(reos a, r sin a) : r G Ca} C pC'E, so
 di(pC' E j (0,0)) = 1. Consequently, (xo, yo) is an ape-interior point of E, and
 E £ Tápe

 Observe that d' x d' / Tļpc because T¿pc is rotation invariant and d' x d'
 does not have this property (see [WB]).D

 It is easy to see that in the topology T'apc there are also non-measurable
 sets. Sierpiński proved (Fund. Math. vol. 1, page 112, see also [O], th. 14.4)
 that there exists a plane set E such that E meets every closed set of positive
 plane measure, and no three points of E are collinear. It is clear that such
 a set E cannot be measurable. Obviously, M2'E is also non-measurable, and
 R2'E G TĻc. However, if A G T'apc and p is a straight line, then A D p is
 measurable (as a linear set).

 Definition 2.2 We say that a set A C M 2 is approximately core open or
 simply ape-open if and only if A is a measurable set and each point (x,y) G A
 is an ape-interior point of A.
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 Let £2 denote the family of all Lebesgue measurable subsets of the plane.
 Put Tape = {A £ C2 . A = ap-coieA} Obviously, the family Tapc is identical
 with the family of all ape-open sets, and Tapc = Tápc H £2- We shall show that
 Tape is a topology on the plane, stronger than d' x d' and weaker than the
 ordinary density topology d 2 on the plane. We may call Tapc the approximate
 core topology on the plane.
 Let pe denote the half-line running from the origin and forming an angle

 0 with the x-axis, 0 G [0, 27t). We shall need the following lemmas:

 Lemma 2.2 Let H C [0, 27t) be a measurable set and let 0 < a < r. If
 E C K(( 0,0), r) is a plane measurable set ( E G £2) such that

 Io E@ = E C'p& is linearly measurable for each 0 G H ,

 2o m'{E&) < a for each 0 G H ,

 then

 ļH(J0 XEe(t)tdt)d& <

 Proof. Let 0 G H. Observe that

 ļ XBe (t)t dt<ļ t dt= r2-(ļ-<*)2
 2 / '2

 Consequently, fH ^ /Qr xE& (fy dt^d0 <
 Lemma is accomplished. □

 Let pe(h) denote the interval on the half-line p@y with endpoint at the
 origin and with length h.

 Lemma 2.3 If G C /£((0,0), r) is open , then the set

 {0 G [0, 2tt) : mi(G C]p@(r)) > r'}

 is open for each r' < r.

 Proof. Let 0o G {0 G [0, 27t) : mi(G C' p@(r)) > r'}. The set GC'p&0(r) is
 open on the line p&0 , so it can be represented as the union of a sequence of

 nonoverlapping intervals (an,6„), n G N. Obviously, mi (U^°=i(an, M) > r' •

 Determine no so that mi ^(Jn=i(a"' ^)) > handlet [cn , dn] be a closed inter-

 val such that [c„, dn] C (an, bn) for n = 1, . . . , n0 and mi ^ UnLi [cn, ¿n]) > r'.
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 For each point p G UnLi[cn>dn] there exists an open set Vp (in the polar
 co-ordinates) of the form

 Vp = {(0,r) : e € {&0-©p, ©o+@P), r € (p((0,0),p)-rp, p{{0, 0),p) + rp)},

 where 0P > 0, rp > 0, such that p G VPì Vp C G and p denotes the Euclidean
 distance in M2. The family of sets {Vpf)p&oi p G (Jn=i[c"> dn]} is an open cov-
 ering of |Jn=i [cnj4]- By the Borei- Lebesgue theorem there exists a finite sub-

 family such that Uñ=Jcn,¿n] C ULi Vp. nP©o- Put a = min{0Pl, . . .,@Pk}.

 Then mi(G C'p@(r)) > mi (U"LJcn> d"l) > r> for @ G (<90 - a, <90 + a),
 which completes the proof. □

 Theorem 2.4 Tape is a topology on the plane , stronger than d' x d' and
 weaker than the ordinary density topology d 2 on the plane.

 Proof. The only difficulty in this proof is to show that the union of an
 arbitrary subfamily of Tape is a measurable set on the plane. For this purpose,
 it is sufficient to demonstrate that Tape C d<¿. Let A G Tape and (xo,2/o) G A.
 We may assume that xo = yo = 0. Let e > 0. For each 0 G [0 , 27t) , there
 exists r© > 0 such that if 0 < h < r@, then m' (A fi p&(h)) > h( 1 - e/4).
 (Recall that all sets A C'p@(h) are measurable.)

 Suppose that we have chosen r@ with the above mentioned property for
 each 0 G [0, 2i r). Put Bn = {0 G [0, 27t) : r& > l/n}. We have Bn C 5n+ 1 for
 every n, and (J^Li Bn = [0, 2tt). Thus m'(Bn)

 n- ► 00

 such that m'(Bno) > 2tt - e. Consequently, if 0 G Bno and 0 < h < 1 /n0,
 then mi (A C'p&(h)) > h(l - e/4).

 Let 0 < h < l/n0. Obviously, A fl K((0y 0), h) D AD J@eBnoP ® w).

 We shall show that rriļ(^A fi U©es„0 ^ nh2( 1 - e). Let G be an
 arbitrary open set such that A C' 'J@€Bn^ p@(h) C G C K(( 0,0), A). For
 0 G Bnoì we have A fl p@(h) C G fi p&(h ), so m'(G fl p&(h)) > h(l - e/4).
 Let us consider the set H = {0 G [0,2tt) : mi(Gflp<9(A)) > h( 1 - e/4)}.
 Obviously, 5no C From Lemma 2.3 it follows that H is open. Clearly,
 mi(#) > mi{Bno) > 2n - e. Put E = 7ť((0, 0), /i)'G. For 0 G we have
 ^1(^0) = rai(p<9(/i)'(G fìpe(h))) < h • e/4, so, by Lemma 2.2,

 1712(E) = ru: Xe0 (t)tdt)d& = JM Xb0 (t)tdtjd0

 + L.W ď x"m' 4» * " Ï»1) '2* + T 'ì
 < 7T/I2£.
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 Hence m2(G) > tt/i2(1 - £) and, consequently, by the arbitrariness of G

 ?7i2^4 H [J p&{h)^j > ttA2(1 - e).
 ©eßn0

 Therefore m2(A D if ((0, 0), h)) > ti7i2(1 - e). Letting e - >• 0, we conclude that
 d2{M 0,0)) = 1.

 We have thus shown that Tapc C d2. By Theorem 2.1 d' x d' C 7^pc.
 Simultaneously, di x di C C2, so di x di C 7^pc- Evidently, di x d' / 7^pc
 because 7^pC is rotation invariant and d' x d' does not have this property. We
 shall prove that Tapc / ¿2- Put E = M2'{(x, y) G M2 : 0 < x, - x2 <y< x 2}.
 Then E' G d2'Tapc because d'(E fl po, (0, 0)) =

 We show that the topologies Tapc and d2 are incomparable.

 Theorem 2.5 ds2 £ Tapc> Tapc <£ d2.

 Proof. Put A = (M2'{(x, y) G M2 : y = 0}) U {(0, 0)}. It is easy to see that
 A G ds2'Tapc because di(A fi p0i (0, 0)) = 0.

 Now, let E - L£°=i(an) M where an+i < 6n+i < an for n G N, limn_^oo bn =
 0 and di((- 00, 0] U E} 0) = 1. Let Gn be an open set on the plane such that
 (an,í>n) X {0} C Gn C {(x, y) G M2 : 0 < z, -z4 < y < x4}. Put

 00

 B = (K2'{(a;, y) G M2 : 0 < x, - x 2 < y < x2}) U [J Gn.
 n - 1

 Clearly, B G Tapc On the other hand,

 m2((RV)n[0,l/n)x[0,l/n«)) 4 2

 m2([0, l/n) x [0, l/n4)) ~ 5 3 n n- ► oo 5

 so the upper strong density of W2'B at (0,0) is positive. Consequently, B (£
 ds2n

 It is easy to see that the core topology is weaker than Tapc and the set B
 from Theorem 2.5 shows that, in fact, the last is essentially stronger.

 3 The Category Density Case

 Let X' and ī2 denote the families of meager sets on the real line and on the
 plane, respectively. If a plane set is contained in a real line, then we shall
 consider its linear Z-density (dxx ) .
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 Definition 3.1 We say that a point (xo,yo) G M2 is an 1-approximate core
 interior point or more simply an X ape-interior point of a set A C M 2 if and
 only ¿/(xo,î/o) G A and , for each line p passing through the point (£0,2/0),
 inner X- density ofAfip at (xo,yo) is 1 , that is there exists a set B having the
 Baire property such that B C Af'p and

 (2) (zo,2/o)) = !•

 The set of all Zapc-interior points of A will be called Z-approximate core
 of A and denoted by X ap-coieA:

 X ap-coreA = {a G A : a is an Zapc-interior point of A}.

 Put Tļapc = {A C M 2 : A = Jap-core A}. Since (2) is preserved under finite
 intersections and arbitrary unions, we obtain that 7japc is a topology on the
 plane, which we may think of as the unrestricted X- approximate core topology
 on the plane.
 Let djļ denote the Z-density topology on the real line (see [PWW1],

 [PWW2]) and let dj1 x djx denote the product of two Z-density topologies.

 Theorem 3.1 dXl x dj1 ^ 7japc.

 The proof of this theorem is analogous to that of Theorem 2.1.D

 It is easy to see that the topology Tļapc contains some sets without the
 Baire property. There exists a plane set E of the second category such that
 no three points of E are collinear (see [O], th. 15.5). It is clear that such a
 set E cannot have the Baire property. Obviously, M2'E lacks the property of

 Baire and M2'E G Tjapc. As in the case of measure, if A G Tjapc and p is a
 straight line, then A C'p has the Baire property (as a linear set).

 Definition 3.2 We say that a set A C M2 is X-approximate core open or
 simply Xapc-open if and only if A has the Baire property and every point
 {xo,yo) G A is an X ape-interior point of A.

 Let B2 denote the family of all sets having the Baire property on the
 plane. Put Txapc = {A G #2 • A = Zap-core A}. Obviously, the family Txapc
 is identical with the family of all Xapc-open sets, and Tiapc = Tjapc fi
 We show that Tiapc is a topology on the plane, stronger than cřj1 x
 but incomparable with ordinary Z-density topology dj2 on the plane (for the
 definition and properties of dj2 see [W], [CW]). We may call Tiapc the Z-
 approximate core topology on the plane.

 Lemma 3.2 If A £ Tiapc and A = ( G'P' ) U P2, where G is an open set and
 Pi, P2 G Z2, then P2 C C1G.
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 Proof. Let (x, y ) G Pi and suppose that (z, y ) ļ Cl G. We may assume that
 X - y - 0. Then there exists r > 0 such that K(( 0, 0), r) D A El i. From the
 Kuratowski-Ulam theorem for polar co-ordinates, the set i^((0, 0), r) fi A C'p@
 is of the first category (on the half-line p@) for all 0 6 [0, 2n) except a set of
 the first category. Simultaneously, (0,0) G A and A G Tzapc- Consequently,
 (0, 0) is an Xapc-interior point of A - a contr adiet ion. □

 Theorem 3.3 Tiapc is a topology on the plane , stronger than dzx x dz1.

 Proof. The only difficulty in this proof is to show that the union of an
 arbitrary subfamily of Tiapc is a set having the Baire property on the plane.
 Let A = {Aai aer} C Tiapc • Then Aa = (Gtt'-Pia) U ^2a, where Ga is an
 open set and P'ai Pia G Ti for a G T. By the theorem of Lindelöf there exists

 the sequence {an}n€N C T such that 'Jaer Ga = UnLi^*«- Fron* Lemma
 3.2 we have

 oo oo oo

 U U C U (G«n'-Pl«n) C (J [(Ga'Pla) U P2a]
 n = 1 n = l n = l aÇT

 oo oo

 C (J Cl G a C Cl ( U G«.) = U UF°'
 a£T n = l n = l

 where P0 = Fr ( (J~=i . Obviously, P0 € I2, so (Ja€r A° & UT=i €
 I2 and Uaer^a 6 ß2-
 By Theorem 3.1, djx x dj1 C 7japc. Simultaneously, dj1 x dxx C Bi, so

 dx i x dj1 C Ti ape - Evidently, cři1 x dzx / Tx ape, because 7japc is rotation
 invariant and dz1 x dzx does not have this property (see [WB]).D
 But here ends the analogy between the properties of Tape and Tzapc , be-

 tween the measure and category. We show that the topologies Tzapc and dj2 ,
 where dz2 is an 2-density topology on the plane (cf. [W], [CW]), are incom-
 parable.

 Theorem 3.4 There exists a set A C M 2 having the Baire property on the
 plane such that

 Io (0,0) is an li-dispersion point of AC'p& for each <9 G [0,27t);

 2° (0,0) is not an li-dispersion point of A.

 Proof. Let {an}n€N be a decreasing sequence of positive numbers tending
 to 0 such that an+i/an

 n- ► oo
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 Then j can be uniquely represented in the form j = n • k j + ij , where kj , ij G
 {0, 1, 2, . . n - 1}. Put

 An,j = {(©, r) :(n ■ ij + kj)^ <9<(n ■ ij + kj + 1)^,
 an ■ 2k'/n < r < an ■

 for n € N and j G {0, 1, 2, . . . , n2 - 1} set An = Ujlo* An,i and A = U~=i A"-
 To prove Io fix 0 € [0,7r). For each n E N there exists exactly one j €
 {0, 1, 2, . . . , ra2- 1} such that p© intersects Anj. Thus AC'p@ treated as alinear
 set is of the form UnLi[cn> ^n)» where [c„, d„) C [a„,2an] and dn = c„ • 21/".
 Hence dn+1/cn

 n-yoo n-¥ oo

 and it suffices to use Theorem 2 from [W]. If 0 G [tt, 2tt), then A fi p@ =0.
 To prove 2° take a sequence {¿n}neN defined by tn = 1/(2 an). Ob-
 serve that if (0o, ro) G P = {(0,r) : 0 < 0 < 7r, 1/2 < r < 1}, then
 dist((ťn,ť„) -À, (0o,ro)) = dist ({tn)tn) -^n,(0o,^o)) < ^r/n. Hence for
 arbitrary subsequence {nm}m€w and for arbitrary p G N we obtain that
 Um=ř>((^m>*nm) - A) includes an open set dense in P. Consequently

 lim sup ((*nm,*nj -A)nK(( 0,0),1) gZ2,
 m

 which completes the proof. □

 Corollary 3.5 The topologies Tiapc and dj2 are incomparable.

 Proof. Put E = (12' C1>1) U {(0,0)}, where A is the set from the last
 theorem. Obviously, E G B2. If (x,y) G E and (x,y) ± (0,0), then it is an
 interior point of E in the Euclidean topology, so it is an Zapc-interior point
 of E. From the last theorem (0,0) is an Zi-dispersion point of C ÌACìpe for
 each 0 G [0, 27t) . Hence (0,0) is an Zi-density point of p&'(Cl A fi p@) =
 (M2'C1A) Hp®. Consequently, (0,0) is an Jape-interior point of E and E G
 Tīapc • From the second condition in Theorem 3.4 it follows that E £ dj2. Now
 put B = (M2'{(x,2/) : y = 0})U{(0,0)}. It is easy to see that B G dz2'Tiapc

 Let dļ2 denote the strong Z-density topology on the plane (see [W], [CW]).

 Corollary 3.6 The topologies Tiapc and dļ2 are incomparable.

 The proof is analogous to the proof of Corollary 3.5.D
 Obviously, the theorem analogous to Theorem 3.4 for measure does not

 hold. On the other hand, both for measure and category it is possible to
 construct a set A which has a "plane" dispersion point in (0,0), but (0,0) is
 not a "linear" dispersion point of A C'p& for each 0 G [0, 7r).
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 Theorem 3.7 There exists a set A C M 2 which is measurable and has the
 Baire property such that

 Io (0,0) is a di- and T^-dispersion point of A,

 2° (0,0) is neither a d' - nor a 1' -dispersion point of AC'p@ for each 0 G
 [0, T>-

 Proof. Let {an}n€N be a decreasing sequence of positive numbers tending
 to 0 such that an+i/an

 n- >-oo

 represented in the following way: n = 2kn + zn, where kn is a natural number
 or zero and in G {0, 1,2,.. . , 2kn - 1}. Put 0n = tt • in/2kn and

 An = {(&,r) : &n < 0 < Gn + ir/2kn , an < r < 2an}.

 Let A = U~=i Obviously, A is measurable and has the Baire property.
 To prove Io take an arbitrary increasing sequence {ťn}new of real numbers

 tending to infinity. Let jn denote the natural number such that ajn < v
 tn < ajn-i. (In any case additionally put ao = 1 +max(ai, l/ti).) Observe
 that

 ((*»,*») • A) n ((0,0), 1) C Sec^.ą,, + »/2*'-)
 Uff((0,0),2ajm+1 -t„) ,

 where Sec(0', 0") = {(0, r) : 0' < 0 < 0", r < 1}.
 Choose a subsequence {nm}meN such that {0¿nm}meN is convergent. Put

 0o = linw+oo 0jnm- We show that limsupm((*nm,<nJ • A) fi Ā'((0,0), 1) C
 p®0, which is obviously sufficient to show that (0,0) is simultaneously a d 2-
 and 22-dispersion point of A.

 Indeed, limsupm((ť„m,ťnm)->t)nA:((0,0), 1) C limsupm Sec(0j„m , 6>Jnm +
 7t/2a-""~ ) U limsupm K ((0, 0), 2aJyim+1 • t„m). But the first upper limit is in-
 eluded in p©0, since kn tends to infinity together with n and the second is
 included in {(0,0)}, since 2ajnm+i ťnm  m- too m

 and ai-m+i/aj»m
 m-¥ oo

 To prove 2° fix 0 G [0,7 r). There exists a sequence {nm}meN tending to
 infinity such that 0 G [0nm,0nm + 7r/2kn™) for each m G N. Thus A fi p&
 treated as a linear set is of the form Um=i[a"m) 2a„m] , so (0,0) obviously is
 neither d'- nor Zi-dispersion point of A fl p@.D

 Let us observe also that if we define the operators # : 2K -^2® and
 #i2 : - » 2®2 by the formulae:

 0(A) = {(x, y) G M2 : (x, y) G ap-core (A U {x, y})}

 #x2(A) = {(x,y) G M2 : (x,y) G lap-core (Aö {x,y})},
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 then neither # nor #j2 is a lower density operator. Indeed, if A = M2 ' E,
 where E is the Sierpiński set ([O], th. 14.4), then $(A) = M2, so A A ${A) is
 not of Lebesgue plane measure zero. Similarly, if E is the set from th. 15.5 in
 [0], then for A = R2'E we have $i2{A) = IR2 and A A &i2{A) is not of the
 first category. Also if A A B is of Lebesgue plane measure zero (of the first
 category in the plane), then ${A) need not be equal to $(B) (4>i2(A) need
 not be equal to #j2(5)). To verify this it is sufficient to change A essentially
 on one chosen straight line.
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