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 ON A THEOREM OF MENKYNA*

 Abstract

 We charaterize the set where an almost everywhere continuous Bai re 1
 function is not a.e. continuous in the O'Malley sense.

 In the paper [3] Menkyna gives a characterization of the set of points at
 which a Baire 1 function / : (a, 6) - ► R is approximately continuous. In
 this article I show an analogous characterization of the set where an almost
 everywhere continuous Baire 1 function is a.e. continuous in O'Malley's sense
 (cf [4]). Since the set of all points at which / is not approximately continuous
 is of (Lebesgue) measure zero and the set where / is not a.e. continuous
 may be of positive measure, such a characterization of the set where / is a.e.
 continuous is not possible for all Baire 1 functions.

 Let R denote the set of reals and let m be the Lebesgue measure in R.
 If A C R is a measurable (in the Lebesgue sense) set and if x G R then the
 number

 du(Ay x ) = limsupm(j4 fl [x - h, x + h])/2h
 h-+0

 is called the upper density of A at x . The lower density d¡(Ayx) is defined
 analogously. If du(A,x) = d¡(Aix)i we call this number the density of A at
 x and denote it by d(Ayx). The family Td of all measurable sets ^CK such
 that if x G A then d(A , x) = 1 is a topology said the density topology (cf [1]).
 The family Tat of all sets A G T¿ such that m(A - intA) = 0 (ini A denotes
 the euclidean interior of A ) is a topology said the a.e. topology (O'Malley
 [4]). Let / : (a, 6) - ► R be a function. The function / is said to be a.e.
 continuous at a point x G (a, b) if for every e > 0 there is a set B E Tae such
 that x G B and f(B) C (/(«) - £, /(^) + £) (cf [4]). Denote by Cae(/) the set
 of all points x G (a, b) at which / is a.e. continuous. Let I' , . . . , 7n, . . . be a
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 sequence of all open intervals with rational endpoints. For n, k, I = 1,2,... let
 Anki be the set of all points x £ (a, b) for which there exists an open interval
 Jn(x) containing x and such that

 (1) m(cl({t e Jn(x);f(t) e R- /t})) > m(Jn(x))/l

 ( cl(X ) denotes the closure of X) , m(J„( x) < 1/n, and if It = then
 /(x) € [et + m(Ik)/4,dk -

 It is easy to verify that:

 Remark 1 The equaliiy

 (a, 6) - Cae(f) = [J iW'
 jb,/= 1 n = l

 holds.

 Remark 2 If f is a Baire 1 function then every sei Ani¡',n,k,l = 1,2,..., is
 an Gs set. Consequently, the set (a, 6) - Cae(/) is an Gsa set.

 Remark 3 If f is an almost everywhere continuous function then m((a,6) -
 CM) = o.

 Now, let $ be a family of sets. Define

 d*u(*,x) = du((J{¿ 6 *-,d(A,x) = 0},x)

 (cf [3]) .
 The main result of this article is the following:

 Theorem 1 If f : (a, b) - ► R, a, 6 G R, is an almost everywhere continuous
 Baire 1 function then there is a sequence of open sets Vn,n = 1,2,..., such
 that

 (2) m(cl(Vn) - Ki) = 0,n=l,2,...,

 and

 (3) (a, 6) - Coe(/) = 0 {x; x) > 0,
 n = l

 where T£ are the components ofVn, and conversely , for every sequence of open
 sets Vn C (a,6),n = 1,2, . . ., satisfying (2) there is a Baire 1 function f such
 that (3) holds.
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 Proof. If (Vn) is a sequence of open sets satisfying (2), then the same as in
 the proof of Theorem 5 from [3] we define for n = 1, 2, . .

 In(X> r/-ļ_iO - if i G (a, b) - U,(a£ . K) In(X> - ' sin(2'+M* - a' )/(6* - a')) if x G «, 6» ),

 where (a*nib'n) is the middle open third of Tļ.
 It is easy to compute that every fn is a derivative (compare [1]) and that

 (a, 6) - Cae(fn) = {x; d;({:rn'}„ *) > 0}.

 The function / = 4-1/i H

 therefore a Baire 1 function. Moreover,

 (a, 6) - Cat(f) = (J((a, b) - CM) = (J{x; <({Tn'}„ x) > 0}.
 n n

 For the proof of the converse implication we introduce some notation and
 prove several lemmas.

 Lemma 1 Lei f : (a, 6) - ► R be an almost everywhere continuous Baire
 1 function. There is a sequence of almost everywhere continuous Baire 1
 functions fk such that every set /¿((a, b)) is isolated , and

 l/jfc - /I < min((4fc)-1, m(/t)/8), k = 1,2,...

 Proof of Lemma 1. Denote by C(f) the set of all continuity points of /.
 Since rr?((a,6) - C(/)) = 0, by Vitali's Theorem there is a countable disjoint
 collection Ji, . . . , Jn, . . . of open intervals such that m((a, 6) - Jn) = 0
 and oscjnf < min((4Jk)~1, m(/*)/8)/2, n = 1,2, . . .. Then the set F = (a, 6) -
 |Jn Jn is closed in (a, b) and rn(F) = 0. There is a Baire 1 function A* : F - ►
 R such that the set hk(F) is isolated and |/i* - f' < min((4ife)~1, m(J*)/8) (cf
 [2], p. 294). Then the function

 * ( ' f 2/n if X G «/rij ^ - 1,2, .. .
 A(*)='M*) * ( ' 2/n it'ZF.

 where |t/n- /(x„| < min((4Jk)"1, ?n(7jb)/8)/2 for some xn 6 J„,n= 1,2,... and
 the set /i*(F) U {yn;n = 1,2, . . .} is isolated, satisfies all required conditions.
 This finishes the proof of Lemma 1.
 Now, let k = 1,2,..., be closed sets such that (J,- Kf =: (a>^) f°r
 k = 1,2,..., and the restrictions of the functions fk from Lemma 1 to Kf are
 constant functions. Let

 4i = /tf nfVn*/.
 n
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 Since / is an almost everywhere continuous Baire 1 function, every set Ak¡ is
 of type Gs and measure zero.

 Lemma 2 The inclusions

 /(c/(4,)) C /*,£,/,*•= 1,2,...

 hold.

 Proof. Every function /* is constant on the set cl(Axki) C K* and |/(x) -
 fk(x)' < min((4¿)"1, m(/*)/8) for every x G (a,b). Fix y G A'v Then

 l/(*)l < 'f(*)-fk(*)' + 'fk(*)'<m(Ik)/8+'fk(y)'
 < I fk(y) - f(y) I + l/(y)l + ™(h)/ 8 < »«(/*)/ 8 + m(Ik)/ 8 + |/(y)|

 for every a: G c/(j4łH). Since

 /(y) G [e* + m(īk)/4,dk - m(h)ļ 4],

 f(x) £ h = (ck,dk) for each x 6 c/(^'t().

 Lemma 3 Let U D Ak¡ be an open set. Then there is an open set U' such
 that U D U' D Axkļ and for each component Ts of U' we have

 m(Ts H [(a, 6) - c/(4,)] > m(Ts fl c/({x; f(x) G R - /*}) > m(T,)/2L

 Proof. From the definition of the set Akļ it is evident that for every x G Akļ
 we may choose an open interval J(x) C U such that

 m(cl({t G J(x)'f(t) GR- Ik})) > m(J(x))/l.

 Let U' = x G ^f}- If Ti is a component of the set U' then according
 to Lemma 2 from [3] we have

 m(cl({t G 7i;/(0 G M - /*})) > m(Tg)/2l.

 So, we have the second inequality. Since / is almost everywhere continuous,
 we have also

 m(T8 fl {*; /(*) eR-Ik}) = m(Ts fl c/({x; f(x) G M - /*})).

 From this, by Lemma 2, we obtain the first inequality.

 Lemma 4 For every set Akl there is an open set V such that

 (a, 6) - Cae(f) D {x;d:({Ts}Sìx) > 0} D Aļh

 where Ts are the components of the set V .
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 Proof. The proof of this Lemma is completely analogous as the proof of
 Theorem 4 and Corollary 1 in [3]. In the construction of the intervals Jff we
 apply Lemma 3.

 Remark 4 Observe that the set V from Lemma ļ is such that m(cl(V) - V) =
 0.

 Indeed, from the definition of Ak¡ it follows that cl(Akl) C cl({x G (a, b)' f(x) G
 R - Ik})- By Lemma 2, f(cl(Akļ)) C /*. Since / is almost everywhere con-
 tinuous, we have m(cl(AkJ)) = 0. From the construction of V (cf [3], pp.416 -
 417) it follows that m{cl(V) - V - cl(Akl)) = 0. so, m(cl(V) - V) = 0.

 Now the proof of the converse implication of Theorem 1 is the same as that

 from [3]. It suffices to observe that (a, 6) - Cae(f) = UjM,.=1 Akl and aPPly
 Lemma 4.

 In the same way as in [3] we obtain:

 Remark 5 Theorem 1 is true, if we replace the concept uan almost everywhere
 continuous Baire 1 function " by "an almost everywhere continuous derivative
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