T. Natkaniec, Instytut Matematyki WSP, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland, email: wspb11@pltumk11.bitnet

ON A PROBLEM CONCERNING UNIVERSALLY BAD DARBOUX FUNCTIONS

Introduction. For a given family \mathcal{F} of real functions let $c(\mathcal{F})$ denote the following condition

 $c(\mathcal{F})$: there exists a Darboux function f such that f+g is Darboux for no $g \in \mathcal{F}$.

Such a function f is called a universally bad Darboux function for \mathcal{F} . The problem for which families \mathcal{F} the condition $c(\mathcal{F})$ is fulfilled was considered by many authors (see e.g. [8], [10], [3], [6], [5]). In particular, it is proved in [6] that if the additivity of the ideal of all first category subsets of \mathbb{R} is equal to 2^{ω} (e.g. if Martin's Axiom or CH hold) then $c(C^*)$ holds for the family C^* of all nowhere constant, continuous functions.

In [6] there was posed the following problem:

Problem 1 Does the condition $c(C^{**})$ hold for the family C^{**} of all non-constant continuous functions?

In the present note we answer this question in the negative.

Notation. We consider real functions defined on the real line. A function f is said to be

• a Darboux function iff f(J) is an interval for every interval J,

^{*}Supported by KBN Research Grant 1992-94, No 2 1144 91 01.

Key Words: Darboux, Cantor type, Cesaro type, cliquish functions

Mathematical Reviews subject classification: Primary 26A15 Secondary 54C40.

Received by the editors February 17, 1992

¹ Note that this result is independent of **ZFC**. Indeed, during the last Winter School on Abstract Analysis in Poděbrady, Prof. Todorčević informed me that recently Prof. T. Steprans from Toronto constructed a model for **ZFC** + $\neg c(C^{\bullet})$.

T. NATKANIEC

• nowhere constant iff for no $y \in \mathbb{R}$ the set $f^{-1}(y)$ contains a non-degenerate interval,

- of the Cesaro type iff there exist non-degenerate intervals $I, J \subset \mathbb{R}$ such that $f^{-1}(y)$ is dense in I for each $y \in J$,
- cliquish iff for each $\varepsilon > 0$, every non-empty open set $U \subset \mathbb{R}$ contains a non-empty open set W such that $|f(x) f(y)| < \varepsilon$ whenever $x, y \in W$,
- of the Cantor type with respect to a Cantor set F iff F is a nowhere dense perfect set and f is increasing, continuous, strictly increasing in the points of F and constant on every component of the complement of F.

Recall that $f: \mathbb{R} \longrightarrow \mathbb{R}$ is cliquish if it is pointwise discontinuous (i.e. the set C(f) of all points at which f is continuous is dense in \mathbb{R}) [1]. Moreover, if f is Darboux and not cliquish then it is of the Cesaro type [4] (cf [9]).

Theorem 1 For each Darboux function f there exists a Cantor type function g such that f + g is Darboux.

Proof. First assume that f is cliquish. Then the set C(f) is residual, so there exists a Cantor set C contained in C(f) (see e.g. [7], Lemma 5.1). Let $g: \mathbb{R} \longrightarrow [0,1]$ be a function of the Cantor type with respect to C. Then f+g has the Darboux property on each component of the complement of C and it is continuous at each $x \in C$. Therefore f+g has the Darboux property at each $x \in \mathbb{R}$ and consequently it is Darboux (see [2], p. 100 for the definition of a Darboux point of a real function).

Now assume that f is not cliquish. By Gibson's theorem [4] f is of the Cesaro type. Let K and J be compact intervals such that for each $y \in J$ the level set $f^{-1}(y)$ is dense in K. Let J = [c, d]. We shall choose a Cantor set $F \subset K$.

Lemma 1 Assume that f is a Darboux function on I and $f^{-1}(y)$ is dense in I for each $y \in (c,d)$. Then for each $n \in N$ there exist an interval $I_0 \subset I$ and $c_0, d_0 \in [-\infty, \infty]$ such that

- (1) $c_0 \leq c, d \leq d_0$,
- (2) $f^{-1}(y)$ is dense in I_0 for each $y \in (c_0, d_0)$,
- (3) $f(x) \in (c_0 1/n, d_0 + 1/n)$ for each $x \in I_0$.

Proof. Fix $n \in N$. Put

$$c_0 = \inf\{z \le c : f^{-1}(y) \text{ is dense in } I \text{ for each } y \in (z, d)\}.$$

Note that if $c_0 > -\infty$ then there exist a non-degenerate interval $J \subset I$ and $z \in (c_0 - 1/n, c_0)$ such that $z \notin f(J)$. Therefore $f(x) > c_0 - 1/n$ for $x \in J$. If $c_0 = \infty$ then put J = I.

Now let

$$d_0 = \sup\{z \ge d: f^{-1}(y) \text{ is dense in } J \text{ for each } y \in (c_0, z)\}.$$

Observe that if $d_0 < \infty$ then there exist a non-degenerate interval $I_0 \subset J$ and $z \in (d_0, d_0 + 1/n)$ such that $z \notin f(I_0)$. Therefore $f(x) < d_0 + 1/n$ for $x \in I_0$. If $d_0 = \infty$ then $I_0 = J$.

It is easy to verify that I_0, c_0, d_0 satisfy all conditions (1) - (3).

Lemma 2 Assume that f is a Darboux function on I and $f^{-1}(y)$ is dense in I for each $y \in (c,d)$. Then there exists a Cantor set $C \subset I$ such that for every $x \in C$, if x is not isolated in C from the right (left) then for each $n \in N$ there exist a component I of $I \setminus C$ and $c_I, d_I \in [-\infty, \infty]$ such that

- (1) $J \subset (x, x + 1/n)$ $(J \subset (x 1/n, x)),$
- (2) $c_J \leq c$, $d \leq d_J$,
- (3) $f^{-1}(y)$ is dense in J for each $y \in (c_J, d_J)$,
- (4) $f(x) \in (c_J 1/n, d_J + 1/n)$.

Proof. Let Σ_n be the family of all finite binary sequences of the length equal to n and let $\Sigma = \bigcup_n \Sigma_n$. By Lemma 1 we can choose (inductively) a net $(I_{\sigma})_{{\sigma} \in \Sigma}$ of closed subintervals of I such that

- (i) if $\sigma \subset \delta$ then $I_{\delta} \subset I_{\sigma}$,
- (ii) if σ and δ are inconsistent then $I_{\sigma} \cap I_{\delta} = \emptyset$,
- (iii) for each $\sigma \in \Sigma$ there exist c_{σ}, d_{σ} such that
 - $c_{\sigma} \leq c, d \leq d_{\sigma}$,
 - $f^{-1}(y)$ is dense in I_{σ} for each $y \in (c_{\sigma}, d_{\sigma})$,
 - $f(I_{\sigma}) \subset (c_{\sigma} 1/n, d_{\sigma} + 1/n)$ for each $\sigma \in \Sigma_n$.

474 T. NATKANIEC

Then $C = \bigcap_{n \in N} \bigcup_{\sigma \in \Sigma_n} I_{\sigma}$ has the required properties.

Let $g: I \longrightarrow [0, h]$ be a Cantor type function for C, where C is chosen as in Lemma 2 and h = (d-c)/2. We shall verify that f+g is a Darboux function. Fix x_0, x_1 and y such that $x_0 < x_1$ and $y_0 < y < y_1$, where $y_i = (f+g)(x_i)$ for i = 0, 1. There are two possible cases: either $y \le d - h$ or $y \ge c + h$. Assume that e.g. the first case holds (the proof is similar in the other case). Now we have two subcases.

First, assume that there exist a component J = (a, b) of $I \setminus C$ and $t_J \in [0, h]$ such that $x_0 \in [a, b)$ and $g(x) = t_J$ for each $x \in [a, b]$. Then $f(x_0) = y_0 - t_J < y - t_J < d$. By the assumptions on f, there exists $x \in (x_0, x_1) \cap J$ such that $f(x) = y - t_J$, so (f + g)(x) = y.

Now assume that x_0 is an accumulation point of C from the right. Put $t = y - y_0$. Since g is continuous at x_0 and C fulfils the conditions (1) - (4) of Lemma 2, there exist a component J of $I \setminus C$ and $c_J, d_J \in [-\infty, \infty]$ such that

- $|g(x_0) t_J| < t/2$, where $g(x) = t_J$ for $x \in J$,
- $J\subset (x_0,x_1)$,
- $f^{-1}(y)$ is dense in J for each $y \in (c_J, d_J)$, where $c_J \le c$, $d \le d_J$,
- $f(x_0) \in (c_J t/2, d_J + t/2)$.

We shall verify that $y-t_J \in (c_J, d_J)$. Since y < d, $y-t_J < d \le d_J$. On the other side, $y = y_0 + t = f(x_0) + g(x_0) + t > c_J + g(x_0) + t/2 > c_J + t_J$. Thus $y-t_J > c_J$, so $f(x) = y-t_J$ for some $x \in J$, and consequently (f+g)(x) = y.

Corollary 1 There is no universally bad Darboux function for the class of all non-constant continuous functions.

References

- [1] W. W. Blendsoe, Neighbourly functions, Proc. Amer. Math. Soc. 3 (1952), 114-115.
- [2] A. M. Bruckner and J. Ceder, *Darboux continuity*, Jber. Deutsch. Math. Ver. 67 (1965), 93-117.

- [3] A. M. Bruckner and J. Ceder, On the sum of Darboux functions, Proc. Amer. Math. Soc. 51 (1975), 97-102.
- [4] R. G. Gibson, Concerning a characterization of continuity, a manuscript.
- [5] P. Komjáth, A note on Darboux functions, a manuscript.
- [6] B. Kirchheim and T. Natkaniec, On universally bad Darboux functions, Real Analysis Exchange 16 (1990-1991), 481-486.
- [7] J. C. Oxtoby, Measure and category, Springer-Verlag, 1971.
- [8] T. Radaković, Über Darboursche und stetige Funktionen, Monat. Math. Phys. 38 (1931), 111-122.
- [9] J. Smital and E. Stanova, On almost continuous functions, Acta Math. Univ. Comen. 37 (1980), 147-155.
- [10] R. Švarc, On the range of values of the sum of a continuous and a Darboux function, Čas. Pest. Mat. 98 (1973), 178-180, 213.