Real Analysis Exchange Vol. 17 (1991-92)
C. Freiling, UCLA, Los Angeles, CA 90024 and California State UniversitySan Bernardino, San Bernardino, CA 92407,
Paul D. Humke, Department of Mathematics, St. Olaf College, Northfield, Minnesota 55057

The Exact Borel Class Where a Density Completeness Axiom Holds

Richard O'Malley [1] defined the following density property and then showed that the F_{σ} subsets of \mathbf{R} have this property. We say that a collection, \mathbf{A}, of subsets of \mathbf{R} has the O^{\prime} Malley density property if whenever a non-empty bounded set $A \in \mathbf{A}$ has right (left) density 1 at each of it's points, then there is a point in A^{c} at which A has left (right) density 1. In [1] O'Malley proved the following theorem (restated here using our terminology):

Theorem 1 (O'Malley) . The F_{σ} subsets of \mathbf{R} have the O'Malley density property.

O'Malley established several consequences of this result and asked whether the restriction to F_{σ} was necessary. This last question was repeated in the form of a query at the $14^{\text {th }}$ Summer Symposium in Real Analysis held in San Bernardino, June, 1990 where a handsome reward for a resolution was offered ($\$ 50$ by O'Malley and $\$ 10$ by one of the organizers; see [2]). The purpose of this paper is to claim the prize!

We begin with what we believe is a new proof of Theorem 1 above. Then we establish a similar and stronger density property for the \mathbf{G}_{δ} sets. Namely, if A is a non-empty bounded \mathbf{G}_{δ} set which has positive left lower density at each of it's points, then there is a point $x \in A^{c}$ and a $y>x$ such that A has full measure in (x, y). These ideas are expanded in Section 2 to establish the O'Malley density property for $\mathbf{G}_{\delta \sigma}$ sets.

The last section of the paper is devoted to constructing a non-trivial open set $A \subset(0,1)$ such that for every $x \in[0,1]$ if A has right density 1 at x, then A has left density 1 at x. This shows both that the O'Malley density
property does not hold for the $\mathbf{F}_{\sigma \delta}$ sets ${ }^{1}$ and that the stronger version for \mathbf{G}_{δ} can not be extended to \mathbf{F}_{σ} sets ${ }^{2}$ We conclude with a question and offer the generous sum of $\$ 60$ for it's resolution. The densities referred to in this question are defined in Section 1 below. This question is:

Are there two open disjoint non-empty sets, A and B, whose union has full measure and such that for each $x \in \mathbf{R}, d_{-}(A, x)=$ $d_{+}(A, x)$ and $d^{-}(A, x)=d^{+}(A, x) ?$

1 The F_{σ} and G_{δ} sets have the O'Malley density property

We begin by proving Theorem 1, but to do so we first need to establish some notation. If E is a measurable subset of \mathbf{R}, we define the relative measure of E in the interval I as $\Delta(E, I)=\frac{\mu(E \cap I)}{\mu(I)}$ where μ denotes Lebesgue measure. The right lower density of E at x is then $d_{+}(E, x)=$ $\liminf _{h \rightarrow 0} \Delta(E,(x, x+h))$; The upper density (density) on the right at x is defined similarly but with limsup (lim) in place of liminf. Densities on the left are defined and denoted in the obvious way.

Theorem 1 (\mathbf{O}^{\prime} Malley) . The F_{σ} subsets of \mathbf{R} have the O'Malley density property.

Proof: Suppose $E \in \mathbf{F}_{\boldsymbol{\sigma}}$ is bounded and non-empty. Using the LusinMenchov Theorem we can write $E=F_{1} \cup F_{2} \cup \ldots$ where $F_{1} \subset F_{2} \subset \ldots$ each F_{n} is closed, $F_{1}=\left\{a_{1}\right\}$ is a singleton, and if $x \in F_{n}$ then $d_{+}\left(F_{n+1}, x\right)=1$. Define
$R_{n}(a)=\left\{x \in F_{n+1}: x>a\right.$ and if $y \in(a, x)$, then $\left.\Delta(E,(y, x)) \geq 1-\frac{1}{n}\right\}$

[^0]It is easy to see that $R_{n}(a)$ is closed in (a, ∞) and that if $\Delta\left(F_{n+1},(a, x)\right)>$ $1-\frac{1}{n}$ then $R_{n}(a) \cap(a, x) \neq \emptyset$. (For a proof see Lemma 1 below.)

Let $a_{1} \in F_{1}, a_{n+1}=\sup R_{n}\left(a_{n}\right)$, and $a=\operatorname{limit}\left(a_{n}\right)$. Note that if $a_{n} \in F_{n}$ then a_{n+1} exists and as $R_{n}\left(a_{n}\right)$ is closed a_{n+1} is in F_{n+1}. If $a_{n} \leq x<a_{n+1}<$ a, then $\Delta\left(E,\left(x, a_{n+1}\right)\right)>1-\frac{1}{n}$ because $a_{n+1} \in R_{n}\left(a_{n}\right)$. It follows that $\Delta(E,(x, a))>1-\frac{1}{n}$ and hence, $d_{-}(E, a)=1$.

It remains to show $a \notin E$. Suppose to the contrary, that there is an n such that $a \in F_{n+1}$. If $x \in\left(a_{n}, a\right)$ then, as before, $\Delta(E,(x, a))>1-\frac{1}{n}$ implying that $a \in R_{n}\left(a_{n}\right)$ and contradicting the choice of a_{n+1}.

Theorem 2 Suppose $F \in \mathbf{F}_{\sigma}$ is nonempty, bounded below and $\mu(F \cap(x-$ $h, x))>0$ for every $x \in F$ and every $h>0$. Then there exists a $y \in F^{c}$ such that $d^{+}(F, y)=1$.

Proof: Let $1>\epsilon_{1}>\epsilon_{2}>\ldots \rightarrow 0$, and write

$$
F^{c}=G_{1} \cap G_{2} \cap \ldots \text { where } \mathrm{G}_{1} \supseteq \mathrm{G}_{2} \supseteq \ldots,
$$

and each G_{n} is open. Let (a_{1}, b_{1}) be any component of G_{1} containing a point $g_{1} \notin F$. Then, $b_{1} \in F$ so that $\mu\left(F \cap\left(g_{1}, b_{1}\right)\right)>0$. Let d_{1} be a density point of F in $\left(g_{1}, b_{1}\right)$ and let h_{1} be such that $\Delta\left(F,\left[d_{1}, d_{1}+h_{1}\right]\right)>1-\epsilon_{1}$. Let $c_{1}=\inf \left\{c:\left[c, d_{1}\right] \subset F\right\}$. Assume $c_{1} \in F$ since otherwise we are done. Then $c_{1}>g_{1}>a_{1}$ and c_{1} is a limit point, from below, of both F and F^{c}. Choose $n_{1}>1$ large enough so that a component, $\left(a_{2}, b_{2}\right)$, of $G_{n_{1}}$ is contained in $\left(c_{1}-h_{1} \epsilon_{1}, c_{1}\right) \cap\left(a_{1}, c_{1}\right)$. Now continue inductively with (a_{1}, b_{1}) replaced by $\left(a_{2}, b_{2}\right)$, etc. If $y=\bigcap_{n=1}^{\infty}\left(a_{n}, b_{n}\right) \in F^{c}$ then an easy computation shows that $\Delta\left(F,\left(y, d_{n}+h_{n}\right)\right) \mapsto 1$. This implies that $d^{+}(F, y)=1$ and the proof is complete.

The \mathbf{G}_{δ} form of this theorem mentioned in the introduction is obtained by interpreting Theorem 2 using the complements of the sets listed in the statement of that theorem. So interpreted, this theorem becomes:

Theorem 3 Suppose $E \in \mathbf{G}_{\delta}$ is non-empty, bounded, and $d_{+}(E, y)>0$ for every $y \in E$. Then there exists $a z \in E^{c}$ and an $h>0$ such that $\Delta(E \cap[z-$ $h, z])=1$.

As a corollary we obtain the following theorem.
Theorem 4 The \mathbf{G}_{δ} subsets of \mathbf{R} have the O'Malley density property.

2 O'Malley Density for $\mathbf{G}_{\delta \sigma}$ Sets

Fix a measurable set E. A key tool for our investigation is the following collection of sets:

$$
R_{n}(a)=\left\{x>a: \text { if } z \in(a, x) \text { then } \Delta(E,(z, x)) \geq 1-\frac{1}{n}\right\}
$$

It is easy to see that $R_{n}(a)$ is closed in any closed interval to the right of a and that if $n>m$ then $R_{n}(a) \subset R_{m}(a)$. Note too that if $x \in R_{n}(a)$ and $(x, y) \subset E$ then $y \in R_{n}(a)$. We need some slightly deeper properties of these sets for our investigation, however.

Lemma 1 Suppose I lies to the right of a and is contiguous to $R_{n}(a)$. Then $\Delta\left(E^{c}, I\right) \geq \frac{1}{n}$.

Proof: By contiguous we mean that I is a complementary interval with left endpoint of I either equal to a or in $R_{n}(a)$. Let $I=(b, c)$ and $x \in I$. As $x \notin R_{n}(a)$ there is a $z \in(a, x)$ such that $\Delta(E,(z, x))<1-\frac{1}{n}$. We may assume $z \geq b$ because if $z<b$ then $\Delta(E,(z, b)) \geq 1-\frac{1}{n}$ so that $\Delta(E,(b, x))<1-\frac{1}{n}$. It is easy to see that $\inf \left\{z \geq b: \Delta(E,(z, x)) \leq 1-\frac{1}{n}\right\}=b$ and as x is arbitrary, the lemma is proved.

Theorem 5 Let $n_{1}>n_{2} n_{3}$ and $\Delta(E,(a, x)) \geq 1-\frac{1}{n_{1}}$. Then,

$$
\Delta\left(R_{n_{2}}(a),(a, x)\right) \geq 1-\frac{1}{n_{3}}
$$

Proof: Suppose that $\Delta\left(R_{n_{2}}(a),(a, x)\right)<1-\frac{1}{n_{3}}$. It follows from Lemma 1 that in each interval, $I \subset(a, x)$, contiguous to $R_{n_{2}}(a), \Delta\left(E^{c}, I\right) \geq \frac{1}{n_{2}}$. Hence,

$$
\Delta\left(E^{c},(a, x)\right) \geq \Delta\left(R_{n_{2}}^{c}(a) \cap E^{c},(a, x)\right) \geq \frac{1}{n_{2} n_{3}}
$$

and as $n_{1}>n_{2} n_{3}$ this contradicts the fact that $\Delta(E,(a, x)) \geq 1-\frac{1}{n_{1}}$.
Corollary 1 If $d^{+}(E, a)=1$ then $d^{+}\left(R_{n}(a), a\right)=1$ for each $n=1,2, \ldots$
Lemma 2 Suppose $n>m$. Then for every $y \in R_{n}(a)$ and for every $z \in$ $[a, y], \Delta\left(R_{m}(a),(z, y)\right) \geq 1-\frac{m}{n}$.

Proof: Suppose that there is a $y \in R_{n}(a)$ and a $z \in[a, y]$ such that $\Delta\left(R_{m}(a),(z, y)\right)<1-\frac{m}{n}$. Then there is a set of mutually exclusive left-half open intervals, $\left\{I_{i}\right\}$, in (z, y) such that each $I_{i} \subset \mathbf{R} \backslash R_{m}(a)$ and $\Delta\left(\cup I_{i},(z, y)\right)>$ $\frac{m}{n}$. As in the proof of Lemma 1, this implies that there is a set of mutually exclusive intervals J_{j} such that $\Delta\left(E^{c}, J_{j}\right) \geq \frac{1}{m}$ and $\cup I_{i} \subset \cup J_{j}$. Hence, $\Delta\left(E^{c},(z, y)\right)>\frac{1}{m} \frac{m}{n}=\frac{1}{n}$. This contradicts the fact that $y \in R_{n}(a)$ and completes the proof of the lemma.

Theorem 6 The $G_{\delta \sigma}$ subsets of \mathbf{R} have the O'Malley density property

Proof: Suppose that E is a nonempty $G_{\delta \sigma}$ set with $d_{+}(E, a)=1$ for every $a \in E$. Suppose too that there is an interval where E^{c} has positive measure to the right of an interval where E has positive measure. If $E=$ $r-\operatorname{int}(E) \equiv\{x \in E:$ for some $\epsilon>0,[x, x+\epsilon) \subset E\}$ then let I be any component of E which is bounded above. The right endpoint, e, of I is in $E^{c}($ since $E=r-\operatorname{int}(E))$ and is such that $d_{-}(E, e)=1$. Hence, we may assume $E \backslash r-\operatorname{int}(E) \neq \emptyset$. We also assume that if E has full measure in an interval (a, b), then E contains ($a, b]$ for otherwise we are done. Our aim is to find an increasing sequence $x_{0}<x_{1}<\ldots$ of points from E such that for each $z_{n} \in\left(x_{n}, x_{n+1}\right), \Delta\left(E,\left(z_{n}, x_{n+1}\right)\right) \mapsto 1$ as $n \mapsto \infty$. To insure that the limit, x^{*}, of this sequence is not in E some care must be taken in defining the x_{n}. First write:

$$
E=\cup_{n=1}^{\infty} E_{n} \text { where } E_{n}=\cap_{k=1}^{\infty} G_{n, k}
$$

and each $G_{n, k}$ is open. We also assume that for each n and $k, G_{n, k+1} \subset G_{n, k}$, and $E_{n} \subseteq E_{n+1}$. Let $x_{0} \in E \backslash r-\operatorname{int}(E)$. Then there is a first n_{0} such that $x_{0} \in G_{n_{0}, k_{0}}$ for some k_{0}. Note that it does not necessarily follow that $x_{0} \in E_{n_{0}}$. We associate the pair (n_{0}, k_{0}) with x_{0}. There is an $\epsilon_{0}<1$ such that $\left[x_{0}, x_{0}+\epsilon_{0}\right) \subset G_{n_{0}, k_{0}}$. If $\left(x_{0}, x_{0}+\epsilon_{0}\right) \subset R_{n_{0}+1}\left(x_{0}\right)$, then it follows from the Lebesgue Density Theorem that E has full measure in $\left[x_{0}, x_{0}+\epsilon_{0}\right.$); so by assumption, $\left[x_{0}, x_{0}+\epsilon_{0}\right] \subset E$ contradicting the fact that $x_{0} \notin r-\operatorname{int}(E)$. $e^{\prime} \in E^{c} \cap\left(x_{0}, x_{0}+\epsilon_{0}\right)$ satisfies the conclusion of the theorem. Hence, we may assume ($\left.x_{0}, x_{0}+\epsilon_{0}\right) \not \subset R_{n_{0}+1}\left(x_{0}\right)$. Let ($y_{0}, y_{0}+\delta_{0}$) be contiguous to $R_{n_{0}+1}\left(x_{0}\right)$ in $\left[\mathrm{x}_{0}, \mathrm{x}_{0}+\epsilon_{0}\right)$. It follows from Lemma 1 that $\Delta\left(E^{c},\left(y_{0}, y_{0}+\delta_{0}\right)\right) \geq$ $\frac{1}{n_{0}+1}$. Suppose $y_{0} \in E$. Then $d_{+}\left(E, y_{0}\right)=1$ so it follows from Corollary 1 that $d_{+}\left(R_{m}\left(y_{0}\right), y_{0}\right)=1$ for every m. But, if $y_{0}^{\prime} \in R_{n_{0}+1}\left(y_{0}\right) \cap\left(y_{0}, y_{0}+\delta_{0}\right)$,
then $y_{0}^{\prime} \in R_{n_{0}+1}\left(x_{0}\right)$. This, however, contradicts the fact that $\left(y_{0}, y_{0}+\delta_{0}\right) \cap$ $R_{n_{0}+1}\left(x_{0}\right)=\emptyset$. Hence, $y_{0} \notin E$.

Let $z_{0}=\max \left\{x_{0}, y_{0}-\delta_{0}\right\}$. As $y_{0} \in R_{n_{0}+1}\left(x_{0}\right), \Delta\left(E,\left(z_{0}, y_{0}\right)\right) \geq 1-$ $\frac{1}{n_{0}+1}$. It follows from Lemma 2 that $\Delta\left(R_{n_{0}-1}\left(x_{0}\right),\left(z_{0}, y_{0}\right)\right) \geq \frac{2}{n_{0}+1}$. Hence, $\left.R_{n_{0}-1}\left(x_{0}\right) \cap\left(z_{0}, y_{0}\right)\right) \cap E \neq \emptyset$. If $\left.R_{n_{0}-1}\left(x_{0}\right) \cap\left(z_{0}, y_{0}\right)\right) \cap E \backslash r-\operatorname{int}(E)=\emptyset$, choose $x \in R_{n_{0}-1}\left(x_{0}\right) \cap\left(z_{0}, y_{0}\right) \cap E$. Then $x \in r-\operatorname{int}(E)$, so that x is in an interval of E whose right endpoint (by assumption) is also in E. But, this endpoint cannot be in $r-\operatorname{int}(E)$ and hence, must be greater or equal to y_{0} contradicting the fact that $y_{0} \notin E$. Hence, $\left.R_{n_{0}-1}\left(x_{0}\right) \cap\left(z_{0}, y_{0}\right)\right) \cap E \backslash r-i n t(E) \neq \emptyset$. We let x_{1} be any element of this set and continue inductively. of that interval is y_{0}. If y_{0} is the right endpoint of an interval from E, then as $y_{0} \notin E, d_{-}\left(E, y_{0}\right)=1$ and y_{0} is the point we're looking for. If $\left.R_{n_{0}-1}\left(x_{0}\right) \cap\left(z_{0}, y_{0}\right)\right) \cap E \backslash r-\operatorname{int}(E) \neq \emptyset$, we let x_{1} be any element of this set and continue inductively.

Continuing the induction, suppose that points $x_{1}<x_{2}<\ldots x_{i}<y_{i}<$ $\ldots<y_{2}<y_{1}$, ordered pairs of integers (n_{j}, k_{j}), and positive numbers δ_{j} have been defined for all $j \leq i$ and that $x_{j} \in R_{n_{j-1}-1}\left(x_{j-1}\right)$. We also assume that $\left(x_{j}, y_{j}\right) \subseteq G_{n_{j}, k_{j}}, \Delta\left(E^{c},\left(y_{j}, y_{j}+\delta_{j}\right)\right) \geq \frac{1}{n_{j}+1}$ and $x_{j+1} \in\left(y_{j}-\delta_{j}, y_{j}\right) \cap$ $R_{n_{j}-1}\left(x_{j}\right)$.

Suppose too that $x_{i+1} \in R_{n_{i}-1}\left(x_{i}\right) \cap E \backslash r-i n t(E)$ has been defined so that $\max \left\{x_{i}, y_{i}-\delta_{i}\right\}<x_{i+1}<y_{i}$. We define the required quantities as follows.

1. There is a first integer n_{i+1} such that $x_{i+1} \in G_{n_{i+1}, k_{i+1}}$ for some $k_{i+1}>$ $\max \left\{k_{j}: j \leq i\right.$ and $\left.n_{j}=n_{i+1}\right\}$.

Informally, each time we choose a pair n_{i}, k_{i} we "eliminate" all $G_{n_{i}, k}$ for $k \leq k_{i}$. When it comes time to choose n_{i+1}, k_{i+1}, we pick the first n_{i+1} such that for some $k_{i+1}, G_{n_{i+1}, k_{i+1}}$ has not yet been eliminated and contains x_{i+1}.
2. Let $\epsilon_{i+1}<\frac{1}{2^{i+1}}$ be such that $\left[x_{i+1}, x_{i+1}+\epsilon_{i+1}\right) \subset G_{n_{i+1}, k_{i+1}} \cap\left[x_{i+1}, y_{i}\right)$. If $\left(x_{i+1}, x_{i+1}+\epsilon_{i+1}\right) \subset R_{n_{i+1}+1}\left(x_{i+1}\right)$, then it follows from the Lebegue Density Theorem that E has full measure in ($x_{i+1}, x_{i+1}+\epsilon_{i+1}$) and the result follows as above. Hence, we may assume that $\left(x_{i+1}, x_{i+1}+\epsilon_{i+1}\right) \not \subset$ $R_{n_{i+1}+1}\left(x_{i+1}\right)$.
3. Let $\left(y_{i+1}, y_{i+1}+\delta_{i+1}\right)$ be contiguous to $R_{n_{i+1}+1}\left(x_{i+1}\right) \cap\left[x_{i+1}, x_{i+1}+\epsilon_{i+1}\right)$.

It follows as above that $y_{i+1} \notin E$. Let $z_{i+1}=\max \left\{x_{i+1}, y_{i+1}-\delta_{i+1}\right\}$. As $y_{i+1} \in R_{n_{i+1}+1}\left(x_{i+1}\right), \Delta\left(E,\left(z_{i+1}, y_{i+1}\right)\right) \geq 1-\frac{1}{n_{i+1}+1}$. It follows from Lemma 2 that $\Delta\left(R_{n_{i+1}-1}\left(x_{i+1}\right),\left(z_{i+1}, y_{i+1}\right)\right) \geq \frac{2}{n_{i+1}+1}$. Hence,

$$
\left.R_{n_{i+1}-1}\left(x_{i+1}\right) \cap\left(z_{i+1}, y_{i+1}\right)\right) \cap E \neq \emptyset
$$

If

$$
R_{n_{i+1}-1}\left(x_{i+1}\right) \cap\left(z_{i+1}, y_{i+1}\right) \cap E \backslash r-\operatorname{int}(E)=\emptyset
$$

then $E \cap\left(z_{i+1}, y_{i+1}\right)$ contains an interval. The right endpoint of that interval cannot be less than y_{i+1} since it would then belong to

$$
\left.R_{n_{i+1}-1}\left(x_{i+1}\right) \cap\left(z_{i+1}, y_{i+1}\right)\right) \cap E \backslash r-\operatorname{int}(E) .
$$

The right endpoint of that interval also cannot be y_{i+1} since otherwise, by assumption, $y_{i+1} \in E$. Hence,

$$
R_{n_{i+1}-1}\left(x_{i+1}\right) \cap\left(z_{i+1}, y_{i+1}\right) \cap E \backslash r-\operatorname{int}(E) \neq \emptyset
$$

We let x_{i+2} be any element of this set .
This completes the induction and we let $x^{*}=$ limit x_{i}. The remainder of the proof hinges on the fact that $\left\{n_{i}\right\} \rightarrow \infty$. Suppose, to the contrary, that there is an N such that $n_{i}=N$ for a subsequence $n_{i j}$ of the n_{i} 's. Then $x^{*} \in\left(x_{i j}, y_{i_{j}}\right) \subset G_{N, k_{i j}}$ for $j=1,2, \ldots$, and hence, $x^{*} \in E_{N} \subset E$. Thus, $d_{+}\left(E, x^{*}\right)=1$. However, by Lemma $1 \Delta\left(E^{c},\left(y_{i j}, y_{i_{j}}+\delta_{i_{j}}\right)\right) \geq \frac{1}{n_{i j}+1}=$ $\frac{1}{N+1}$ for each $j=1,2, \ldots$ As $x^{*} \in\left(y_{i j}-\delta_{i j}, y_{i j}\right)$ for each j, it follows that $\Delta\left(E^{c},\left(x^{*}, y_{i j}+\delta_{i j}\right)\right) \geq \frac{1}{N+1}$ for each $j=1,2, \ldots$. We conclude that $d^{+}\left(E, x^{*}\right) \leq \frac{1}{2(N+1)}$, but this is a contradiction. If $x^{*} \in E$, then $x^{*} \in E_{N}$ for some N. Since $n_{i} \mapsto \infty$, only finitely many n_{i} fail to exceed N. Let $K>$ $\max \left\{k_{i}: n_{i}=N\right\}$. As $x^{*} \in G_{N, K}$, so is some x_{j} where $j>\max \left\{i: n_{i} \leq N\right\}$. But then by $1, n_{j} \leq N$ contradicting the choice of j. Hence, $x^{*} \in E^{c}$.

Finally, as $x_{i+1} \in R_{n_{i}-1}\left(x_{i}\right)$ and as $\left\{n_{i}\right\} \rightarrow \infty$, the definition of R_{n} implies that the left density of E at x^{*} is 1 . This completes the proof of Theorem 6.

3 An Example

The purpose of this section is to prove the following theorem.
Theorem 7 There exists a proper open subset $A \subset(0,1)$ such that for every $x \in[0,1]$ if A has left density 1 at x, then A has right density 1 at x.

Proof: Let F denote the Cantor ternary set. For each $x \in F^{c}$ let $k(x)=$ $\max \{0,0(x)-2(x)\}$ where $0(x)$ is the number of " 0 's" in the ternary expansion of x prior to the first " 1 " and $2(x)$ is the number of " 2 ' s " in the expansion of x prior to the first 1 . Let $z(\mathrm{x})$ denote the maximum length of the string of consecutive " 0 's" immediately following the first " 1 " in one of the possibly two expansions of x . Finally, set $\mathrm{G}=\left\{x \in F^{c}: z(x) \leq k(x)\right\}$. Clearly, G is open. Thus, the set G consists of right subintervals of components of F^{c}. For example, in the interval $\left(\frac{1}{3}, \frac{2}{3}\right) \subset F^{c}$, the k-value is zero and G will contain the right subinterval $\left(\frac{4}{9}, \frac{2}{3}\right)$.

For any $\mathrm{x} \in(0,1)$, if the $\mathrm{n}^{\text {th }}$ digit in the ternary expansion of x is unambiguous, we denote that digit by $(\mathrm{x})_{n}$. Since k is constant on any component (a,b) of F^{c}, we say the k-value of the interval is $k\left(\frac{a+b}{2}\right)$. If $x \in G$ then $d_{-}(G, x)=d_{+}(G, x)=1$. The only other x for which $d_{-}(G, x)=1$ are in F. So assume $x \in F$. Then x has a unique ternary expansion consisting of " 0 's" and " 2 's". Let $k_{n}(x)=$ number of $0^{\prime} s$ - number of $2^{\prime} s$ in the first n digits of the expansion of x. The proof is completed by the following two claims.

Claim 1 If there is an $L>0$ such that for infinitely many $n, k_{n}(x)<L$, then $d_{-}(G, x) \neq 1$.

Proof: Let n be such that $k_{n}(x)<L$ and $(x)_{n}=2$. There are infinitely many such n. Let $(c)_{j}=(x)_{j}$ for $j<n$ and $(c)_{j}=1$ for $j \geq n$. Then $k(c) \leq L$ and as c terminates in all 1 's, $\in F^{c}$. If (a, b) is the component of F^{c} containing c, then $\mu\left(G^{c} \cap(a, b)\right) \geq\left(\frac{1}{3}\right)^{L+1}(b-a) \geq \frac{1}{2}\left(\frac{1}{3}\right)^{L+1}(x-a)$. As this happens for c arbitrarily close to $x, d_{-}(G, x) \leq 1-\frac{1}{2}\left(\frac{1}{3}\right)^{L+1}$.

Claim 2 If limit $\lim _{n \rightarrow \infty} k_{n}(x)=\infty$ then $d_{+}(G, x)=1$
Proof: Let $\epsilon>0$ and let L be so large that $\left(1-\left(\frac{2}{3}\right)^{L}\right)^{3}>1-\epsilon$. Suppose that for all $m>b, k_{m}(x)>3 L$. Let $y>x$ be so close to x that x and y first disagree at some decimal place $d>b$. We finish the proof by showing
$\Delta(G,[x, y])>1-\epsilon$. Case 1: $(y)_{j} \neq 1$ for $d \leq j \leq d+L$. Let $a_{0}>a_{1}>\ldots$ be the numbers obtained by replacing each " 0 " in a decimal place $\geq d$ (in the expansion of x) with a " 1 " followed by a tail end of all " 0 's". Then $a_{n} \rightarrow x$. Let $a_{-1}<\ldots a_{-p}$ be the numbers obtained by taking each " 2 " in a decimal place $\geq d$ and $\leq d+L$ (in the expansion of y) and following it with a tail end of all " 0 's". This gives

$$
(x, y]=\ldots \cup\left[a_{2}, a_{1}\right] \cup\left[a_{1}, a_{0}\right] \cup\left[a_{0}, a_{-1}\right] \cup \ldots \cup\left[a_{-p+1}, a_{-p}\right] \cup\left[a_{-p}, y\right]
$$

where for each $i>0$, the left half of (a_{i}, a_{i-1}] is a component of F^{c} and for each $i<0$, the right half of $\left[a_{i}, a_{i-1}\right)$ is a component of F^{c}. and $\left(a_{0}, a_{-1}\right)$ is the largest component of F^{c} between x and y. The k-value of all of these components exceeds $2 L$. Hence, the relative measure of the components of F^{c} with k-value $>L$ in each $\left[a_{i}, a_{i-1}\right]$ is greater than or equal to $\frac{1}{2}+\frac{1-\left(\frac{2}{3}\right)^{L}}{2}>$ $1-\left(\frac{2}{3}\right)^{L}$ which gives

$$
\Delta\left(G,\left[a_{i}, a_{i-1}\right]\right)>\left[1-\left(\frac{1}{3}\right)^{L}\right]\left[1-\left(\frac{2}{3}\right)^{L}\right] .
$$

Also,

$$
\frac{y-a_{-p}}{y-x}<\frac{y-a_{-p}}{a_{-1}-a_{0}}<\left(\frac{1}{3}\right)^{L}
$$

since y and a_{-p} agree in the first $d+L$ decimal places. Therefore,

$$
\Delta(G,[x, y])>\left[1-\left(\frac{1}{3}\right)^{L}\right]\left[1-\left(\frac{1}{3}\right)^{L}\right]\left[1-\left(\frac{2}{3}\right)^{L}\right]>1-\epsilon .
$$

Case 2: $(y)_{j}=1$ for some j such that $d \leq j \leq L+d$. In this case, let $\ldots a_{2}<a_{1}<a_{0}<a_{-1}<\ldots a_{-m+1}<a_{-m}$ be defined as before except that this time a_{-m} is the left endpoint of the component $\left(a_{-m}, b_{-m}\right)$ of F^{c} which contains y. As in Case 1, we will be done if we can show $y-a_{-m}<\left(\frac{1}{3}\right)^{L}(y-x)$. Now, assume that y is the left endpoint of a component of G since it is at such points in F^{c} where $\Delta(G,(x, y))$ is smallest. Then,

$$
\begin{aligned}
y-a_{-m} & =\left(\frac{1}{3}\right)^{k\left(a_{-m}\right)+1}\left(b_{-m}-a_{-m}\right) \\
& <\left(\frac{1}{3}\right)^{2 L}\left(b-a_{-m}\right)<\left(\frac{1}{3}\right)^{2 L}\left(a_{-1}-a_{0}\right) \\
& <\left(\frac{1}{3}\right)^{L}(y-x)
\end{aligned}
$$

The rest follows as in Case l.
As stated in the introduction, this example provides us with the following two corollaries:

Corollary 2 The O'Malley density property does not hold for the $\mathbf{F}_{\sigma \delta}$ sets.
Proof: Let $A^{*}=A \cup\left\{x: d_{+}(A, x)=1\right\}$. Then $\mu(A)=\mu\left(A^{*}\right)$ and as A is open and $\left\{x: d_{+}(A, x)=1\right\} \in \mathbf{F}_{\sigma \delta}, A^{*}$ has left density one at each of it's points and yet does not have right density 1 at any point of the complement.

Corollary 3 There is an F_{σ} set A which has left density 1 at each of its points, but at no point of A^{c} does A have full measure on the right.

Proof: Let A_{o} be the union of all intervals $[\mathrm{a}, \mathrm{b})$ in which A has full measure. A_{o} is \mathbf{F}_{σ}, has left density 1 at each of it's points, but at no point in A_{o}^{c} does A_{o} have full measure on the right.

References

[1] R.J. O'Malley, "A density property and applications", Trans. Amer. Math. Soc. 199 (1974), 75-87.
[2] R.J. O'Malley, "Query \#7", Real Analysis Exch. 16(1) (1991), 376.
[3] J. Malý, D. Preiss, L. Zajiček, "An unusual monotonicity theorem with applications", Proc. Amer. Math. Soc. 102 (4) (1988), 925-932.

[^0]: ${ }^{1}$ Adjoin to A all points at which A has right density 1 . This does not add any measure to A by Lebesgue's Density Theorem. It is easy to see that the resulting set is $\mathbf{F}_{\sigma \delta}$, has left density one at each of it's points and yet does not have right density 1 at any point of the complement.
 ${ }^{2}$ Let A_{o} be the union of all intervals [a,b) in which A has full measure. A_{o} is \mathbf{F}_{σ} (in fact it is open in the Sorgenfrey topology), has left density 1 at each of it's points, but at no point in A_{o}^{c} does A_{o} have full measure on the right.

