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 The Exact Borei Class Where a Density
 Completeness Axiom Holds

 Richard O'Malley [1] defined the following density property and then
 showed that the Fc subsets of R have this property. We say that a collection,
 A, of subsets of R has the O'Malley density property if whenever a non-empty
 bounded set A G A has right (left) density 1 at each of it's points, then there
 is a point in Ac at which A has left (right) density 1. In [1] O'Malley proved
 the following theorem (restated here using our terminology):

 Theorem 1 (O'Malley) . The Fc subsets of R have the O'Malley density
 property.

 O'Malley established several consequences of this result and asked whether
 the restriction to Fa was necessary. This last question was repeated in the
 form of a query at the 14th Summer Symposium in Real Analysis held in
 San Bernardino, June, 1990 where a handsome reward for a resolution was
 offered ($50 by O'Malley and $10 by one of the organizers; see [2]). The
 purpose of this paper is to claim the prize!

 We begin with what we believe is a new proof of Theorem 1 above. Then
 we establish a similar and stronger density property for the G$ sets. Namely,
 if A is a non-empty bounded Gj set which has positive left lower density at
 each of it's points, then there is a point x € Ac and a y > x such that A has
 full measure in (x, y). These ideas are expanded in Section 2 to establish the
 O'Malley density property for sets.

 The last section of the paper is devoted to constructing a non-trivial open
 set A C (0, 1) such that for every x 6 [0, 1] if A has right density 1 at x ,
 then A has left density 1 at x. This shows both that the O'Malley density
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 property does not hold for the sets1 and that the stronger version for
 Gs can not be extended to F<, sets 2 We conclude with a question and offer
 the generous sum of $60 for it's resolution. The densities referred to in this
 question are defined in Section 1 below. This question is:

 Are there two open disjoint non-empty sets, A and B, whose
 union has full measure and such that for each x G R, d-(A, x) =
 d+(A,x) and d~(A,x) = d+(A, x) ?

 1 The Fa and G¿> sets have the O'Malley
 density property

 We begin by proving Theorem 1, but to do so we first need to establish
 some notation. If E is a measurable subset of R , we define the rela-
 tive measure of E in the interval I as A (E,I) = where fi denotes
 Lebesgue measure. The right lower density of E at x is then d+(E,x) =
 liminf/i_+oA(^, (x, x + h)); The upper density (density) on the right at x is
 defined similarly but with limsup (lim) in place of liminf. Densities on the
 left are defined and denoted in the obvious way.

 Theorem 1 (O'Malley) . The F„ subsets of R have the O'Malley density
 property.

 Proof: Suppose E G is bounded and non-empty. Using the Lusin-
 Menchov Theorem we can write E = Fi U F2 U . . . where Fi C F2 C . . . each
 Fn is closed, F' = {ai} is a singleton, and if x G Fn then d+(Fn+i,x) = 1.
 Define

 Rn(a) = {x € Fn+i : x > a and if y G (a, x), then A (E, (y, x)) > 1 - - }
 n

 1 Adjoin to A all points at which A has right density 1. This does not add any measure
 to A by Lebesgue's Density Theorem. It is easy to see that the resulting set is F„f , has
 left density one at each of it's points and yet does not have right density 1 at any point of
 the complement.

 2 Let A0 be the union of all intervals [a,b) in which A has full measure. A0 is (in
 fact it is open in the Sorgenfrey topology), has left density 1 at each of it's points, but at
 no point in A% does A0 have full measure on the right.
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 It is easy to see that Rn(a) is closed in (a, oo) and that if A(Fn+i, (a, x)) >
 1 - Ì then Rn(a) H (a, x ) Ý 0- (For a proof see Lemma 1 below.)

 Let ai 6 Fi, an+i = supRn(an), and a = limit(an). Note that if an € Fn
 then an+x exists and as Rn(an) is closed an+i is in Fn+i. If an < x < an+ļ <
 a, then A(E, (x,an+i)) > 1 - £ because an+i £ Rn(an). It follows that
 A (E, (x, a)) > 1 - Ì and hence, d-(E, a) = 1.

 It remains to show a E. Suppose to the contrary, that there is an n
 such that a € Fn+ 1. If a: € (an,a) then, as before, A(E,(x,a)) > 1 - Ì
 implying that a 6 Rn(an) and contradicting the choice of an+i.

 Theorem 2 Suppose FgF, is nonempty, bounded below and ļi(F D (x -
 h , x)) > 0 for every x € F and every h > 0. Then there exists a y € Fc such
 that d+(F,y) = 1.

 Proof: Let 1 > ei > C2 0, and write

 Fc = Gì Cl Gì fi . . . where Gì 3 G2 2 • • -,

 and each Gn is open. Let (ai, 61) be any component of G' containing a point
 <71 ^ F. Then, 61 € F so that fi(F D (gi,bi)) > 0. Let d' be a density point
 of F in (<7i,&i) and let hi be such that A(F, [di,di + Äi]) > 1 - ti. Let
 ci = inf{c : [c, oři] C -f}* Assume Ci € F since otherwise we are done. Then
 ci > 01 > ax and ci is a limit point, from below, of both F and Fc. Choose
 ni > 1 large enough so that a component, (02, 62), of Gni is contained in
 (ci - hieuci) D (ai,Ci). Now continue inductively with (ai,6i) replaced by
 (ū2, bļ), etc. If y = n~i(an, bn) € Fc then an easy computation shows that
 A (F,(y,dn + hn)) 1. This implies that d+(F,y ) = 1 and the proof is
 complete.

 The Gì form of this theorem mentioned in the introduction is obtained
 by interpreting Theorem 2 using the complements of the sets listed in the
 statement of that theorem. So interpreted, this theorem becomes:

 Theorem 3 Suppose E G G 5 is non-empty, bounded, and d+(E,y) > 0 for
 every y 6 E. Then there exists a z G Ec and an h > 0 such that A (E D [z -
 h, z]) = 1.

 As a corollary we obtain the following theorem.

 Theorem 4 The G$ subsets o/R have the O'Malley density property.
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 2 O'Malley Density for G$a Sets

 Fix a measurable set E. A key tool for our investigation is the following
 collection of sets:

 Rn(a ) = {x > a : if z € (a,x) then A(E, (z, x)) >1 - -}
 n

 It is easy to see that Rn(a) is closed in any closed interval to the right of a
 and that if n > m then Rn(a) C Rm(a). Note too that if x 6 Rn(a) and
 (x,y) C E then y € Rn(a)- We need some slightly deeper properties of these
 sets for our investigation, however.

 Lemma 1 Suppose I lies to the right of a and is contiguous to Rn(a)- Then
 A (E°,I)>1.

 Proof: By contiguous we mean that I is a complementary interval with
 left endpoint of I either equal to a or in Rn(a )• Let I = (6, c) and x E I. As
 x Rn(d) there is a z G (a, x) such that A(E , ( z , z)) < 1- We may assume
 z > b because if z < b then A (E, ( z , b)) > 1 - Ì so that A (E, (b, x)) < 1 - jk
 It is easy to see that inf{z > b : A (E, (z, xj) < 1 - Ì} = b and as x is
 arbitrary, the lemma is proved.

 Theorem 5 Let n' > and A(E,(a,x)) > 1 - Then,

 A (Rn2(a),(a,x)) > 1 - - .

 Proof: Suppose that A (R„2(a), (a>x)) < 1 - jjk It follows from Lemma 1
 that in each interval, I C (a, x), contiguous to Rn2(a), A (Ec, I) > Hence,

 A (E', (a, x)) > A(K,(a) n E°, (a, x)) > -,

 and a snj > n2n3 this contradicts the fact that A (E, (a,x)) > 1 -

 Corollary 1 Ifd+(E,a ) = 1 then d+(Rn(a),a) = 1 for each n=l,2,....

 Lemma 2 Suppose n > m. Then for every y € ižn(a) and for every z G
 [a, y], A(Rm(a),(z,y)) > 1 - a.
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 Proof: Suppose that there is a y € ižn(a) and a z G [a, y] such that
 A(Rm(a), ( z , y)) < 1 - Then there is a set of mutually exclusive left-half
 open intervals, {/,}, in (z, y) such that each /,• C R'ižm(a) and A(U/¿, (z, y)) >

 As in the proof of Lemma 1, this implies that there is a set of mutually

 exclusive intervals Jj such that A (Ec,Jj) > ^ and U /,• C U Jj. Hence,
 A (Ec,(z,y)) > = Ì. This contradicts the fact that y G Rn(<*) and
 completes the proof of the lemma.

 Theorem 6 The G$c subsets of R have the O'Malley density property

 Proof: Suppose that E is a nonempty Gsa set with d+(E,a) = 1 for
 every a € E. Suppose too that there is an interval where Ec has positive
 measure to the right of an interval where E has positive measure. If E =
 r - int(E) = {x € E : for some e > 0, [x, x + e) C E} then let I be any
 component of E which is bounded above. The right endpoint, e, of I is in
 Ec (since E = r - int(E)) and is such that d_(E, e) = 1. Hence, we may
 assume E'r - int(E) 0. We also assume that if E has full measure in an
 interval (a, 6), then E contains (a,b' for otherwise we are done. Our aim is
 to find an increasing sequence Xq < Xļ < ... of points from E such that for
 each zn G (xn,arn+x), A(E,(zn,xn+i)) h 1 as n h oo. To insure that the
 limit, x*, of this sequence is not in E some care must be taken in defining
 the xn. First write:

 E = U£Ļ tEn where En = C]f=1Gnik

 and each Gn>k is open. We also assume that for each n and k, Gn¡k+i C Gn,k,
 and En Ç En+'- Let x0 G E'r - int(E). Then there is a first no such
 that xo G G noto f°r some ko. Note that it does not necessarily follow that
 Xo G En o- We associate the pair (no, ¿o) with xo. There is an eo < 1 such
 that [x0, xo + Co) C Gno,ko • ^ (®o»®o + «o) C i2no+i(x0), then it follows from
 the Lebesgue Density Theorem that E has full measure in [xo, xo + eo); so
 by assumption, [xo, xo + Co] C E contradicting the fact that xo & i - int(E).
 e' G Ec D (xo, xo + Co) satisfies the conclusion of the theorem. Hence, we
 may assume (x0,x0 + Co) (f. -Rno+i^o)- Let (yo,Po + ¿o) be contiguous to
 Äno+i(x0) in [xo, Xo+co). It follows from Lemma 1 that A (Ec, (y0, yo+S0)) >

 Suppose yo G E. Then d+(E, yo) = 1 so it follows from Corollary 1
 that d+(Rm(y0),y0) = 1 for every m. But, if y'0 G Rno+i{yo) H (y0,yo + ¿o),
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 then y'0 G Rn <>+i(xo)- This, however, contradicts the fact that (yo, yo + ¿0) H
 Rno+i{xo) = 0- Hence, y0 £ E.

 Let z0 = max{x0,yo - M- As y0 6 Rno+ i(*o), A(ü?, (z0>yo)) > 1 -
 ^ļ-. It follows from Lemma 2 that A(iž„0_i(io), (¿o, Vo)) > ;¿+T* Hence,
 Ä„o-i(xo)n(zo,yo))n.E î 0. ifÂno-iMnfco.yo^n.EV-ùit^) = 0, choose
 a: G -ßno- i(®o) H (¿o, yo) D E. Then x G r - int(E), so that x is in an interval
 of E whose right endpoint (by assumption) is also in E. But, this endpoint
 cannot be in r-int(E) and hence, must be greater or equal to yo contradicting
 the fact that yo & E. Hence, Rno^ļ(xo)r'(z0iyo))r'E'r - int(E) ^ 0. We let
 Xi be any element of this set and continue inductively, of that interval is yo-
 If yo is the right endpoint of an interval from E, then as yo & E, d_(E, yo) = 1
 and yo is the point we're looking for. If i?no_i(xo)D(zo> yo))C'E'r-int(E) ^ 0,
 we let xi be any element of this set and continue inductively.

 Continuing the induction, suppose that points xi < Xļ < . . . x,- < y¿ <
 ... < y2 < yi, ordered pairs of integers ( rij,kj ), and positive numbers Sj
 have been defined for all j < i and that Xj G -i(x¿_i). We also assume
 that (x j , y j) Ç Gn, ,k¡ , A (Ec,(yj,yj + Sj)) > nj+i an<^ xi+ i ^ (Vi ~ ^iiVi) ^
 Än>_i(Xj).

 Suppose too that x¿+i G Rni-i(xi)nE'r -int(E) has been defined so that
 max{x¿, y¡ - <5¿} < x1+i < y,-. We define the required quantities as follows.

 1. There is a first integer n,+i such that x,+i G Gni+1,*i+1 for some fc,+i >
 max{fc¿ : j < i and n¿ = nt+1}.

 Informally, each time we choose a pair ra,-, ki we "eliminate" all Gnitk
 for k < ki. When it comes time to choose ra,+i, A:,+i, we pick the first
 n¿+i such that for some fc<+i, Gn,+1jti+1 has not yet been eliminated and
 contains x,+i.

 2. Let Cť-i-i 2'+i such that [x«.|.i , Xt+i -I- c«+i) (Z f~l [xt'_ļ_i , y¿ ) .

 If (x,+i,xł+i + 6,+i) C iž„,+1+i(x,+i), then it follows from the Lebegue
 Density Theorem that E has full measure in (x,+i,x,+i + e¿+i) and the
 result follows as above. Hence, we may assume that (x,+i, x,-+i+e,-+i) <f_
 Rfii+ i+i(^«+i)-
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 3. Let (yi+i , y,+i + ¿i+1 ) be contiguous to Rni+1 +ļ (xt+1 ) f) [xi+i , x,+1 + ei+1 ) .

 It follows as above that y¿+i ^ E. Let z,+i = max{x,+i, y,+i - £«+i}.
 As yi+ 1 6 Äni+1+i(s.-+i), A (E, (z,+1,í/¿+1)) > 1 - n.+ļ+1- It follows from

 Lemma 2 that AfĀ^-ifai+i), (z,+i,y,+i)) > n.+21+1- Hence,

 (xi+i) n (zi+u yi+1)) n E Í 0. *^Wf+ 1-1

 If

 Rni+1-i(xi+i) n (zi+1,yi+i) n E'r - int(E) = 0

 then E fi (zj+i,y,+i) contains an interval. The right endpoint of that
 interval cannot be less than y,+i since it would then belong to

 Rm^-iixi+t) fi (*,+i,y,+i)) D E'r - int(E).

 The right endpoint of that interval also cannot be j/,+ 1 since otherwise,
 by assumption, t/,+i G E. Hence,

 -Rn<+1-i(xť+i) n (z,+i,yi+1) n E'r - int(E) ± 0.

 We let x,+ 2 be any element of this set .

 This completes the induction and we let x* = limit x¿. The remainder
 of the proof hinges on the fact that {n,} - ► oo. Suppose, to the contrary,
 that there is an N such that n,- = N for a subsequence of the n,'s.

 Then x* 6 (xXj, y,y) C Gn¿Í) for j = 1,2,..., and hence, x* 6 En C E.
 Thus, d+(E,x *) = 1. However, by Lemma 1 A (Ec, (yi],yi) + Si})) > =

 for each j = 1,2, - As x* € - ¿>«,,2/«,) for each j, it follows
 that A (Ec,(x*,yi- + S^)) > for each j = 1,2,

 d+(E, x*) < 2(77+1)5 but this is a contradiction. If x* 6 E, then x* € E w for
 some N. Since n,- i-» oo, only finitely many nt- fail to exceed N. Let K >
 max{ki : n,- = N}. As x* € Gn,k, so is some x¿ where j > max{i : n,- < N}.
 But then by 1, rij < N contradicting the choice of j. Hence, x* G Ec.

 Finally, as x,+i € ižn._i(x,) and as {n¿} - * oo, the definition of Rn implies
 that the left density of E at x* is 1. This completes the proof of Theorem 6.
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 3 An Example

 The purpose of this section is to prove the following theorem.

 Theorem 7 There exists a proper open subset A C (0, 1) such that for every
 X G [0, 1] if A has left density 1 at x, then A has right density 1 at x.

 Proof: Let F denote the Cantor ternary set. For each x 6 Fc let k(x) =
 max{0, 0(x)- 2(x)} where 0(x) is the number of "O's" in the ternary expansion
 of x prior to the first "1" and 2(x) is the number of "2's" in the expansion of
 x prior to the first 1. Let z(x) denote the maximum length of the string of
 consecutive "O's" immediately following the first "1" in one of the possibly
 two expansions of x . Finally, set G={x € F° : z(x) < k(x)}. Clearly, G is
 open. Thus, the set G consists of right subintervals of components of Fc. For
 example, in the interval (|, |) C F°, the A:- value is zero and G will contain
 the right subinterval (|, |).

 For any x€(0,l), if the nth digit in the ternary expansion of x is unam-
 biguous, we denote that digit by (x)n. Since k is constant on any component
 (a,b) of Fc, we say the fc- value of the interval is k(^-). If x e G then
 ¿-(G, x) = d+(G,x) = 1. The only other x for which d-(G,x) = 1 are in F.
 So assume x e F. Then x has a unique ternary expansion consisting of "O's"
 and "2's". Let kn(x) - number of O's - number of 2 's in the first n digits of
 the expansion of x. The proof is completed by the following two claims.

 Claim 1 If there is an L > 0 such that for infinitely many n, kn(x) < L,
 then d-(G,x) ^ 1.

 Proof: Let n be such that kn(x) < L and (x)n = 2. There are infinitely
 many such n. Let (c)¿ = (x)j for j < n and (c)j = 1 for j > n. Then
 k(c) < L and as c terminates in all l's, G F°. If (a, 6) is the component of
 Fc containing c, then fi(Gc fl (a, b)) > (|)¿+1(6 - a) > |(|)¿+1(a; - a). As
 this happens for c arbitrarily close to x, d-(G,x ) < 1 - |(|)L+1.

 Claim 2 If limitn-K^knix) = oo then d+(G,x) = 1

 Proof: Let e > 0 and let L be so large that (1 - (|)L)3 > 1 - e. Suppose
 that for all m > b, km(x) > 3 L. Let y > x be so close to x that x and y
 first disagree at some decimal place d > b. We finish the proof by showing
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 A(G, [x, y]) > 1 - e. Case 1: ( y)¡ ^ 1 for d < j < d+L. Let ao > ai > . . . be

 the numbers obtained by replacing each "0" in a decimal place > d (in the
 expansion of x) with a "1" followed by a tail end of all "O's". Then an -* x.
 Let a_ i < ...a_p be the numbers obtained by taking each "2" in a decimal
 place > d and < d + L (in the expansion of y) and following it with a tail
 end of all "O's" . This gives

 (x, y] = . . . U [a2, aa] U [«i, a0] U [a0, a_x] U ... U [a-p+i, a_„] U [a_„, y]

 where for each i > 0, the left half of (a,-, a,_i] is a component of Fc and for
 each i < 0, the right half of [a¿, a¿_i) is a component of Fc. and (a0,a_x) is
 the largest component of Fc between x and y. The fc-value of all of these
 components exceeds 2 L. Hence, the relative measure of the components of

 Fc with fc- value > L in each [a,-, a,_i] is greater than or equal to | >
 1 - (|)L which gives

 A(G,[ai,«i-1])>[l-(i)Ł][l-(§)Ł].
 Also,

 < a-i - ao < {l)L- á y - x a-i - ao á

 since y and a_p agree in the first d+L decimal places. Therefore,

 A(G, [*,»]) > [1 - (j)Ł][l - (ì)L][l - (|)Ł] > 1 - 1.
 Case 2: (y)j = 1 for some j such that d < j < L + d. In this case, let
 . . . Ū2 < ai < ao < o_i < . . . o_TO+i < a_m be defined as before except that
 this time a_m is the left endpoint of the component (a_m, 6_m) of Fc which

 contains y. As in Case 1, we will be done if we can show y- a_m < ( |)L(y- x).
 Now, assume that y is the left endpoint of a component of G since it is at
 such points in F° where A.(G, (x, y)) is smallest. Then,

 < (i)2Ł(6
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 The rest follows as in Case 1.

 As stated in the introduction, this example provides us with the following
 two corollaries:

 Corollary 2 The O'Malley density property does not hold for the F 0$ sets.

 Proof: Let A* = A U {x : d+(A, x) = 1}. Then n(A) = fi(A*) and as A
 is open and {a; : d+(A, x) = 1} € F^, A* has left density one at each of it's
 points and yet does not have right density 1 at any point of the complement.

 Corollary 3 There is an Fa set A which has left density 1 at each of its
 points, but at no point of Ac does A have full measure on the right.

 Proof: Let A0 be the union of all intervals [a,b) in which A has full
 measure. A0 is Fff, has left density 1 at each of it's points, but at no point
 in A% does A0 have full measure on the right.
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