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MARTINGALE PROOF OF THE EXISTENCE OF LEBESGUE POINTS

The usual proof of the existence of Lebesgue points of a
summable function is via Vitali’s covering theorem or its
modifications. We give here an alternative proof which reduces
geometric considerations to a very simple 1lemma. Our proof Iis
based on Lévy’s martingale convergence theorem.

Let #4 be a family of sets and let X be any set. Then

A|X = {(AnX ! A€ 4}). By o4 we denote the o-field generated
by 4. Let 2Z be the set of all integers. The symbol T will
stand for the characteristic function of a set A. The

n-dimensional Lebesgue measure in R" will be denoted by A
(the same symbol A will be used for each positive integer n ).
For any measure space (Q, ¥, u) we shall denote by La(Q) the
family of real functions f measurable with respect to ¥ such
that /o Ifl du < . If Q@ is an open subset of R", 7 will be
the family of Lebesgue measurable sets and u = A. For a subset
X of R"™ and a vector x € R"™ put x + X ={x +y : ye X).

n

Let f € Li(U), where U 1is an open subset of R We say

that b € U is a Lebesgue point of f if
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(l/l(Qn)) IQ 1f(s) - f(x)| ds - 0 for each sequence of cubes Qm

m
such that x € Qm csU, m=1, 2, ..., and 'A(Q.) - 0 ( without
loss of generality we can assume that x is the center of Qm,
i.e., Qm =X + (-6m, 8m)n for some 8m > 0 ).

Let (Q, 8, P) be a probability space. Let f € Li(Q) and
P be a o-algebra ( i.e. a o-field containing Q@ ) contained in
8. Let E(f|f) denote a function measurable with respect to P
such that fAf dpP = IAE(flf) dP for each A € P. Its existence
is guaranteed by the Radon - Nikodym theorem.

Let us now recall the theorem in question.

THEOREM 1 (H. Lebesgue). Let f € Li(fR"). Then almost every

point of R" is a Lebesgue point of f.

An essential role in our proof of the above theorem will be
played by the following theorem of P. Lévy ([3], Theorem 9.4.8,
p.340; for an elementary proof see [2], Theorem 1.4; see also

Remark 2 below).

THEOREM 2 (P. Lévy). Let (Q, 8, P) be a probability space.
Let {Bm: m 2 1} be an increasing sequence of o-algebras

@®
contained in 8 and B®='o Us .
m= 1 m
Then for each function f e L1(Q)
lim E(f|8 )(w) = E(f|8_)(w)
m @®
m—->®

for almost every w € Q.
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We need two lemmas.

LEMMA 1. Let (Q, 8, P) be a probability space and f e
L1(Q)' Then f is the limit of a uniformly convergent sequence
of functions fn e Li(Q) with fm(Q) countable, m = 1, 2,..

Proof. Let AY = £ '((k/m, (k+¢1)/m]) and f = T (k/m)x

" A

ke m

for k, me 2, m > 0. Then sup (If(w) - fm(w)l twe QY < 1/m

and fme LI(Q).I

Let T = {0, 1/3}". Let us define for te€ T and me Z a
covering of R"
t -m -m -m -m
Am = {t + ((k1 2, (k1+1)-2 ] x ... X (kn~2 ) (kn+1)-2 1)
k1 e 2 for ie {1,..., n}}.
Let us notice that the elements of A: are pairwise disjoint and

their union covers R".

LEMMA 2. Let x = (X ,..., X_) € R" and for t e T let 1

t

be the unique element of A: such that x € 1 Let & be a

1

real number satisfying 3 -2°™ > 6 > 0. Then x + (-6, &))" ¢

W1t : t e T).

Proof. Let x € I nJ where I = (k -2°", (k +1)-27™]
i i i i i i

1

and J = (p -2 + 371, (p1+1)-2-m + 34 for some (unique)
ki, p, € Z. Since the distance from each end-point of Ii to the

end-points of Ji is greater than 3§, (xi - &, X, + &) < Ii u Jl.
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As U{It : t € T} 1is the Cartesian product of the sets Ii uJd ,

i=1,...n, the result follows.m

Proof of Theorem 1. It is enough to prove that almost every
point of the cube (0, 1)" is a Lebesgue point of f. Thus we
may assume that f e L ((O, nm.

At first we suppose that f has a countable range. For m =
1, 2,... and t € T we define B: =0 J;|(0, 1)". Let us notice

@®

that for each t € T the o-algebra B; = o\l B: is the

ms 1

c-algebra of all Borel subsets of (0, 1)". Let a € R. By Theorem
2 for almost every x € (0, 1)™ we have
E(If - al|8)(x) » E(If - al[8))(x) = I£(x) - al.
Thus for almost every x € f-i(a)
E(If - al|82)(x) > 0.
Since f has a countable range we obtain
(*)  E(If - £G)I]8)(x) » 0

for almost every x € (0, 1)".

We shall show now that such x 1is a Lebesgue point of f.
For t € T we define a sequence {I: *m=1, 2,...}, where I;
t

is the unique element of A: such that x € Im The 1inclusion

I; c (0, 1)" holds for each t € T and m 2 K for some
positive integer K. Then

ECIE - £001[85)(x) = (1/A(I¥))S  1£(s) - £(x)| ds.
I

Thus by (*) we have
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(**) (1/x(I:))fIt|f(s) - £(x)| ds > 0.

[\

For any & > 0 we find the unique m such that 2°™-37' > &

-1

27™ 1.3 By Lemma 2 we obtain

0 s (1/(286)™) s If£(s) - £(x)| ds s
' x+(-6,8)"

(1/(28)™)( T/ 1f(s) - £(x)| ds ) s
I.
teT m

3" T (/AT 1£(s) - £(x) | ds ).
teT I
Hence by (**) x 1is a Lebesgue point of f£.

Now let f be an arbitrary function from L1((0’ 1)"). By
Lemma 1 £ 1is the 1limit of a uniformly convergent sequehce of
functions {f :m =1, 2,...} L ((0, 1)"), where each f  has
a countable range. Let A = {x € (0, 1)" : x 1is a Lebesgue point
for each f , m =1, 2,...}. Then A(R™\ A) = O.

Let x € (0, 1)" and let Q < (0, 1)" be a cube. Then

(1/}(Q))IQ|f(S) - f(x)! ds <

Jolf (8) = £ (x)| ds + 2 sup {If(s) - £ (s)| i s € (o, 1)™}.

Q

Hence if x € A and Q 1is a cube of center x we have

lim sup (l/l(Q))lef(s) - f(x)I| ds s
A (Q)-0

2 sup {If(s) - £ (8)| : s € (0, D)
for m=1, 2,... . Thus

lim (l/l(Q))IQlf(s) - f(x)| ds = 0.m
A (Q)-0
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Remark 1. Theorem 1 implies Lebesgue’s density theorem. L.
Zajiéek [5] and F. Cater (1] have recently proved the one
dimensional version of this theorem without wusing a covering
lemma.

Remark 2. It was pointed out to us by Professor K. krickeberg
and Professor M. Laczkovich that Lévy’s theorem in the case of
o-algebras generated by countable partitions, the only one we

use, was already known to de la Vallée Poussin [4].
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