Russell A. Gordon, Department of Mathematics, Whitman College, Walla Walla, WA 99362

A DESCRIPTIVE CHARACTERIZATION OF THE GENERALIZED RIEMANN INTEGRAL

A function f is Denjoy-Perron integrable on [a, b] if and only if there exists an ACG_* function F on [a, b] such that F' = f almost everywhere on [a, b]. In this paper we present a similar result (Theorem 4) for the generalized Riemann integral using a different notion of absolute continuity. See also the paper by C. Seng in this volume.

We will assume familiarity with the definitions of the Denjoy-Perron and generalized Riemann integrals. Throughout this paper \mathcal{P} will denote a finite collection of non-overlapping tagged intervals in [a, b]. For $\mathcal{P} = \{(t_i, [c_i, d_i]) : 1 \le i \le N\}$, we will write

$$f(\mathcal{P}) = \sum_{i=1}^{N} f(t_i)(d_i - c_i), \quad F(\mathcal{P}) = \sum_{i=1}^{N} (F(d_i) - F(c_i)), \quad \text{and} \quad \mu(\mathcal{P}) = \sum_{i=1}^{N} (d_i - c_i)$$

This is an abuse of notation, but it is quite convenient. Let δ be a positive function defined on [a, b]. We say that \mathcal{P} is subordinate to δ if $[c_i, d_i] \subset (t_i - \delta(t_i), t_i + \delta(t_i))$ for each *i* and that \mathcal{P} is subordinate to δ on [a, b] if in addition \mathcal{P} is a partition of [a, b]. Given a set E and a point t, let $\rho(t, E)$ be the distance from t to E, CE be the complement of E, and \overline{E} be the closure of E.

DEFINITION 1: Let $F : [a,b] \to R$ and let $E \subset [a,b]$. The function F is AC_{δ} on E if for each $\epsilon > 0$ there exist a positive number η and a positive function δ on E such that $|F(\mathcal{P})| < \epsilon$ whenever \mathcal{P} is subordinate to δ , all of the tags of \mathcal{P} are in E, and $\mu(\mathcal{P}) < \eta$. The function F is ACG_{δ} on E if E can be written as a countable union of sets on each of which the function F is AC_{δ} .

LEMMA 2: Suppose that $F : [a, b] \to R$ is ACG_{δ} on [a, b] and let $E \subset [a, b]$. If $\mu(E) = 0$, then for each $\epsilon > 0$ there exists a positive function δ on E such that $|F(\mathcal{P})| < \epsilon$ whenever \mathcal{P} is subordinate to δ and all of the tags of \mathcal{P} are in E.

PROOF: Let $E = \bigcup_n E_n$ where the E_n 's are disjoint and F is AC_δ on each E_n . Let $\epsilon > 0$. For each n there exist a positive function δ_n on E_n and a positive number η_n such that $|F(\mathcal{P})| < \epsilon/2^n$ whenever \mathcal{P} is subordinate to δ_n , all of the tags of \mathcal{P} are in E_n , and $\mu(\mathcal{P}) < \eta_n$. For each n choose an open set O_n such that $E_n \subset O_n$ and $\mu(O_n) < \eta_n$. Let $\delta(t) = \min\{\delta_n(t), \rho(t, CO_n)\}$ for $t \in E_n$. Suppose that \mathcal{P} is subordinate to δ and that all of the tags of \mathcal{P} are in E. Let \mathcal{P}_n be the subset of \mathcal{P} that has tags in E_n . Note that $\mu(\mathcal{P}_n) < \eta_n$ and compute

$$|F(\mathcal{P})| \leq \sum_{n} |F(\mathcal{P}_{n})| < \sum_{n} \epsilon/2^{n} < \epsilon.$$

This completes the proof.

LEMMA 3: Suppose that $f:[a,b] \to R$ and let $E \subset [a,b]$. If $\mu(E) = 0$, then for each $\epsilon > 0$ there exists a positive function δ on E such that $|f(\mathcal{P})| < \epsilon$ whenever \mathcal{P} is subordinate to δ and all of the tags of \mathcal{P} are in E.

PROOF: For each positive integer n, let $E_n = \{t \in E : n-1 \leq |f(t)| < n\}$ and let $\epsilon > 0$. For each n choose an open set O_n such that $E_n \subset O_n$ and $\mu(O_n) < \epsilon/n2^n$. Let $\delta(t) = \rho(t, CO_n)$ for $t \in E_n$. Suppose that \mathcal{P} is subordinate to δ and that all of the tags of \mathcal{P} are in E. Let \mathcal{P}_n be the subset of \mathcal{P} that has tags in E_n and compute

$$|f(\mathcal{P})| \leq \sum_{n} |f(\mathcal{P}_{n})| < \sum_{n} n\mu(O_{n}) < \sum_{n} \epsilon/2^{n} < \epsilon.$$

This completes the proof.

THEOREM 4: A function $f : [a,b] \to R$ is generalized Riemann integrable on [a,b] if and only if there exists an ACG_{δ} function F on [a,b] such that F' = f almost everywhere on [a,b].

PROOF: Suppose first that f is generalized Riemann integrable on [a, b] and let $F(t) = \int_a^t f$. Then (see [1] for instance) F' = f almost everywhere on [a, b]. For each positive integer n, let $E_n = \{t \in [a, b] : n - 1 \le |f(t)| < n\}$. Fix n and let $\epsilon > 0$. Since f is generalized Riemann integrable on [a, b], there exists a positive function δ on [a, b] such that $|f(\mathcal{P}) - F(\mathcal{P})| < \epsilon$ whenever \mathcal{P} is subordinate to δ on [a, b]. Let $\eta = \epsilon/n$. Suppose that \mathcal{P} is subordinate to δ , all of the tags of \mathcal{P} are in E_n , and $\mu(\mathcal{P}) < \eta$. Then using Henstock's Lemma, we obtain

$$|F(\mathcal{P})| \le |F(\mathcal{P}) - f(\mathcal{P})| + |f(\mathcal{P})| < \epsilon + n\eta = 2\epsilon.$$

Hence, the function F is AC_{δ} on E_n and it follows that F is ACG_{δ} on [a, b].

Now suppose that there exists an ACG_{δ} function F on [a, b] such that F' = f almost everywhere on [a, b]. Let $E = \{t \in [a, b] : F'(t) \neq f(t)\}$. Let $\epsilon > 0$. For each $t \in [a, b] - E$ choose $\delta(t) > 0$ so that $|F(s) - F(t) - f(t)(s-t)| < \epsilon |s-t|$ whenever $|s-t| < \delta(t)$. By the previous two lemmas, we can define $\delta(t) > 0$ on E so that $|f(\mathcal{P})| < \epsilon$ and $|F(\mathcal{P})| < \epsilon$ whenever \mathcal{P} is subordinate to δ and all of the tags of \mathcal{P} are in E. This defines a positive function δ on [a, b]. Suppose that \mathcal{P} is subordinate to δ on [a, b]. Let \mathcal{P}_E be the subset of \mathcal{P} that has tags in E and let $\mathcal{P}_d = \mathcal{P} - \mathcal{P}_E$. We then have

$$|f(\mathcal{P}) - F(\mathcal{P})| \le |f(\mathcal{P}_d) - F(\mathcal{P}_d)| + |f(\mathcal{P}_E)| + |F(\mathcal{P}_E)| < \epsilon (b-a) + \epsilon + \epsilon.$$

Therefore, the function f is generalized Riemann integrable on [a, b] and $\int_a^b f = F(b) - F(a)$.

We conclude this paper by giving a proof that a function is ACG_{δ} on [a, b] if and only if it is ACG_* on [a, b]. Let $\omega(F, [c, d])$ denote the oscillation of F on [c, d].

THEOREM 5: If F is ACG_* on [a, b], then F is ACG_δ on [a, b].

PROOF: It is sufficient to prove that F is AC_{δ} on a closed set E if F is AC_* on E. Without loss of generality, we may assume that $a, b \in E$. Let $[a, b] - E = \bigcup_k (a_k, b_k)$ and let $\epsilon > 0$. Since F is AC_*

on *E*, there exists a positive integer *K* such that $\sum_{K}^{\infty} \omega(F, [a_k, b_k]) < \epsilon$. Let $A = \bigcup_{k=1}^{K-1} \{a_k, b_k\}$. Since *F* is continuous, there exists a positive function δ_1 on *A* such that $|F(\mathcal{P})| < \epsilon$ whenever \mathcal{P} is subordinate to δ_1 and all of the tags of \mathcal{P} are in *A*. Let

$$\delta(t) = \begin{cases} \delta_1(t), & \text{if } t \in A; \\ \rho(t, A), & \text{if } t \in E - A; \end{cases}$$

and choose $\eta > 0$ so that $\sum_{i} \omega(F, [c_i, d_i]) < \epsilon$ whenever $\{[c_i, d_i]\}$ is a finite collection of nonoverlapping intervals that have endpoints in E and satisfy $\sum_{i} (d_i - c_i) < \eta$. Suppose that \mathcal{P} is subordinate to δ , all of the tags of \mathcal{P} are in E, and $\mu(\mathcal{P}) < \eta$. We may assume that all of the tags are endpoints. Let \mathcal{P}_a be the subset of \mathcal{P} that has tags in A, let \mathcal{P}_0 be the subset of $\mathcal{P} - \mathcal{P}_a$ for which both endpoints belong to E, let \mathcal{P}_1 be the subset of $\mathcal{P} - \mathcal{P}_a$ for which the left endpoint does not belong to E, and let \mathcal{P}_2 be the subset of $\mathcal{P} - \mathcal{P}_a$ for which the right endpoint does not belong to E. Let $\mathcal{P}_0 = \{(t_i, [c_i, d_i])\}$ and compute

$$|F(\mathcal{P}_0)| \leq \sum_i |F(d_i) - F(c_i)| \leq \sum_i \omega(F, [c_i, d_i]) < \epsilon.$$

Let $\mathcal{P}_1 = \{(s_j, [u_j, v_j])\}$. For each j there exists a unique $k_j \ge K$ such that $a_{k_j} < u_j < b_{k_j}$. Hence,

$$|F(\mathcal{P}_1)| \leq \sum_j |F(v_j) - F(u_j)| \leq \sum_j |F(v_j) - F(b_{k_j})| + \sum_j |F(b_{k_j}) - F(u_j)|$$
$$\leq \sum_j \omega(F, [b_{k_j}, v_j]) + \sum_j \omega(F, [a_{k_j}, b_{k_j}])$$
$$< \epsilon + \epsilon = 2\epsilon.$$

Similarly $|F(\mathcal{P}_2)| < 2\epsilon$. We thus have

$$|F(\mathcal{P})| \leq |F(\mathcal{P}_a)| + |F(\mathcal{P}_0)| + |F(\mathcal{P}_1)| + |F(\mathcal{P}_2)| < \epsilon + \epsilon + 2\epsilon + 2\epsilon = 6\epsilon.$$

Hence, the function F is AC_{δ} on E.

Recall that a function satisfies condition (N) if it maps sets of measure zero to sets of measure zero. It is well-known (see [2]) that a continuous BVG_* function is ACG_* if and only if it satisfies condition (N).

THEOREM 6: If F is ACG_{δ} on [a, b], then F is ACG_{*} on [a, b].

PROOF: It is easy to verify that the function F is continuous on [a, b]. Let $[a, b] = \bigcup_j B_j$ where F is AC_{δ} on each B_j . It is sufficient to prove that F is BVG_* and satisfies condition (N) on each B_j . To this end, fix j and let $E = B_j$.

Since F is bounded on [a, b] and AC_{δ} on E, there exist a positive number M and a positive function δ on E such that $\sum_{i} |F(d_{i}) - F(c_{i})| < M$ whenever $\mathcal{P} = \{(t_{i}, [c_{i}, d_{i}])\}$ is subordinate to δ and all of its tags are in E. For each positive integer n, let $E_{n} = \{t \in E : \delta(t) \geq 1/n\}$ and note that $E = \bigcup_{n} E_{n}$. Fix n and for each integer i, let $E_{n}^{i} = E_{n} \cap [i/n, (i+1)/n)$. Let $\{[c_{k}, d_{k}]\}$ be a

finite collection of non-overlapping intervals that have endpoints in E_n^i . For each k choose points s_k, t_k in $[c_k, d_k]$ such that $|F(t_k) - F(s_k)| = \omega(F, [c_k, d_k])$. The tagged intervals $(c_k, [c_k, s_k])$ and $(c_k, [c_k, t_k])$ are subordinate to δ and have tags in E. Hence,

$$\sum_k \omega(F, [c_k, d_k]) \leq \sum_k |F(t_k) - F(c_k)| + \sum_k |F(c_k) - F(s_k)| < 2M.$$

This shows that the function F is BV_* on E_n^i . It follows easily that F is BVG_* on E.

Now let A be a subset of E with $\mu(A) = 0$ and let $\epsilon > 0$. Since F is AC_{δ} on E, there exist a positive function δ on E and a positive number η such that $\sum_{i} |F(d_{i}) - F(c_{i})| < \epsilon/3$ whenever $\mathcal{P} = \{(t_{i}, [c_{i}, d_{i}])\}$ is subordinate to δ , all of the tags of \mathcal{P} are in E, and $\mu(\mathcal{P}) < \eta$. Let G be an open set such that $A \subset G$ and $\mu(G) < \eta$. Define a positive function δ_{1} on E by

$$\delta_1(t) = \begin{cases} \delta(t), & \text{if } t \in E - A;\\ \min\{\delta(t), \rho(t, CG)\}, & \text{if } t \in A. \end{cases}$$

Suppose that F is not constant on [c, d] if $A \cap (c, d) \neq \emptyset$. Let

$$\mathcal{I} = \bigcup_{t \in A} \{ F([u, v]) : t - \delta_1(t) < u < t < v < t + \delta_1(t) \}.$$

Since F is continuous, the collection \mathcal{I} is a Vitali cover of F(A). By the Vitali Covering Lemma, there exists a finite collection $\{[u_i, v_i] : 1 \leq i \leq N\}$ of disjoint intervals such that $\mu^*(F(A)) \leq \sum_i \mu(F([u_i, v_i])) + \epsilon/3$. For each *i*, choose $t_i \in A$ such that $t_i - \delta_1(t_i) < u_i < t_i < v_i < t_i + \delta_1(t_i)$ and $m_i, M_i \in [u_i, v_i]$ such that $\mu(F([u_i, v_i])) = F(M_i) - F(m_i)$. Let J_i be the interval with endpoints t_i, m_i and let K_i be the interval with endpoints t_i, M_i . The collections $\{(t_i, J_i) : 1 \leq i \leq N\}$ and $\{(t_i, K_i) : 1 \leq i \leq N\}$ are subordinate to δ and have tags in $A \subset E$, and the sum of the lengths of the intervals in each collection is less than η . Therefore,

$$\mu^*(F(A)) \le \sum_i \mu(F([u_i, v_i])) + \epsilon/3 \le \sum_i |F(M_i) - F(t_i)| + \sum_i |F(t_i) - F(m_i)| + \epsilon/3 < \epsilon.$$

Since $\epsilon > 0$ was arbitrary, we conclude that $\mu^*(F(A)) = 0$.

To complete the proof, we must consider the case in which the function F is constant on some interval [c,d] for which $A \cap (c,d) \neq \emptyset$. Let $\{I_n\}$ be the sequence of all open intervals in (a,b) with rational endpoints such that $A \cap I_n \neq \emptyset$ and F is constant on $\overline{I_n}$. Let $A_1 = A - \bigcup_n I_n$ and note that $A_1 \cap (c,d) \neq \emptyset$ implies that F is not constant on [c,d]. By the above argument $\mu^*(F(A_1)) = 0$. Since $A = \bigcup_n (A \cap I_n) \cup A_1$ and $\mu^*(F(A \cap I_n)) = 0$ for all n, we find that $\mu^*(F(A)) = 0$. Hence, the function F satisfies condition (N) on E.

REFERENCES

[1] Gordon, R., Equivalence of the generalized Riemann and restricted Denjoy integrals, *Real Analysis Exchange* 12 (1986-87), 551-574.

[2] Saks, S., Theory of the integral, 2nd. Ed. revised, New York (1937). Received May 30, 1989