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 A DESCRIPTIVE CHARACTERIZATION OF THE

 GENERALIZED RIEMANN INTEGRAL

 A function / is Denjoy- Perron integrable on [a, b] if and only if there exists an ACG * function
 F on [a, b] such that F' = f almost everywhere on [a, 6]. In this paper we present a similar result
 (Theorem 4) for the generalized Riemann integral using a different notion of absolute continuity.
 See also the paper by C. Seng in this volume.

 We will assume familiarity with the definitions of the Denjoy-Perron and generalized Riemann
 integrals. Throughout this paper V will denote a finite collection of non-overlapping tagged intervals
 in [a, 6]. For V = {(¿¿, [c¿, di]) : 1 < i < N}y we will write

 NN N

 /(P) = £/(ť0(*-ci), F(V) = Y,{Hdi)-F(ci)), and p(V) = - cť).
 t=l 1=1 i-'

 This is an abuse of notation, but it is quite convenient. Let S be a positive function defined on
 [a, 6]. We say that V is subordinate to 6 if [ct-,dt] C ( U - S(ti),ti + ¿(¿¿)) for each i and that V is
 subordinate to S on [a, 6] if in addition V is a partition of [a, 6]. Given a set E and a point ź, let
 p(t , E) be the distance from t to E , CE be the complement of E , and E be the closure of E .

 DEFINITION Is Let F : [a, 6] - ► R and let E C [a, 6]. The function F is AC s on E if for
 each e > 0 there exist a positive number 7] and a positive function 6 on E such that
 1^(7^)1 < e whenever V is subordinate to all of the tags of V are in E , and fi(V) < rļ.
 The function F is AC G s on E if E can be written as a countable union of sets on each
 of which the function F is AC$.

 LEMMA 2: Suppose that F : [a, 6] - ► R is ACG s on [a, b] and let E C [a, 6]. If p(E) = 0,
 then for each e > 0 there exists a positive function 6 on E such that 'F(V)' < e whenever
 V is subordinate to 6 and all of the tags of V are in E.

 PROOF: Let E = U nEn where the Eny s are disjoint and F is AC s on each En. Let e > 0. For
 each n there exist a positive function 6n on En and a positive number 7/n such that | F(V)' < e/2n
 whenever V is subordinate to 6ni all of the tags of V are in En , and n(V) < r)n . For each n choose
 an open set On such that En C On and /¿(On) < Vn- Let ¿(/) = mm{6n(t)y p(tyCOn)} for t G En.
 Suppose that V is subordinate to 6 and that all of the tags of V are in E. Let Vn be the subset of
 V that has tags in En. Note that fi(Vn) < r¡n and compute

 iiWi<£iF(^)i<Ec/2n<e-
 n n

 This completes the proof.
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 LEMMA 3: Suppose that / : [a, 6] - ► R and let E C [a, b'. If ¡i{E) = 0, then for each e > 0
 there exists a positive function 6 on E such that 1/(^)1 < c whenever V is subordinate
 to 6 and all of the tags of V are in E .

 PROOF: For each positive integer n, let En = {/ G E : n - 1 < 'f(t)' < n } and let € > 0. For each
 n choose an open set On such that En C On and fi(On) < e/n2n. Let 6(t) = p(t,COn) for t E En.
 Suppose that V is subordinate to 6 and that all of the tags of V are in E . Let Vn be the subset of
 V that has tags in En and compute

 'f(V)' < £ 'f{Vn)' < E nM(On) < £€/2» < 6.
 n n n

 This completes the proof.

 THEOREM 4: A function / : [a, 6] - ► R is generalized Riemann integrable on [a, 6] if
 and only if there exists an ACGs function F on [a, b] such that Ff = f almost everywhere
 on [a, 6].

 PROOF: Suppose first that / is generalized Riemann integrable on [a, b] and let F(t) = J*f.
 Then (see [1] for instance) Ff = / almost everywhere on [a, 6]. For each positive integer n, let
 En = {t £ [a, b] : n - 1 < 1/(01 < n}. Fix n and let e > 0. Since / is generalized Riemann
 integrable on [a, 6], there exists a positive function 6 on [a, b] such that 1/(7^) - F(V)' < e whenever
 V is subordinate to 6 on [a, 6]. Let rj = e/n. Suppose that V is subordinate to all of the tags of
 V are in En , and ļi{V) < rj. Then using Henstock's Lemma, we obtain

 'F(V)' < I F(V) - f(V) I + 'f(V)' < e + nrj = 2e.

 Hence, the function F is AC s on En and it follows that F is ACGs on [a, 6].
 Now suppose that there exists an ACGs function F on [a, b ] such that Ff = f almost everywhere

 on [a, 6]. Let E = {t £ [a, 6] : F'(t) ^ Let e > 0. For each t 6 [a, 6] - E choose ¿(/) > 0 so
 that I F(s) - F(t) - f(t)(s - /)| < e 's - t' whenever 's - t' < 6(t). By the previous two lemmas, we
 can define £(ż) > 0 on E so that ' f(V)' < e and 1^(7^)1 < e whenever V is subordinate to 6 and all
 of the tags of V are in E . This defines a positive function 6 on [a, b]. Suppose that V is subordinate
 to 6 on [a, 6]. Let Ve be the subset of V that has tags in E and let Vd = V - Ve • We then have

 I f(V) - F{V) I < I f(Vd) - F(Vd) I + 'f(VE)' + 'F(Ve)' <e(b-a) + e + e.

 Therefore, the function / is generalized Riemann integrable on [a, b] and f = F(b ) - F(a).

 We conclude this paper by giving a proof that a function is ACGs on [a, 6] if and only if it is
 ACG * on [a, b'. Let u(F, [c,d]) denote the oscillation of F on [c, d'.

 THEOREM 5: If F is ACG* on [a, 6], then F is ACGs on [a, 6].

 PROOF: It is sufficient to prove that F is AC s on a closed set E if F is AC* on E . Without loss of
 generality, we may assume that a,b E E. Let [a, 6] - E = Uk(dk^bk) and let e > 0. Since F is AC*
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 on E , there exists a positive integer K such that ü;(.F, [a*, &*]) < e. Let A = 'Jk=i {ak,bk}.
 Since F is continuous, there exists a positive function ¿1 on A such that 1^(^)1 < e whenever V is
 subordinate to ¿1 and all of the tags of V are in A. Let

 f¡(4' _ / if t £ A]
 if teE-A;

 and choose 77 > 0 so that ^ [c¿, dt]) < e whenever {[c¿,d,]} is a finite collection of non-
 overlapping intervals that have endpoints in E and satisfy ^(dt- - Ci) < Tļ. Suppose that V is
 subordinate to Ä, all of the tags of V are in E, and fi(V) < rj. We may assume that all of the tags
 are endpoints. Let Va be the subset of V that has tags in A, let Vo be the subset of V - Va for
 which both endpoints belong to £, let V' be the subset of V - Va for which the left endpoint does
 not belong to E , and let V2 be the subset of V - Va for which the right endpoint does not belong
 to E . Let Vo = {(¿i, [c¿, di])} and compute

 'F(Vo)' < E IW-) - W)l ^ $>(*U<^]) < 6.
 i i

 Let Vi = {(sjy [uj, Vj])}. For each j there exists a unique kj > K such that a*. < Uj < 6*. . Hence,

 i*w)i < E i^) - -ff«')! s E i^) - )i + E w*.) -
 j j 3

 < Ç u(F, [bkļ , Vj]) + Ç u(F, [akj , bk . ])
 j j

 < e + e = 2c.

 Similarly 'F(V2)' < 2e. We thus have

 'F(V)' < ¡ F (V a ) I + 'F(Vo)' + 'F(Vi)' + 'F(V2)' < e + e + 2e + 2e = 6e.

 Hence, the function F is AC s on E .

 Recall that a function satisfies condition (N) if it maps sets of measure zero to sets of measure
 zero. It is well-known (see [2]) that a continuous BVG * function is AC G * if and only if it satisfies
 condition (N).

 THEOREM 6: If F is ACGs on [a,fc], then F is ACG * on [a, 6].

 PROOF: It is easy to verify that the function F is continuous on [a, 6]. Let [a, 6] = U jBj where F
 is AC 5 on each Bj . It is sufficient to prove that F is BVG * and satisfies condition ( N ) on each
 Bj. To this end, fix j and let E = Bj.

 Since F is bounded on [a, b] and AC s on E , there exist a positive number M and a positive
 function 6 on E such that ^ 'F(di) - ^(ci)| < M whenever V = {(^, [c,-,dt])} is subordinate to 6
 and all of its tags are in E. For each positive integer n, let En = {/ 6 E : 6(t) > 1/n} and note
 that E = U nEn. Fix n and for each integer i, let Exn = En fl [i/n,(i + 1 )/n). Let {[e*,*/*]} be a
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 finite collection of non-overlapping intervals that have endpoints in Eln. For each k choose points
 sk,tk in [ck,dk] such that 'F(tk) - F(sk)' = w(F,[cfc,dfc]). The tagged intervals (cfc,[cfc,sfcļ) and
 (cfc, [ckitk]) are subordinate to 6 and have tags in E. Hence,

 5>(F, [Cfc, dk') < £ 'F(tk) - F(c*)| + £ I F(ck) - F(sk) I < 2 M.
 k k k

 This shows that the function F is BV * on E*n. It follows easily that F is BVG * on E.
 Now let A be a subset of E with (¿(A) = 0 and let e > 0. Since F is ACg on E, there exist
 a positive function è on E and a positive number r¡ such that |.F(</¿) - -F(c«)| < t/3 whenever
 ' P = {(¿¿, [c¿, d,])} is subordinate to 6 , all of the tags of V are in E, and n{V) < tj. Let G be an
 open set such that A C G and n(G) < tj. Define a positive function ¿i on E by

 /*(*)» üteE-A-,
 °l{t) - ' min{¿(í),/)(í,CG)}, iît e A.

 Suppose that F is not constant on [c, d' if A fi (c,d) ^ 0. Let

 I = ļ^J {F([u, v]) : t - ¿i(í) <u<t<v<t + ¿i(0}'
 t€A

 Since F is continuous, the collection I is a Vitali cover of F(A). By the Vitali Covering Lemma,
 there exists a finite collection {[u¿, i>¿] : 1 < t < N} of disjoint intervals such that fi (F(A)) <

 f¿{F([ui, Vj])) + e/3. For each i , choose 6 A such that ť,- - 6'(ti) < < ti < Vi < tļ + ¿i(í»)
 and m¿, Mi e [u¿, such that fi(F([ui, u,])) = F(Mi)-F(mi). Let be the interval with endpoints
 ti, m,i and let Kļ be the interval with endpoints ti, Mi. The collections {(ť,-, Ji) : 1 < i < N} and
 {(tļ, Ki) : 1 < ť < N} are subordinate to 6 and have tags in A C E, and the sum of the lengths of
 the intervals in each collection is less than Tļ. Therefore,

 ť(F(A)) < £ v(F([ui, t,ť])) + e/3 < Ç | F(Mt) - F(ť<) | + Ç | F(U) - F(mť)| + c/3 < e.
 i i i

 Since € > 0 was arbitrary, we conclude that n*(F(A)) = 0.
 To complete the proof, we must consider the case in which the function F is constant on some
 interval [c,d' for which A D (c,d) ^ 0. Let {/„} be the sequence of all open intervals in ( a,b ) with
 rational endpoints such that A fl In ^ 0 and F is constant on In. Let A' = A - Un/n and note that
 A' D ( c,d ) ķ 0 implies that F is not constant on [c,d]. By the above argument fi*(F(Ai)) = 0.
 Since A = Un(i4 D In) U Ax and fi*(F(A fl /„)) = 0 for all n, we find that fi*(F(A)) = 0. Hence,
 the function F satisfies condition (jV) on E.
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