Real Analysis Exchange Vol 15(1989-90)

T. E. Armstrong¹, Department of Mathematics & Statistics, University of Maryland-Baltimore County, Catonsville, Maryland 21228.

A CHARACTERIZATION OF NON-ATOMIC PROBABILITIES ON [0,1] WITH NOWHERE DENSE SUPPORTS

For a countably additive Borel probability measure μ on [0,1], let $\{T_i(\mu) : i \in N\}$ be an enumeration of the connected components of $[0,1] \setminus \text{supp}(\mu)$. These are the intervals of constancy of the cumulative distribution function F_{μ} . For all i let $y_i(\mu)$ be the value of F_{μ} on $T_i(\mu)$.

Proposition 1 μ is non-atomic with $supp(\mu)$ nowhere dense iff $\{y_i(\mu) : i \in N\}$ is dense in [0, 1].

Proof: Suppose that μ is non-atomic with nowhere dense support. Since μ is nonatomic F_{μ} is continuous and $\{F_{\mu}(x) : x \in \text{supp}(\mu)\} = [0,1]$. If $0 \leq y_1 < y_2 \leq 1$ are $F_{\mu}(x_1)$ and $F_{\mu}(x_2)$ with $x_1 < x_2$ in $\text{supp}(\mu)$ there is an interval $T_i(\mu)$ between x_1 and x_2 since $\text{supp}(\mu)$ is nowhere dense. Thus $y_1 < y_i(\mu) < y_2$. This establishes density of $\{y_i(\mu) : i \in N\}$ in [0, 1].

Assume density of $\{y_i(\mu) : i \in N\}$. μ must be non-atomic for otherwise there would be an $x \in [0,1]$ so that $F_{\mu}(x^-) = \lim_{z \uparrow x} F_{\mu}(z) < F_{\mu}(x)$. In this case no $y_i(\mu)$ would be in $(F_{\mu}(x^-), F_{\mu}(x))$ contradicting density. $\operatorname{supp}(\mu)$ must be nowhere dense for if $\phi \neq (x_1, x_2) \subset \operatorname{supp}(\mu)$ then $F_{\mu}(x_1) < F_{\mu}(x_2)$ so $y_i(\mu) \in (F_{\mu}(x_1), F_{\mu}(x_2))$ for some $i \in N$ hence $T_i(\mu)$ is in (x_1, x_2) which is impossible since $T_i(u) \cap \operatorname{supp}(u) = \phi$. Thus $\operatorname{supp}(\mu)$ is nowhere dense.

The intervals $\{T_i(\mu) : i \in N\}$ are non-overlapping and are ordered by $T_i(\mu) < T_j(\mu)$ iff $x_i \in T_i(\mu)$ and x_j in $T_j(\mu)$ implies $x_i < x_j$. The mapping $y_i \to T_i(\mu)$ is an order isomorphism. $\{y_i(\mu) : i \in N\}$ has maximum 1 (minimum 0) iff $\{T_i(\mu) : i \in N\}$ has a maximum containing 1 (minimum containing 0) iff $1 \notin \operatorname{supp}(\mu)$ ($0 \notin \operatorname{supp}(\mu)$). Allowing for different possible order types the converse is true. If K is a perfect nowhere dense subset of [0,1] and the countable dense subset $\{y_i : i \in N\}$ of [0,1] has extrema of the same type as the components $\{T_i : i \in N\}$ of $[0,1]\setminus K$ there is an order isomorphism $T_i \leftrightarrow y_i$ (see Theorem 1 page 160 of Fraenkel [1961]). For such an isomorphism define $F(x) = y_i$ if $x \in T_i$ to obtain a non-decreasing function from $[0,1]\setminus N \to [0,1]$ which has a right continuous extension (which is continuous

¹Supported by NSF grant DMS 8803556

by density of $\{y_i : i \in N\}$ to a surjection $F : [0,1] \to$ which is F_{μ} for some Borel probability μ . This yields this proposition.

Proposition 2 Let K be a perfect nowhere dense subset of [0, 1] and let $\{y_i : i \in N\} = Y$ be a dense subset of [0, 1] with the same order type as the components of $[0, 1]\setminus K$. There is a Borel probability μ with $supp(\mu) = K$ and $\{y_i\} = \{y_i(\mu)\}$ for all *i*.

It should be remarked that μ is uniquely determined by specification of a particular order isomorphism between Y and components of $[0,1]\setminus K$. The possible μ are in 1-1 correspondence with the order automorphisms of Y.

Proposition 3 If \mathcal{F} is the algebra of m-measurable sets for m a non-atomic probability measure with support [0,1], $\{N_n : n \in N\}$ is a sequence of perfect nowhere dense sets in [0,1] with $1 = \lim_{n\to\infty} m(N_n)$ and m_n is the restriction of m to N_n normalized to be a probability then $\lim_{n\to\infty} m_n(F) = m(F)$ if $F \in \mathcal{F}$.

Proof: Let $\{N_n\}$ be a sequence of perfect nowhere dense sets with $1 = \lim_{n \to \infty} m(N_n)$. For each n, m_n is defined, for $F \in \mathcal{F}$, by $m_n(F) = m(F \cap N_n)/m(N_n)$. Since $m([0,1] \setminus N_n) \to 0$ as $n \to \infty$. It is immediate from this that $m_n(F) \to m(F)$ for any $F \in \mathcal{F}$.

Proposition 3, as is seen from the proof, is valid in great generality. \mathcal{F} need only be an algebra, m only finitely additive and $\{N_n : n \in N\}$ a sequence in \mathcal{F} with $\lim_{n\to\infty} m(N_m) - 1$. Cannizzo however singles out the perfect nowhere dense sets in [0,1] since for countably additive non-atomic Baire probability measures here or in any Fo lish or compact Hansdorff space such a sequence of perfect nowhere dense sets always exists.

Propositions 1 is not valid in the absence of countable additivity. One must interpret $\operatorname{supp}(\mu)$ for a finitely additive Borel measure as the intersection of all closed sets of full measure but $\operatorname{supp}(\mu)$ may fail to be of full measure with $\mu(\operatorname{supp}(\mu)) = 0$ a possibility. The cumulative distribution function \mathcal{F}_{μ} is defined as usual but may fail to be continuous from the left. If F_{μ} is continuous then μ is non-atomic but it may be the case that μ is non-atomic yet have F_{μ} failing left or right continuity. This Lemma gives some indication of arbitrariness of \mathcal{F}_{μ} when countable additivity is not required. This is extended in Proposition 5.

Lemma 5 If x is in [0,1] there is a non-atomic finitely additive Borel probability measure μ on [0,1] with F_{μ} the indicator function for (x,1] if x < 1 or for [x,1] if x > 0.

Proof: First assume that x = 0. It must be shown that there is a non-atomic Borel probability μ with $\mu(\{0\}) = 0$ and with $\mu([0, \epsilon]) = 1$ if $\epsilon > 0$. It is easily seen that if $(x_n : n \in N)$ is a strictly decreasing sequence in [0, 1] with $\lim_{n\to\infty} x_n = 0$ then any finitely additive non-atomic probability $\nu \circ 2^N$ induces a non-atomic probability μ on 2^A where $A = \{x_n : n \in N\}$ under the map $n \to x_n$. Extend μ to a finitely additive Borel probability measure on [0, 1] with $\mu([0, 1] \setminus A) = 0$. It is immediate that $\mu\{0\}) = 0$ and that $\mu([0, x_n]) = 1$ since $\mu(\{x_m : m \ge n\}) = 1$ for any $n \in N$. Since $x_n \to 0$ the result follows.

For general x < 1 in the preceding argument one should use a strictly decreasing sequence (x_n) with $x = \lim_{n \to \infty} x_n$ to obtain μ with $F_{\mu} = I_{(x,1]}$. A similar construction works to give μ with $\mathcal{F}_{\mu} = I_{[x,1]}$ if x > 0.

deFinetti [1972] realized that a non-atomic finitely additive measure μ could have $\mu((x - \varepsilon, x + \varepsilon)) \ge \lambda > 0$ for all $\varepsilon > 0$. In general when such an x exists μ was called agglutinated. Agglutination is equivalent to the presence of a jump in F_{μ} so μ is non-agglutinated iff F_{μ} is continuous. It is easily seen that positive linear combinations of measures as in Proposition 4 yield measures μ so that the entire variation of F_{μ} is taken up in jumps and that any increasing F on [0,1] with $F(0) \ge 0$ and F(1) = 1 whose jumps sum to 1 is F_{μ} for μ a countable convex combination of measures in Proposition 4. Such μ could be called *totally agglutinated* yet may be non-atomic. As a result of the following proposition both Propositions 1 and 2 retain their validity if non-atomic countably additive measures are replaced by non-agglutinated finitely additive measures.

Proposition 5 If F is an increasing function on [0,1] with $F(0) \ge 0$ and F(1) = 1 there is a finitely additive non-atomic Borel measure μ on [0,1] with $F_{\mu} = F$ which gives probability 1 to the rationals.

Proof: In Proposition 4, as may be seen by the proof one may find for any x nonatomic probabilities μ_x and μ_x^+ with $F_{\mu_x} = I_{(x,1]}$ and $F_{\mu_x^+} = I_{[x,1]}$ which give measure 1 to the rationals (basing the proof of Proposition 4 on sequences of rationals). As a result, if the jumps of F equal 1 a μ exists with $F = F_{\mu}$ and with μ a countable convex combination of such μ_x, μ_x^+ . To establish the proposition it is only necessary to consider the case with F continuous. In this case for any rational $r \in [0,1]$ let x_r be such that $F(x_r) = r$. F is the uniform limit of $\{F_n : n \in N\}$ where $F_n = \sum_{k=0}^n \frac{1}{n} I_{[x_{k/n}]}$. Each F_n is F_{μ_n} where μ_n is a Borel probability giving measure 1 to the rationals. Let δ be a $\{0,1\}$ -valued probability measure on 2^N annihilating singletons. For A Borel let $\mu(A) = \int_N \mu_n(A)\delta(dn)$. If \mathcal{U} is the free ultrafilter on N corresponding to δ then $\mu(A) = \lim_{n \in \mathcal{U}} \mu_n(A)$. As a result if $t \in [0,1]$ then $F_{\mu}(t) = \mu([0,t]) = \lim_{n \in \mathcal{U}} F_{\mu_n}(t) = \lim_{n \to \infty} F_{\mu_n}(t) = F(t)$. Since $\mu_n(Q \cap [0,1]) = 1$ for all n we have $\mu(Q \cap [0,1]) = 1$. Since F_{μ} is continuous μ is non-atomic.

References

- T. Armstrong and K. Prikry, Liapounoff's Theorem for non-atomic bounded, finitely additive, finite dimensional vector valued measures, Tran. Amer. Math. Soc, 266 (1981), pp. 499-514.
- [2] A. Cannizzo, Un problème sur une classe de mesures non-Lebesquinnes, Rend. Circ. Mat. Palermo, II (1985), pp. 226-233.
- [3] B. deFinetti, Probability, Induction and Statistics, Wiley, New York, 1972.
- [4] A. A. Fraenkel, Abstract Set Theory, North Holland, Amsterdam, 1961.

Received Jenuary 5, 1989