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 Some Higher Dimensional Marcinkiewicz
 Theorems

 Let I denote the compact interval [0, 1] and let C(I) denote the Banach space
 of continuous real valued functions on I under the sup norm, || / ||= supIg/
 I /(x) |. In [1], J. Marcinkiewicz proved that there exists an / G C(7) such that
 for each measurable function g on I there is a sequence of positive numbers (hj)
 converging to 0 and depending only on g for which lim^oo {f{x+hj) - f(x))/hj =
 g{x) almost everywhere on I. What is striking is that the same function / suffices
 for all measurable functions g. Marcinkiewicz also proved that in the sense of
 Baire category, most functions in C(J) can be chosen for /.

 In this note, for each n > 0 we define a formal linear combination, Fn(x,h ),
 of functions of the form f(x + jh) (j = 0, ±1, ±2, ±3, . . .) over the integers. We
 will find an / 6 C(I) such that for each measurable function g on I and each
 n, there is a sequence (hk) of positive numbers converging to 0 and depending
 only on g and n for which lim^oo Fn(x, = g(x) almost everywhere on I.
 Moreover, in the sense of Baire category most functions in C (I) can be chosen
 for /.

 Let / denote any real valued function. Put Fi(x,h) = f(x + h) - f(x - h) and
 Fļ (x,h) = f(x + h) + f(x - h)-2 f(x) . By induction for n > 3, we put Fn(x, h) =
 2n-2_Fn_2(x, h) - -Fn_2(x,2/t). Then Fn(x,h) is defined for all positive integers n,
 and Fn(x, h) is the type of formal linear combination described in the preceding
 paragraph. For example, F3(x, h) - 2f(x + h) - 2f(x - h) - f(x + 2h) +f(x - 2h)
 and Fi(x,h) = 2 2f(x + h) +2 2f(x - h) -2 sf(x) - f[x + 2h) - f{x - 2h) + 2f(x).

 We need some limits involving Fn when / is a polynomial function of x.

 Lemma 1. Let p(x) be a polynomial function of x and let Pn(x,h) be the
 function formed from p in the same way as Fn(x,h) was formed from / (above).
 Then for each positive integer n there is a nonzero constant cn, independent of
 p, such that limfc_*o ^»(x, h)/hn = c„pW(x).

 Proof. By the Taylor expansion,

 p(x + h) = p(x) + p'(x)h + p"(x)h2/ 2! + p^(x)h3/ 3! + p^(x)h* /4! +
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 By direct computation we obtain for n > 3

 Pn(x,h)=cnpM{x)hn + hn+2{...)

 where the factor (...) is a linear combination of terms of the form p^(x) over
 polynomials in h, and where

 c2k = 2(22 - 2n)(2* - 22k) . . . (22k~2 - 22k)/(2k)l and
 Cļk+i = 2(2 - 22*+1)(23 - 22*+1) . . . (22fc_1 - 22k+l)/(2k + 1)!.

 To see this use induction on k for P2Jt and then P^k+i- The result follows from
 this. □

 Clearly Lemma 1 will work for some functions more general than polynomials
 in X, but we require it only for polynomials. We turn now to some ad hoc
 definitions and notation.

 Definition. We say that a function / G C(J) is nearly constant on I if
 almost every x G I lies in an open interval on which / is constant. We say that
 / G C (I) is nearly polynomial on I if almost every x G I lies in an open interval
 on which / coincides with a polynomial in x.

 Thus any nearly constant function on I must be nearly polynomial on I. A
 primitive of a nearly polynomial function is nearly polynomial. And for e > 0
 and continuous g, there is a nearly constant / such that || / - g ||< e.

 Let Cn(I) denote the set of functions in C(I) that have continuous n-th
 derivatives everywhere on /. Then Cn(J) is a Banach space under the norm
 •C / >n= E,n=0 II II- Here means /. To be consistent, we put Co(I) =
 C(I) and </»o=|| /||.

 Lemma 2. Let go G C(I), g' G Cn_i(J), G C(I) for some n > 1. Let
 e > 0. Then

 (i) there is a nearly polynomial function fi G Cn_i(I) such that <C fi~gi 3>n-i
 < e and | fin'x) - go(x) |< e almost everywhere on I.

 (ii) there is a nearly polynomial function f2 G Cn_x(/) such that || f2 - g2 ||< e
 and I /2(n)(x) - go(x) | < e almost everywhere on I.

 Proof (i). Use the Weierstrass Approximation Theorem to select a polyno-
 mial function Pi[x) such that

 (») II Pi"1 - 9o |l< £.
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 Because gļn ^ - p[n ^ is continuous, there is a nearly constant continuous func-
 tion qi such that || q' - + p[n _1^ ||< e/n.

 For x€l, let g2(x) = 0in-2)(O) - pļn_2)(0) + Í qi{t)dt>
 Jo

 to(x) = yļn_3)(°) -Pin_3)(0) + Í qi{t)dt,
 Jo

 <ln{x) = <7i(0) - Pi(0) + f qn-i{t)dt.
 Jo

 It follows from this construction that || q^ - ^ļn-2^ + p[n 2^ ||< s/n, || q¡ -
 í/ín~3) + P(r~3) II < e/n, . . . , H çn - 0i + Pi ||< e/n, and hence

 (**) < 0n - £7i + Pi >n-i< e-

 Moreover, qn is a nearly polynomial function because q' is a nearly constant
 function, so qn + pi is a nearly polynomial function. Thus + Pin) = Pin)
 almost everywhere on I. Put fi = qn + Pi- It follows from (*) and (**) that
 I /x"^(x) - <to(s) |< e almost everywhere on I and <C fa - gi >n-i< £•

 Proof (ii). Use the Weiąrstrass Approximation Theorem to find a polynomial
 gi such that || <72 - 9i ||< f £■ Use part (i) with | e in place of e to find a
 nearly polynomial function fa E so that <C fa - gi ^>n-i< 5 e and
 I fļn'x) - ga(x) '< ' e almost everywhere on I. It follows routinely that this
 function fa suffices for (ii). □

 Let pi,p2>P3) • ■ • be an enumeration of the polynomial functions in z on 7
 with rational coefficients. These functions form a dense subset of C(I) and of
 Cn(I) for each integer n. In what follows m denotes Lebesgue measure.

 Lemma 3. Fix an integer n > 1. Let k, ¿1, »2, ¿3 be positive integers and let
 Pk be the polynomial in x in the enumeration mentioned before. Let X(k, »1, »2, t's)
 be the subset of C(J) composed of functions / satisfying m(Et) > 1/t'i for all
 t E (0,1/ ¿3) where

 Et = {x e I : I Fn(x,t)/tn - pk{x) I > l/t'j}.

 Then

 (i) X"(*,»i,»a,«s) n Cn_x(J) is a closed nowhere dense subset of Cn_i (/) ,

 (ii) X(k,ii,Ì2,t3) is a closed nowhere dense subset of C(I).
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 Proof. Let g 6 Cn_i(/) lie in the closure of X(k, t'l5 ¿2, t'3) relative to
 Fix t0 E (0, l/t'3). There is a sequence (/,) C X(fc,ti,S2,ts) n Cn_i(/) converging
 to g in Cn-i (/) (and hence in C(/)) such that m(Ejito) > l/t'i for each j where
 Ejtt0 = {x€l:' Fjin{x , to) /i" - Pt(x) I > 1 /¿2} and where Fj¡n is formed from fj
 the same way as Fn was formed from / before. Now Gn(x,to) is a linear combina-
 tion of a finite number of functions of the form g(x + ťť0) (* = 0, ±1, ±2, ±3, . . .).
 But fj(x) converges uniformly to gr(x) and Fjn(x,t0) converges uniformly to
 Gn(x, i0) in x; it follows that

 lim Fjin(x,t0)/tô = Gn(x,t0)/t% uniformly in x.
 y-00

 It follows that m(S<0) > limsup^^, m(Ej to) > l/»i where

 Sto = {x e I : I Gn(xyt0)/tõ - pk(x) |> l/t'j}.

 Consequently g E X(k,ti,i2,i3) and X(A:, n Cn-i(I) is a closed set in

 Again, let g e X(k,ii,i2,iz) H Cn_i(/) and let e > 0. By Lemma 2(i)
 there is a nearly polynomial function q G Cn_x(/) such that <C g - q >•„_!<
 e, I - c^Pki*) '< cñV* 2 2111(1 I cr»Ç(n)(z) ~ Pfc(x) l< l/»i almost every-
 where on I. Because q is a nearly polynomial function, it follows from Lemma
 1 that limj,_,o Qn{x,h)/hn = cnq^ (x) almost everywhere on I. Consequently,
 limsupfc_0 I Qn{x,h)/hn - Pt(x) |< l/l2 almost everywhere on I. Finally,
 m(Ut) < l/t'i for some t G (0, l/t'3) where

 Ut = {x e I : I Qn(x,t)/tn - pk(x) I > l/t'2}.

 Thus q <1. X(kyiut2,iļ) and <C q - g >n-i< £- So X(k,il,t2,is) n Cn_i(/) is a
 closed nowhere dense subset of Cn-i(I), and (i) is proved.

 The proof of (ii) is the same with || g - q || in place of •< g - q »n-i> and
 convergence in C(I) instead of So we leave it. □

 Our results will be stated in two parts - one for Cn_i(J) and the other for
 C(I).

 Theorem 1. Fix an integer n > 1. Then there is a residual set of functions
 / in C„_i(7) having the property: for each measurable real valued function g on
 /, there is a sequence of positive numbers (hj) converging to 0, and depending
 only on h and n, such that limy-»«, Fn{x,hj)¡h £ = g(x) almost everywhere on I.

 Proof. Let X(k,i1,t2,i3) and p* be as in Lemma 3 and let X = Ut,«!
 X(k, ¿i, t2, ¿3). Then X is a first category subset of C„_1(7). Let / € Cn_i(/)'X.
 It suffices to prove that / satisfies the desired property.
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 For each k > 1, / £ X(k,2k,2k,2k). So there is a point tk € (0,2 *) such
 that < 2 k where

 Sk = {x 6 I : I Fn(x,tk)/tļ - pk(x) I > 2~k}.

 Now let g be a measurable function on I. Let (pkj) be a subsequence of (pfc)
 converging to g almost everywhere on I. For each k,

 I Fn{x,tk)/tk - pk(x) I < 2~k for x € I'Sk.

 But m(Sk U Sk+1 U Sk+ 1 U . . .) < 21-* and m(n^! (Sk U Sk+l U Sk+2 U ...))= 0.
 It follows that

 (!) Jim K - ►OO [Fn{x,tk)/tnk - pjfc(z)] = 0 K - ►OO

 almost everywhere on I. Also,

 (2) ļim[pfc.(x) -<7(x)] =0
 J - ►OO

 almost everywhere on I. From (1) and (2) we obtain

 lim [Fn(x,tk.)/tk - 0(x)] = 0
 J - >00 J

 almost everywhere on I.
 So hj = tkj suffices. □

 Theorem 2. There is a residual set of functions / in C(I) satisfying the
 property: for each measurable real valued function g on I and each integer n > 1,
 there is a sequence of positive numbers (hj) converging to 0, and depending only
 on g and n, such that

 lim Fn(x,hj)/h " = g(x) almost everywhere on I.

 Proof. The plan is to fix n and find an appropriate residual subset of C(I)
 for n. But this argument is just like the proof of Theorem 1, so we leave it.
 □

 In [1] Marcinkiewicz proved a little more than the case n = 1 in Theorem 2.
 The role of Fn in Theorem 2 can be played by certain other linear combinations
 of functions of the form f(x + jh) (j = 0, ±1, ±2, ±3, . . .) over the integers.
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 Theorem 3. Fix an integer n > 1. Let c be a nonzero constant, and
 for any function / let F(x, h) be a formal linear combination of functions of
 the form f(x + jh) (j = 0, ±1, ±2, ±3, ...) over the integers, such that for any
 polynomial function p, lim*_,o P{x,h)/hn = cp^(x). Then there is a residual
 set of functions / in C(J) satisfying the property: for each measurable real valued
 function g on J, there is a sequence of positive numbers (hj) converging to 0, and
 depending only on g, such that lim^oo F(xt hj)/h " = g(x) almost everywhere on
 /.

 Proof. The proof of Theorem 3 is just like the development of Theorems 1
 and 2. So we leave it. □
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