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 THE CHI FUNCTIONS IN GENERALIZED
 SUMMABILITY

 In [2], Baric defined, for conservative matrices, a generalized summa-
 bility analogue to the chi functional of scalar summability. This function,
 together with analogues to the functionals Xn, may be defined for any con-
 servative transformation T. These functions have multiplicative properties
 similar to those established for the chi functionals in [12, section 3]. We use
 these properties to give a necessary and sufficient condition for an invertible
 conservative matrix to have a matrix inverse. We also use the chi functions

 to make algebraic statements about certain algebras of conservative matrices
 and to show that some of them are Banach algebras. We close with remarks
 on certain algebras which contain conull matrices.

 Our notation and terminology are standard. Let £ be a Banach space.
 The spaces m(i?), c(E ), and Co(E) consist, respectively, of bounded se-
 quences in j E, convergent sequences in E , and null sequences in E. If E = C
 is the complex numbers, we write ra, c, and cq. Each of these spaces is a
 Banach space under the norm ||x|| = x = {xjt} a sequence in E .
 The coordinate functions Cn defined by Cn(x) = xn are continuous on these
 spaces. Baric [2] calls these spaces FK spaces since they are Frechet spaces
 with continuous coordinates. The space tl(E) consists of those sequences x
 in c(E) for which ''xk'' is finite.

 Let F be a second Banach space. A continuous linear transformation
 T from c(E) to c(F) is called conservative . If T can be represented by an
 infinite matrix A = (Ank), n and k positive integers, where each Ank is a
 continuous linear transformation from E to F, then T is called a conservative

 matrix. Conservative matrices are characterized in [1, Proposition 1.2](the
 characterization is due originally to Robinson [9] and Melvin-Melvin [7]).
 The set of conservative matrix transformations from c(E) to c(F) is denoted



 by T(E,F), or by T(E) if E = F, or by T if E = F = C. In order that the
 function x(T) be defined, it is necessary that F , the space underlying the
 range of T, be weakly sequentially complete, denoted wsc. We will always
 assume that the space underlying the range of a conservative transformation
 is wsc .

 Let s(E) denote the set of sequences in ¿7, and let A = ( Anjç ) be a matrix
 of linear transformations each of which is continuous from E to F. If x is in

 s(E ), we say that A sums x if limn ^2k Ank(xk) exists in the topology of F,
 each series being convergent in the same topology. Call A null-conservative
 if A sums each x in co(E). Such matrices are characterized in [1, Proposition
 1.1] (see also [9] and [7]).

 If X and Y are Banach spaces, B(X,Y) denotes the set of continuous
 linear transformations from X to Y . We write B(X) if X = Y . Composition
 of functions is denoted by juxtaposition; X * is the (continuous) dual of X.
 All sums are indexed from 1 to infinity unless otherwise specified. The end
 of a proof is denoted □.

 1 The chi functions

 We alter Baric's notation slightly and define insertion functions e : E - * s(E )
 by e(x) = {a:, a:, . . .} and ek : E - ► s(E), k a positive integer, where ek(x ) is
 the sequence with fc-th coordinate x and all other coordinates zero. These
 functions are clearly linear. The function e is continuous into c(E) and the
 ek are continuous into cq(E). Thus, the insertion functions are continuous
 into c(E), m(E), and s(E) since larger FK spaces have weaker topologies
 ([2, p. 168] and [10, p. 203]). These functions also have properties reminiscent
 of a Schauder basis as shown in the following result, which is essentially in
 [2],

 Lemma 1.1 Let x = {a:*,} be in c(E). Then

 1. x = e(limx) + ^ek{xk ~ lim®), so that

 2. x = Ylek(xk ) if and only if x is in Cq(E).

 Proposition 1.2 Let X be an FK subspace of co(E), and T a continuous
 linear transformation from X to m(F). Then T can be represented by a
 matrix.
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 Proof. For x = {xk} in X, use (1.1.2) to compute Tx. Use the continuity
 of Cn to compute CnTx. Define the matrix in the obvious way.n

 Thus, if T is conservative from c(E) to c(F), then the restriction of T to
 co(E) is a null-conservative matrix B = ( Tnk ) = ( CnTek ) called the matrix
 part of T, which will be denoted B[T ] if confusion could arise.

 Proposition 1.3 Let T be conservative from c(E) to c(F).

 1 . if x = {xjç} is in s(E), the series ^2k^nk(^k) and Zjk Tk(xk) converge
 weakly in F} where Tk(xk) = lim nTnk(xk);

 2 . the linear function Sn from E to F defined by Sn(x) = ^2k^nk(x)
 is continuous , as is the linear function S from E to F defined by
 S(x) = J2Tk(x).

 Proof. To see (1), choose / in F* and consider the scalar matrix B' = ( bnk ),
 where bnk = fTnk(x). Then B' maps cq to c. To see this, let 2 = {z^} be
 in Co and yn = Y^kbnkZk- But zx = {z^x *} is in Co(E) and so T(zx) is in
 c(F). Hence, limn fCnT(zx) exists. But

 fCnT(zx) = /(^CnTefe(zfcxfc))
 k

 and the series converges in the norm topology of F . By the linearity and
 continuity of /

 fCnT(zx ) = ^2fTnk(xk)zk = yn.
 k

 Thus, y = {y,,} is in c and B' is null-conservative in the classical sense.
 Consequently, fTnk(xk) is (absolutely) convergent for each n. Since F
 is wsc, J2k Tnk(xk) converges weakly in F for each ra.

 Since B is null-conservative, limn Tn¿(xfc) = exists in F for each x
 in E. Therefore, fTk{xk ) = limn fTn k(xk) exists for each k and I fTk{%k)'
 is finite since B' maps m to m. Therefore, the scalar series J2 fTk(xk)
 converges and, as above, Tk(xk) converges weakly in F .

 To see (2), use [2, Proposition 3.2] on the partial sums. □

 Observe that if x = {ijt} is in co(E ), then the series kCnTek(xk )
 converges in the norm topology of F since B is null-conservative.
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 Definition 1.4 Let T be conservative from c(E) to c(F). The function
 X(T) from E to F is defined by

 x(T)(x) = lim Te(x) - y^limTek(x)

 and the function Xn(T) from E to F is defined by

 Xn (T)(s) = CnTe(x) - Y^CnTek(x),
 k

 n a positive integer.

 The series converge weakly by the previous proposition with the sequence
 X replaced by the constant sequence e(x), x in E. The functions are clearly
 linear. The linear function lim : c(F) - ► F is continuous [2, Prop. 2.3], so
 each chi function is the difference of continuous functions and hence contin-

 uous. Of course, CnTek(x ) = Tn k(x) and lim Tek(x) = 'imnTnk(x) = T^(x),
 where B = ( Tnk ) is the matrix part of T.

 Let v be the B(E , F)-valued sequence {xi(3n),X2(T1), • • •} and define the
 function v ® lim from c(E) to m(F) by

 (v ® lim)(x) = {xi(T)(limx),X2(T)(limx),...}.

 To see that v ® lim maps to m(F), note that if yn = YlkCnTekx =
 "ž2kTnk(x), then {yn} is weakly bounded because the scalar matrix B' =
 (fTnk(x)) is null- conservative for each x in E and / in F*. Thus, {yn} is
 bounded and so ||Xn(T)(x)|| < ||T|| + supn ||yn|| < oo for each x in E. Now
 use Banach-Steinhaus to obtain a uniform bound for the ||xn(^)||-

 Theorem 1.5 Let T be conservative from c(E) to c(F). Then T may be
 written as T = v ® lim +B, where B is the matrix part of T.

 Proof. Since both T and C are continuous and linear

 CnTx = CnTe{ limx) - ^Cr,Tefc(limx) + £CnTe*0rfc)
 k k

 = Cn{v ® lim +B)(x). □

 Remark. This theorem generalizes a result of Crawford [6, p. 34]. Evaluat-
 ing T, first at ek(x) and then at e(x) for x in 2?, we see that the sequence
 v and the matrix B are uniquely determined by T. The result is in the
 literature in [3,4,5] Evidently, T is a matrix if and only if Xn(T) = 0 for all
 n (compare [11, p. 357]).
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 Proposition 1.6 If T is conservative from c(E ) to c(F) and x = {x*} is
 in c(E), then

 1. lim Tx = x(r)(limx) + £fcTfc(xfe),

 2. CnTx = Xn(r)(limx) + Ejfe Tnk(xk)

 the series converging weakly.

 Proof. To see (1), let x = {xt} be in c(E) and I = lim^x*. Then

 limTx = limTe(/) + ^limTefc(xfc - /)
 k

 = lim Te{l) - £lim Tek(l) + £Tfc(xfe)
 k k

 = xCrXO + E1«**)'
 k

 the norm or weak convergence of the series being justified by (1.1.1) and
 (1.3). A similar argument establishes (2).D

 2 Properties of the chi functions; applications

 The results of this section parallel those in [12, section 3]. For / in c(E )*,
 define «/(/) in E* by

 J(/)(x) = /e(x)-£/efe(x) (1)
 where x is in E. The series converges since the sequence {fek}, k from 1
 to infinity, represents the restriction of / to Co(E) and hence is in Co(E)*,
 which is congruent to ß(E*) in such a way that ||/efc|| < oo. If x = {xjJ
 is in c(E), (1.1.1) allows us to see that

 f(x) = 7(/)(limx) + Y^fek{xk)- (2)
 In special instances, the notation «/(/) may be extended to certain / in

 B(c(E),F), for example x(T) = J(limT) and Xn(T) = J(CnT). Proposi-
 tion (1.6) shows that this extension is consistent with (2).

 Lemma 2.1 Let T be conservative from c(E) to c(F ), / in c(F)*f and x in
 E . Then

 Ą/T)(x) = J(/)x(T)(x) + £>'(»(r)(x)).
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 Proof. Using (2), we see that if x = {a;^} is in c(E), then

 f(Tx) = J(f)( lim Tx) + £ fe'CkTx). (3)
 Replace both limTx and CkTx using (1.6). Let x be in E and compute
 J(fT)(x ) directly from (1). The desired equality holds up to an additive
 factor of

 E E f'kTUx) -EE /«'ru*).
 fc r r fc

 Since the left hand sum converges absolutely, the iterated sums are equal
 and the equality holds. □

 Lemma 2.2 IfT is conservative from c(E) to c(F), and S is conservative
 from c(F ) to c(G), then

 1. x(ST) = x(S)x(T) + ESkXk(T )

 2. Xn(ST) = Xn(S)x(T) + EkSnkXk(T).

 Proof. Equation (3) is valid for both / = lim S and / = CnS. The
 equations so obtained can be used to compute x(ST) and Xn(ST). To
 prove the lemma, it suffices to show that

 EEí^(i) = EEs'r»)(i)
 ti it

 and that

 ^ SnkTkjix) =
 k j j k

 for all x in E and for each positive integer n. Both equalities follow by the
 argument on [2, page 175].ü

 Remark 2.3 From (2.2), it is easy to show that if T is a matrix , or if S
 sends co(F) to co(G), then x(ST) = x(S)x(T). If we let E = F = G} we
 see that x is multiplicative on T(E). With E = G, it follows that if T in
 T(E,F) is invertible with inverse S in T(F, E), then x(^) în B(E,F) is
 invertible with inverse x(S) in B(FyE).

 As usual, call a matrix A in T(E,F) conull if x(^) = 0 (in B(E, F))
 and let To(£, F) denote the set of conull matrices. Using (2.2), it is possible
 to show that no conull matrix is invertible, that To(E) is an ideal in T(E),
 and that To(^) is a left ideal in B(c(E)).
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 Again following the usual terminology, we will say that a matrix A in
 T(E,F ) is coregular if x(-A) / 0. If x(-^) is invertible, we will say that
 A is strongly coregular.

 Theorem 2.4 LetT in T(E, F ) be invertible with inverse S in B(c(F),c(E)).
 Then S is in T(F,E) if and only ifT is strongly coregular. IfT is strongly
 coregular, then any left inverse for T is a matrix.

 Proof. If S is a matrix, then (2.3) implies x{T) is invertible. Conversely, if
 T is a matrix, (2.2.2) shows that Xn(ST) = Xn(S)x(T ). But ST is a matrix,
 so the composition must be zero. Since x(T) is invertible, Xn(£) = 0 for all
 71. Thus, S' is a matrix and any left inverse for T is a matrix. □

 Example 2.5 It is easy to show that ifT is in T(E,F) and invertible with
 inverse in B(c(F), c(E)), then x(T) must be one-to-one. Thus, if E =
 F = Cn,Cn being complex n-space , then the algebra T(E) is closed under
 inverses. If E - C2 and F = C, then no matrix is invertible , since x{T)
 cannot be one-to-one. However , if E = C and F = C2, then x(T) could
 be one-to-one but not onto. Thus , there is the possibility of an invertible
 matrix with a nonmatrix inverse.

 Note that a matrix T from c to c( C2) must have entries mapping C
 to C2, i.e. the Tnk are ordered pairs (ank,bnk) of complex numbers and
 Tnk(z) - {0.nkZ^bnkz). Let T be the matrix defined by Tni = (-1,0), Tn¿n -
 (1,0), and Tn,2n+i - (0,1) where n is a positive integer , all other entries
 being (0,0). It is not difficult to show that T is one-to-one and onto from c
 to c( C2). IfT has S as its inverse and S is a matrix , then the entries of S
 are also pairs of complex numbers , i.e. Snk = (cnA:,dnA:); with Snk mapping
 C2 to C by Snk(zi, z*i) - cnkZ'-'-dnkZ2. Computing S(Tek ) for k greater than
 or equal to 2, we see that S'k = (0,0) for all k. But then S(Te) = e must
 have first coordinate 0. This contradiction shows that S is not a matrix.
 Note that e = e(l) and ek = ek(l).

 Remark. To this point, the results we have proved are valid for Frechet
 spaces as well. In this setting, the characterization of conservative matrices
 is given in [8, Theorem 1]. Null-conservative matrices can be characterized
 using parts (i) and (iii) of that theorem. Attention should be paid to Remark
 1 on page 367. Useful information on co(E)* is contained in [2, Proposition
 2.9]. The discussion immediately preceding that result is valuable, as is the
 subsequent description of c(E)*.
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 Theorem 2.6 The function x • B(c(E),c(F)) - ► B(E,F) is linear, contin-
 uous, and onto, as are the functions 'n •

 Proof. Linearity is clear. To show onto, let L be in B(E, F ) and define a
 matrix A by Ann = L with other entries 0.

 For continuity, let T(n ) be a Cauchy sequence in B(c(E),c(F)) converg-
 ing to 0. But

 ||x(T(n))||<||T(n)|| + ||5(n)||

 where B(n) is the matrix part of T(n). Also, ||2?(n)|| - ► 0 since B{n) is
 the restriction of T(n) to co(£). Since ||T(n)|| - ► 0 as well, x iS continuous.
 Similar arguments apply for Xn-n

 Remark. See [1, Theorem 1.1. a] for the definition of ||A||, A a null-
 conservative matrix. It is clear that ||2?(n)|| - * 0 on co(E). The convergence
 is valid on c(E) as well since the norm is defined via finite sequences.

 Let iî(i?) denote the set of T in B(c(E)) for which limn Xn(T)(x) exists
 for each x in E.

 Theorem 2.7 Both T(E) and Ū(E) are Banach algebras .

 Proof. From (2.2.2) it is clear that T(E) is a subalgebra of B(c(E)). Also,
 T(E) is the intersection of the null spaces of the continuous linear transfor-
 mations Xn and hence is closed. Since r(£) contains the identity of B(c(E )),
 it is a Banach algebra under the inherited norm, i.e. the usual norm on r(22).

 If S is in iî(2?), then the matrix part of 5, B = ( Snk ), must be conser-
 vative. If T is also in then by (2.2.2)

 Xn (ST) = Xn (S)x(T) + J>nfcXfc(T).
 k

 Now, lim n Xn(S)x(T)(x) exists for each x in E . Also, if x is in E , the
 sequence

 » = iXi(T)(x),X2(T)(x),...}

 converges. Hence, the series represents CnBv. But Bv converges. Therefore,
 for each x in £, limn Xn(5T)(z) exists and iî(2?) is an algebra. Furthermore,
 il(E) contains the identity of B(c(E)). To show that fì(2?) is closed, let {7*}
 be a Cauchy sequence in ii(E) with limit T in B(c(E)). The sequence

 Vk = {Xi(Tk)(x),X2(Tk)(x),...}
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 converges for each x in E and for each k. Let

 » = {xi(rX*),x2(r)(*)>-}.

 Note that if 5 is in il (E) and S has matrix part B, then

 ''Xn(S)''<''S'' + ''B''

 for all n. If we let S = T - 7*, we see that the sequence {v^} converges in
 norm to v. Hence, T is in Ū(E), and Ū(E) is a Banach algebra under the
 inherited norm.n

 3 The rho function

 Define a linear transformation p : Ū(E,F) - ► B(E,F) where p(T) is the
 function given by

 p(T)(x) = x(T)(x)-iimxk(T)(x)
 K

 for x in E . Note that p is defined on no larger set and that p{v ® lim) = 0
 for each v in c(B(E,F)). The function Xoo(T) which is the pointwise limit
 of the Xn(T) is continuous and

 ||Xoo(T)||<Sup||x„(T)||<||T|| + ||5||

 where B is the matrix part of T. An argument similar to the proof of (2.6)
 shows that p is continuous. It is clear that p is onto since the restriction of
 p to T(E,F) is x (again (2.6)).

 Denote by iî0(J5, F) the set of T in íl(E, F) for which lim Xn(T) = 0
 pointwise. Any T in Sl(E, F ) may be written as T = T' + To where To is in
 ilo(E)F) and T' is of the form e(L ) ® lim for some L in B(EyF). To see
 this, recall that T = v ® lim +B where vn = Xn(T). Let L be the pointwise
 limit of the Xn(T) and let u be the sequence v - e(L). Then T' = e(Jv)(g>lim
 and To = u ® lim +B.

 Proposition 3.1 Let T be in il(E,F) and S in íi(F, G). Then p(ST ) =
 p(S)p(T).

 Proof. A direct computation using (2.2) shows that for x in E

 p(STXx) = x(S)x(T)(x) + £ Sw»(T)(i)-
 fc

 lim n Xn(S)x(T)(x) - lim^5njfeXjt(T)(x). n ů * n n ů *

 k
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 But we may write S = S' + So and T = 7' + T0 so that

 ST = S'Ti + SqT' + SiTo + SoTo.

 Since p is linear, the result need only be checked on each type of summand.
 The checks are not difficult, but the following facts are useful:

 1. if T is in iî(X, Y), then the matrix part of T is conservative;

 2. if T is in ilo (X,y), p(T) = X(T) = x(B[T'), and {x*CO(*)}, k from
 1 to infinity, is in co(Y ) for each x in X;

 3. if T - e(L ) ® lim, then Xk(T) = x(T) for each k ;

 4. [1, Theorems 1, 2].D

 We should probably also point out that p(v®lim) = 0 even if the B(E , F )
 valued sequence v converges only pointwise. In any event, it turns out that
 p(S{Tj ) = 0 except when i = j = 0, in which case p(SoT0) = x(B[S])x(B[T])
 just as in the scalar case.

 An immediate corollary of the proposition is t'nat p is multiplicative on
 Ū(E).

 4 Subalgebras of B(c(E )) containing conull matri-
 ces

 A main result of [4] is that the only subalgebras of B(c) which contain To,
 the kernel of x? are To, T, fi, and B(c) itself, whereas the only subalgebras
 containing A (p), the kernel of />, are Ar(p), fi, and B(c). In general, there
 are infinitely many distinct subalgebras of r(2?)(resp. $l(E)) which contain
 T0(E) (resp. K(p)). If E is infinite dimensional, there are even infinite
 chains of such.

 The functions x : r(J3) - ► B(E) and p ģ. iì(E) -> B(E) are algebra
 homomorphisms onto B(E). Hence, there is a one-to-one correspondence
 between the subalgebras of B(E ) and the subalgebras of T(E) (resp. £l(E))
 which contain To(E) (resp. K(p))- If E is infinite dimensional, choose
 xi 0 in E and define the left algebra ideal

 h = {Te B(E) : Txx = 0}.
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 Choose X2 not in the linear span of x' and define

 I2 = {Te B(E) : Txx = Tx2 = 0}.

 Choosing £3 not in the linear span of x' and £2 and proceeding inductively,
 we obtain a nonterminating descending chain of left algebra ideals

 /1 D I 2 D h D • • •

 with all containments proper. This chain lifts via x (resp. p) to a chain

 J i D J 2 D h • • •

 of subalgebras of T(E) (resp. £l(E)) each of which contains To(E) (resp.
 K{p)). Again, all containments are proper.

 If E has finite dimension at least 2, then E is isomorphic to Cn, n =
 dim E , and B(E) is isomorphic to M(n;C), the algebra of n x n complex
 matrices. Since any subalgebra of M(n; C) is also a vector subspace of
 M (ra; C), it is obvious that any chain of subalgebras of M (n; C) has length
 at most n+ 1. However, even in this case there are infinitely many distinct
 subalgebras of T(E) (resp. $l(E)) containing To(E) (resp. K(p)). I wish to
 thank L. Childs for suggesting the following example.

 Example 4.1 Let n = 2 and consider the matrix A = ^ ^ ^ where a
 is nonzero . Any such matrix A generates a (commutative) two dimensional
 subalgebra < A > of M( 2;C). This algebra is algebraically isomorphic to
 C[x'/(pa), where C[x] is the algebra of polynomials in one variable with
 complex coefficients , and ( pa ) is the ideal generated by pa, the characteristic
 polynomial of A. If a is nonzerof pa is also the minimal polynomial of A.
 Thus, {/, A} is a basis for the algebra generated by A considered as a vector
 space .

 Let A and B be matrices of the given type and let pa and pb be their
 respective characteristic polynomials . Then it is not difficult to show that
 the following are equivalent:

 1. < A> is isomorphic to < B >;

 2. < A >=< B >;

 5. pa = PB ;
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 Ą. A = B.

 Hence , there are infinitely many distinct subalgebras of this type (as well as
 infinitely many distinct isomorphism classes of such) in M( 2;C).
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