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 VARIATIONS ON PRODUCTS AND QUOTIENTS OF DARBOUX FUNCTIONS

 I. Let us establish some of the terminology to be used . R

 denotes the real line and N denotes the set of natural

 numbers If a,beR, then (a,b} denotes the open interval

 with the end-points a,b. For A<=R, we shall say that I is an

 open interval of A iff I=(a,b)nA for some a,beR. If B is a

 planar set, we shall denote its x - projection by dom B and

 its y - projection by rng B. If A,B are subsets of R then

 A B={a. b : aeA, b«sB>, a B=-{a}- * B and A-1=-{l/a : aeAVjO».
 For AcR, aeR, and f : A - »R, we define the set [ f<a] as -{xeA :

 f(x)<a }■. Analogously, we define the sets [ f>a] and [ f=a] .

 Let AcR be a c-dense set in itself (where c denotes the

 cardinality of the continuum) and let B be a subset of R. We

 say that f:A - »B is an (A, B)-Darboux function iff f has the

 intermediate value property, i.e. (f (x) , f (y))nB c f(Çx,y)nA)

 for each x,yeA. Let ,Z)(A,B} denote the class of all
 *

 ÇA» B)-Darboux functions. Let D (A»B) denote the class of all

 functions f:A - ►B which take on every yeB in every non-empty

 interval I of A. Let JD**(A,B) denote the class of all
 functions f:A - >B which take on every yeB c times in every

 milt fe

 interval of A. It is clear that 3) (A>B ( A t B)oZ>( A , B) for

 every bilaterally c-dense subset A of R and every subset B

 of R. For A=B=R, we shall denote the classes JD(A>B)>

 JD*(A,B), and JD**(A,B) by X>, 5)*, 2>** (see [3]).
 A.M. Bruckner and J. Ceder proved the following theorem.

 THEOREM 1 . [ 3] . Let f e2> be constant on no subi nter val of

 R and let M be a set of real numbers whose complement is
 dense. Then for each countable dense subset D of R'M there

 exists a function d €Ä>* such that the range of f+d is D.
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 In the same way, we can prove the following result.

 THEOREM 1*. If AcR Is bilaterally c-dense set in
 itself» D is a countable dense subset of R, and if feZ)(A,R)

 is constant on no interval of A, then there exists a

 function de3>*(A,R) such that for every interval I of A the
 range of (f +d)|l is D.

 THEOREM 2. Assume that D is a countable dense subset of

 R and OeD. Then for each fel> there exists a function deď)

 such that for each interval IcR we have:

 - if f is not constant on I, then dCI)=R and (f*dXI)=D,

 - if f|l is constant, then d|I is constant and (f*dXI)cD-
 Proof Let B=-{(x, y) : y=r /f (x) if f(x)*0 and y=r if

 f (x)=0, reD, xeR }. As in the proof of Theorem 1 ([ 3] ), we

 shall define a function del) such that d<=B. (No distinction

 is made between a function and its graph).

 Let us put «f^IcR : I is a maximal open interval such that

 f|l is constant}-. Observe that sets from & are pair wise
 disjoint and hence the family is countable.

 Let &={ J : neN} , J =(a , b ) , A =-{a , b : neN }• , J = M and
 n n n n O n tí

 A=R'J. Notice that A^czA and f (a^)=f (b^) for each neN.
 Additionally. f|AeZ<A. R>.
 For xeR , let V(x)={xyxR and H(x)=Ax-{xy. For each xeR it is

 clear that V(xX® is dense in V(x) anc* it is easy to verify

 that H(x)nB is dense in H(x). Indeed, it is clear for x=0.

 Assume that x**0 and I is an open interval of A. Then f |I is
 non-constant and, since feZ>, there exist y, z el for which

 f(y)*f(z} and fCyD *fCz^>0. We may assume that f(z)>f(y)>0.

 Because D is dense in R, we have

 u r (fCy^fCO)-1 = U (r/f(2),r/fCy>) = R.
 reD reD

 so there exists an reD such that xe(r/f(z}, r/fÇy)}, i • ©•

 r/xe(f(y),f(z)}. Since f|Ae£>(A,R), there exists a tel for
 which f (t)=r/x, i.e. x=r/f Çt) and (t,x)«(Ix^XiB.

 For xeR let N(x) = [ A x x (E'^)»(E'<0}) 1 ] n B, where
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 E= M D*... -D
 n=l «

 r> - tv m» m

 Observe that

 Ci) NC0)=H(0)=Ax^0h

 Cii> l^J^NCx) : x«R >=Bn(AxR),
 (iii) card(rng N(x))=a>o for x«R'-{0}-,
 (iv) dom N(x) is dense in A, for each xeR,

 (v) if X * 0 * y and dom N(x) n dom N(y) * 0, then

 N(x) = N(y).

 Now we can define the function d. First we define for each

 x*0 a function d such that d =d if N(x)=N(y), d is dense
 X X y X

 in any non-empty H(y)nN(x) , a e dom d iff b € dom d , and
 r» X n X

 d (a )=d (b ). To do this, let O , n=0,l,2,. . . be an enume-
 X n X n n

 ration of all horizontal open intervals with rational ends

 which intersect N(x). Put w^eO^nNix),
 w if dom w «A ,
 o o o

 v = i (b, v , ' rng v w ) if dom w =a, , keN O v k ' , rng v oJ Ok =a,

 (a. v , * rng * w ) if dom w =b, . v k , * rng * o' Ok

 and w eO n N(x)' (J (V(w )uV(v )) , n n l i
 v < n

 w if dom w eA ,
 n n O

 v = i (b , rng w ) if dom w =a. , keN
 n k r» r> k

 (a, , rng w ) if dom w =b, .
 k n n k

 Then d = ■{ w , v neN V has the desired properties.
 X n n

 Next let d , d be a partition of d onto two sets, each
 4.1 1,2 1

 dense in d and such that a ed iffb ed for neN,
 1 n 4,i n l,v

 i =1,2. Then d is dense in N(l), dom d is dense in A
 1,1 1,2

 and do=dom d^ ^x-10)- is dense in N(0).
 Now enumerate the countable family of uncountable sets of

 the form ■{ (x,y) : x e I'Ao, y = r/f(x) and f(x)*0 }■, where
 I=(a,b)nA for some rational s a,b and r«D'-{0)-, as ÍC}-. As in

 [3] , we pick a sequence of points {e.} such that: e^eCNZ^,
 where -(N(x) there exists j<i with e^«N(x)}-UN(l). This
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 is possible because card (rng C)=c and card (rng Z.)=<«>o.
 Since d cfdom N(l))x-{0}-, dom d n dom e =0. Let e={e :ieNV.
 O Ol i

 Then cardfe O d )<1 for each xeR,0 0 rng e and dom e n A =0.
 X o

 Let A = A ' v- I J ' •{ dom d zeR ' V. Then a e A iff b e A 1 O v- ' * ' nini
 for each neN.

 Now we define a function d on R as follows.

 r e(x) if X € dom e,

 d (x) if X e dom d 'dom e, zeR ,
 d(x)= h

 O if x e A'(dom e u ^_J-{dom d^ : zeR}),
 d(a )=d(b ) if x e J , neN.
 r» n n

 v

 It is clear that dcB and therefore (f»dXI)<=D for every open

 interval I. If I is an open interval for which f|l is not

 constant and yeR, then I OA is non-empty and (I x^y}) n d^ ' e
 is infinite. It follows that yed(I) and, consequently,

 dÇI)=R. If reD'-{OV, then there exists xel 'A such that
 O

 e(x)=r/f(x), f(x>*0 and hence re(f«dXI) Thus D c (f»dXI)

 Since (Ix{OV) n dQ * 0, O e (f.dXI)-
 If f |I 1 is constant, then Ic(a ,b ) for some neN. Then 1 n m

 d(x)=d(a )=d(b ) for xel. Finally, if x.yeR, dOO*d(y), then
 n n

 f is non-constant on (x,y) and the range of d on (x,y) R-

 Thus de¿D . This finishes the proof.

 REMARKS. 1) If D satisfies all assumptions of Theorem 2
 *

 and feJD is constant on no interval , then there exists a dea)

 such that for any interval I of R the range of (f»d)|I is D.
 2) In the same way as Theorem 2, we can generalize Theorem 1.

 THEOREM 1**. Assume that DcR is a countable dense
 set and feî). Then there exists a deZ) such that for each

 interval IcR we have:

 - if f is not constant on I then d(I)=R and (f+dXI)=D,

 - if f is constant on I then d(I)={y} for some yeD.

 THEOREM 3. Let D be a countable dense subset of R with

 0 e D and let f e X) be constant on no interval. Then there
 -Ut

 exists a function deJD CR»(0>®)} such that for every interval

 1 we have:
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 if le [f>0] then (fVdXI) = D n CO.co).

 if Ic [ f<0] then (f/dXI) = D n (-oo.O),

 - if f changes sign on I then (f/dXI) = D.

 Proof . Let us put B = [f>0] ,C = [f<0] ,D+ = D D (0,oo),
 D" = D n (-oo.O). f = ln(f |B) and f = ln(-f |C).
 By Theorem 1 .there exists a function d^ e D CB.R) such that
 C f + d XI) = In D+ for every interval I of B. Then
 i i

 [ expCf^+d^) ] (I)=D+ and hence the range of (f|I)«(exp d^ļl)
 is D+. Observe that d+ = exp(-dp € 3>* (B , (0 , oo)) . In the same
 way, we define d e 3)*(C,R) such that (f + d XI) ~ ln(-D )

 2 *
 for every interval I of C. Then d = exp(-d^) e Ī) CC.(O.oo))
 and the range of ļl)/(d |I) is D .
 Let us define d: R - »CO»®) by

 d (x) for xeB ,
 +

 d(x) = i d_(x) for xeC ,

 1 if f C x) =0 .

 It is easy to verify that such a defined function d

 satisfies the conditions of Theorem 3.

 II. The following result is proved in [ 6] .

 THEOREM 4. Assume that A.B.CcR, F: AxB - >R and f : R - »A.
 ** **

 Then there exists a d&Z) (R.B) such that F(f,d)e© (R.C) iff

 the following conditions hold:

 CI) for every xeR there exists yeB such that FCfCx)»y)«C,

 C2) card ({xel FCf OO » y)=c for some yeB }-)=c for every

 ceC and every interval I ,

 C3) card 0(X€I FC^OO » y)®C J-)=c for every yeB and every
 interval I.

 Observe that for A=B=R , FCx,y)=x»y, f:R - »R and OeC we obtain

 the following.

 ** **

 CORCH.LARY . There exists a de£> such that f«deJD (R.C)

 iff card ({xel fCx)*0 }•) = c for every interval I and

 cardCxel : fCx)»yeC })=c for every yeR and every interval I.

 III. Let jf be a family of real functions. A subfamily £ of
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 sí is called the maximal multiplicative ( additive ) family

 for sf provided 2 is the set of all functions in s( such that

 f g Gjf (f+g erf, respectively) whenever feS and g&f. (See [2] ,

 P. 14).

 As an immediate consequence of Theorem 2 (respectively

 Theorem 1**), we obtain that the maximal multiplicative
 Caddi ti ve) family for D is the class of all constant

 functions ([ 7] , [ 2] ).

 Using a method similar to that used by J. Jastrzębski in

 [ 5] , we can por ove the following results.

 THEOREM 5. Let ge2> and g ¿SO. Then f ge£> for every f eJD

 iff theree exists a sequence a of open intervals {1^} such
 that:

 CD

 CD U I is dense in R,
 k = 1

 (2) g ļ I k is constant and g|Ik & O-
 Proof Assume that for geJD there exists a sequence

 •{1^}- which satisfies the conditions (1) and (2). Let feD*
 and let I be an open interval. Then 0 * J = I n I c I for

 some keN, g|J is constant and g|J s£ O. Consequently, f(J)=R
 *

 and g*f(I)=g *f (J)=R. Thus f©g€^> .

 Assume that geJD, I is an open interval and g is not constant

 on every subinterval of I . It follows from Theorem 2 that
 m

 there exists a function f € D such that f*g e 2). Now assume

 that there exists an open interval I and a sequence of

 pairwise disjoint, open subintervals of I* {1^} such that
 oo oo

 U is dense in I and g(x) = O for each x € U I^. Since
 k s i k = i

 00 00

 g € D and I * U » there exist y» z € I ' U Ik with
 k = 1 k = 1

 g(y) * gCO- Choose f ^ e 2>*(I ^ , R) for k«N and put

 ' fkOO for xel k . keN,
 f (x)= < 1 for xe-{y , z } ,

 O otherwise.
 V

 Then f e 2) and f » g(y) - g(y) * gCz) = f » gÇz) , f • g(x) = O
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 for xe{y,z}, i.e. f*g«£D.

 Of course, the condition ÇS) can not be satisfied for any
 * *

 ge£> . Hence the maximal multiplicative family for S> is

 empty.

 THEOREM 6. Let g: R - »R , g m O. -Then f*g « D for every

 f e &** iff there exist a sequence of open intervals -{1^}
 and a set AcR such that:

 oo

 (3) U I is dense in R,
 k = i

 (4) card (A)< c ,

 (5) g|(Ifc'A) is constant for every k and gļCIfc'A) * O.
 Proof . Assume that for g: R - »R there exist a set A and

 a sequence {1^} which satisfy the conditions (4) and
 (5). Let I be an open interval, feD**, and yeR. Then
 0 * J = I n I c I for some keN and gOO = a * O for each

 **

 X e J ' A. Since fe¿D , card ({x€J fOO = y/a}) = c. Thus

 card ({x€l : f (x) • g(x)= y}} > card Ç-JxeJNA : f(x) = y /a }) = c

 and f • ge2>** .

 Assume that g: R- »R, I is an open interval and g|(J'A) is not
 constant for every subinterval J of I and every subset A of

 J with card(A)<c. Let C=RV{1}-. It follows from the Corollary

 to Theorem 2, that there exists ade £>** such that
 f-d e D**(R,C), i.e. f»d m D.
 Now assume that there exist an open interval I» a sequence

 of pair wise disjoint, open subinterval s of I, {1^}- and a
 oo

 subset A of I such that card(A)<c» [^J I is dense in I and
 k = i

 ao

 g(x) = O for each x e U I ' A. Notice that there exist y,z
 k = i

 oo

 e I N Ifc with g(y) * gCz)- Choose f « 3) (I , R) for keN
 k = 1

 and put

 ffc(x) for x€lfc'A, keN ,
 f(x)= i 1 for x«{y,z>,

 O otherwise.

 Then f e Sì and f*g « á>.
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 Evidently, the conditions (4) and Ç5) can not be satisfied

 for any ge^D Therefore the maximal multiplicative family
 _ **

 f _ or 3> is empty.

 IV. J. Ceder in [4] has characterized those functions

 which can be factored into a product of two Darboux

 functions. In the same paper, the author stated that a

 function f is a quotient of two Darboux functions iff [ f *0]

 is bilaterally c-dense in itself Ç[ 4] .Theorem 2).

 Unfortunately, this result is not true. For example, for the

 function f:R - >R , defined by f (x)=l if ya* 0 and f(x)=-l if

 x=0, the set [ f *0] is bilaterally c-dense in itself, and

 evidently, f is not a quotient of two Darboux functions.

 We shall prove the following theorem.

 THEOREM 7. A function f : R - >R is a quotient of two

 Darboux functions iff f satisfies the following conditions:

 Ci) if a<b and f(a)«f(b)<0 then f(c)=0 for some ce(a,b),

 Cii) the sets [ f>0] and [ f<0] are bilaterally c-dense in

 itself.

 Proof . Assume that h , h e D and f = h /h . Then h < O
 12 12 2

 or h >0. Thus, if fÇa)»fÇb)<0, then h Ça) • h Çb)<0 and, since
 2 11

 h^eD, we have h^(c)=0 for some ce(a , b). Then f Çc)=0 and (i )
 hoi ds .

 We may assume that h2>0. Then [ f>0] =[h»t>0] and [f<0] =[ h4<0] ,
 and by h^«2> we obtain that [ f>0] and [ f<0] are bilaterally
 c-dense in itself. The condition 0-i) holds too.

 Now notice that if A is bilaterally c-dense in itself then

 JD*ÇA,B) s* 0 Ç[ 4] ). Assume that f satisfies the conditions
 Çi) and Cii)- Let us decompose [ f>0] into disjoint sets T

 and T each c-dense in [f>0] . C^ee [*] or [4]) Similarly,
 2

 let us decompose [f<0] into disjoint sets T^ and T^ each
 c-dense in [ f<0] .

 Let us define h ,h as follows:
 1 2

 on t f =0] , h =0 h =l ,
 1 2

 on T , h^ezfCT^ CO, <*>)), h^h^f,
 on T , h eJD* ÇT , Ç0 , ao)) , h =f • h ,
 2 2 2 1 Z
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 on T , h eZ>*(T , (-00, 0)) , h =h /f ,
 3 1 9 Zi

 on T , h2€D*(T4,(0.®». h^f.h^
 Let us observe that f=h /h and h >0. We shall prove that

 12 2

 e 2>. Let h^(a) < h¿(b) and y e Çh^Ça), h^Cb)). There are
 Tive possible cases:

 Ca) if h4(a)>0, then f(b)>0. Since the set [ f>0] is
 bilaterally c-dense in itself, we obtain that [ f >0] n(a» b)*0

 and consequently h^(x)=y for some x e n (a , b) ,
 (b) if h^(b) - O» then f(a)<0 and hence there exists
 x e T n (a.b) such that h (x)=y,
 9 1

 (c) if h^a) < y < O < h^b), then f(a) < O and h¿(x) = y
 for some x e T n (a , b) ,

 9

 (d) if h^a) < O = y < h^b), then it follows from (i)
 that there exists xe(a,b) such that h^(x) = f(x) = 0»
 (e) if h^(a) < O < y < h^b), then f(b) > O and h^x) « y
 for some x € T n (a,b).

 Thus h € 3). Now we shall show that h e Ī). Assume that
 1 2

 h»2(a) < h^Cb) ancl y € (h2(a), h2(b)). Then h2(a) > O and
 (a.b) n [f>0] * 0 or (a,b) n [ f<0] * 0. If (a,b) n [ f>0] * 0,

 then h (x) = y for some x e T n (a,b).If (a,b) n [f<0] * 0,
 2 2

 then h2(x) = y for ;ome x e T^ O (a,b). Thus hg € D and this
 finishes the proof of Theorem 7.
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