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"A Lower Bound for the Packing Measure

which is a Multiple of the Hausdorff

Measure"

Claude Tricot, Jr. has solved S. James Taylor'’s

conjecture that when the Hausdorff dimension of a set E is

equal to the packing dimension of the set E, then the

Hausdorff measure of E is equal to the packing measure of E

only when the dimension is an integer. Tricot’s solution

affirmed Taylor’s conjecture. So the question now changes

to how much larger is the packing measure of E in relation

to the Hausdorff measure of E when the dimension is not an

integer. For symmetric sets on the real line, and under

certain conditions, a lower bound for the packing measure

that is a multiple of the Hausdorff measure is given.

Definition 1: A symmetric set is defined as follows:
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1
Let N = 1. Take an interval B1 of length b1 from the

center of [0, 1] leaving intervals on the left, Al' and

2 .
on the right, A,, of [0, 1] each of length a,. Take

. k
i 2
intervals {Bk+1}i-1 each of length bk+l from the center of

i 2k

each of the Zk intervals {Ak}i_1 of length ay leaving 2k+1

. k+1
i 2
intervals {Ak+1}i-1 of length Ayl Then E, the symmetric

2t
A

set, is the intersection of the sets En - Ui-l n°

The lower bound for the packing measure that is a
nmultiple of the Hausdorff measure is given in the following
theorem. In this theorem, y®(E) will denote the Hausdorff
measure and (a - p)(E) will denote the packing measure,
where o is the dimension.

Theorem 1: Let E be a symmetric set. If the Hausdorff
dimension of E is equal to the packing dimension of E and
if TTEn*. (a ,173,) < (1/2), then

(e = P)(E) > [1 + BI®*(E) where 8 = lim ,, (b  ,/a.).
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An upper bound for the packing measure of a
symmetric set E can also be found in relation to the

Hausdorff measure of E.

Theorem 2: If E = Un-l En where {En}n_1 are disjoint,

. . [+ 2
if llm’:_’° u [E

st
n=1 9 ¥ (E) < =

° -1
then (a« - p)(E) < ij’n_l a, «% (E)).

n N (x -1, x+1)1/(2r)% > d > o, and if

Symmetric sets with Hausdorff dimension equal to
packing dimension have the following property:
Theorem 3: Let E be a symmetric set on the real line. If
the Hausdorff dimension of E is equal to the packing
dimension of E, then E is porous.

However, their are a class of symmetric sets which are
porous and have Hausdorff dimension strictly less then

their packing dimension.
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