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 SYMMETRIC DERIVATIVES AND
 SYMMETRIC INTEGRALS *

 In this talk I will speak about several .symmetric derivatives, their re-
 lated integrals, and the problem in trigonometric series which has motivated
 their study. In particular I wish to report on some work done jointly with
 David Preiss on the approximate symmetric integral that will appear in the
 Canadian Mathematics Journal.

 1. Symmetric derivatives. From the family of symmetric derivatives we
 consider the following variants:

 • (ordinary symmetric derivative)

 SD/(*) = /1- lim/(* >0 + A)-/(l-A). ztl /1- >0 ztl

 • (second order symmetric derivative)

 SD2F(x) v ' = lim Fix + h) + F(* 2 -h)-2F(x ) v ' = h^o h 2

 • (symmetric Borei derivative)

 SBDF(x) K ' = h-^oh lim I Jo jh F(x + t)~ 2 1 F(x -t) dt K ' h-^oh Jo 2 1

 • (symmetric Cesaro derivative)

 SCDF(x) = lim ¿ F(t)dt ~ F(t)dt}
 "This article represents, more or less, the contents of a talk given at the Thirteenth

 Real Analysis Symposium at Michigan State University on June 16, 1989.
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 • (approximate symmetric derivative)

 .„T-w/ v Fix + h) - F(x - h)
 ASD/(x) .„T-w/ v = ap-hm

 h-+0 ¿h,

 The symmetric derivative itself is pretty well known by now. I recently
 came across an elementary calculus text that introduced it before introducing
 the ordinary derivative. It was presented as a possible method of computing
 tangents. Several examples were computed ending with the computation
 of a "tangent" to the curve y - 'x' at the point (0,0); since the symmetric
 derivative obliges with a tangent at a point at which, according to the author
 no tangent should exist, the symmetric derivative was dismissed and did
 not reappear in the text. Of course for us this "failure" of the symmetric
 derivative (it exists when a derivative should not) is an asset, not a liability.
 These symmetric derivatives, while they might be motivated purely as

 technical generalizations of the derivative, and adding to our understanding
 of the structure of real functions, are most clearly exhibited as flowing from
 the expression

 /(*) = '[f(x + 0 + /(* - 0] + 'if(x + 0 - f(x - 01

 which defines the even and the odd parts of the function / at the point x.
 The derivative of the odd part of / at t = 0 is exactly the symmetric

 derivative SD f(x) of the function / at the point x as expressed above. Dif-
 ferentiability of the even part of / at t = 0 is easily checked to be equivalent
 to the requirement that

 ļim f(x + t) + f(x-t)-2f(x) = 0
 o t

 which condition is usually called the smoothness of the function / at the
 point x. This notion was first considered by Riemann in his famous memoir
 on trigonometric series which is where the second symmetric derivative was
 first introduced and used.

 The connection of these ideas with trigonometric series is by now well
 known. If

 oo

 ao/2 + ^2 ak cos kx + fefc sin kx
 k= o
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 is the Fourier series of a function / then the convergence behaviour or the
 summability behaviour of the series at a point x or of the differentiated
 series (differentiated an even number of times) depends on properties of the
 function

 * -► ' [ f(x + 0 + f(x - 0 - 2/(x)l
 near the point t - 0, that is to say on properties of the even part of / at x.
 For a well known example a theorem of Dini asserts that the Fourier series
 of a function / converges at a point x to the sum f(x) provided that the
 integral

 r I f(x + 0 + fix - 0 - 2/(g)| dt Jo t
 is finite.

 In a similar way the behaviour of the conjugate Fourier series for / or of
 the differentiated series (differentiated an odd number of times) depends on
 the odd part of / at z, that is depends on properties of the function

 ^[/(*+0-/(3-0]
 near the point t = 0. Again, for example, the result analogous to that of
 Dini cited above has been given by Pringsheim and asserts that the conjugate
 Fourier series of a function / converges at a point x to the sum f(x) provided
 that the integral

 r I f(x + t) - f(x - Qi dt Jo t
 is finite.

 2. Symmetric integrals. By a symmetric integral we mean an integral
 obtained from some kind of symmetric derivation process. We can give a
 brief summary of the kinds of integrals that have so far been introduced in
 this manner. If we ask first for a symmetric integral based on the ordinary
 symmetric derivative there are not too many instances. Certainly a Perron
 approach could be based on any of the following monotonicity theorems for
 the symmetric derivative: Khintchine (1927), Mukhopadyay (1966), Pu and
 Pu (1973), Kundu (1974), Weil (1976), Evans (1978), Larson (1983) and
 Freiling (1989). As far as I can tell there have been no Perron type integrals
 proposed based on the first order symmetric derivative. Such an integral
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 would invert the symmetric derivatives of continuous functions and might
 be found useful in the study of trigonometric series. There are other ap-
 proaches that have been used however. Denjoy (1955) indicated a symmetric
 totalization process for the inversion of symmetric derivatives of continuous
 functions. A symmetric integral as a limit of Riemanns sums has been also
 sketched in Henstock (1968) and in Kurzweil and Jarník (1987) although
 without much detail in either case. In this talk I would like to present an al-
 ternative to these last two integration procedures by basing such an integral
 on a different covering lemma than was used in those papers. This material
 has not appeared elsewhere and is intended largely as an introduction to the
 approximate symmetric integral.

 There have been a number of symmetric integrals based, directly or in-
 directly, on the second order symmetric derivative. For a Perron approach
 see James (1951) and (1955), Marcinkiewicz and Zygmund (1936), Burkill
 (1951), and S. J. Taylor (1955). The James integral is directly based on the
 second order symmetric derivative and focuses on the problem of recover-
 ing (up to a linear function) a function G given its second order derivative
 SD2G(x) everywhere. This is rather well known since it is the integral that
 Zygmund chose to present in his treatise on trigonometric series with regard
 to the coefficient problem. Zygmund's own solution ofthat problem appeared
 much earlier in the paper of Marcinkiewicz and Zygmund just mentioned; al-
 though this is a "first order integral" and is based on the symmetric Borei
 derivative it can be considered to belong really to the second order symmet-
 ric derivative. The same can be said for the Burkill integral, based on the
 symmetric Cesaro derivative. Denjoy (1941) solved the same problem by a
 second order symmetric totalization process.

 Finally let us mention those symmetric integrals that are based on the
 approximate symmetric derivative. Certainly for a Perron approach what is
 needed is any monotonicity theorem for the approximate symmetric deriva-
 tive. The first try for such an integral is in Kubota (1971). This is un-
 fortunately restricted by two difficulties: the monotonicity theorem used re-
 quired approximately continuous functions and so restricted the applicability
 of the integral (in particular it does not help solve the coefficient problem for
 trigonometric series), and the proof of the monotonicity theorem itself was
 in error (see the review of H. Burkill MR47#2010). The other proofs of this
 monotonicity theorem (Mukhopadyay (1966) and Kundu (1973)) suffer from
 the same defect. Fortunately in Freiling and Rinne (1989) we have an appar-
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 ently correct proof of this difficult theorem and so Kubota's Perron integral
 can be justified and developed in greater generality. Finally we indicate here
 that an approximate symmetric integral can be produced as a limit of Rie-
 mann sums (this will appear in the paper of Preiss and Thomson mentioned
 earlier).

 3, Coefficient problem for trigonometric series. The following problem
 is the main motivation for the study of symmetric integrals and was certainly
 the primary motivation for our work on the approximate symmetric integral.
 Let the series

 oo

 a0/2 + ^2 ak cos kx + bk sin kx
 k= o

 converge everywhere to a function f(x). Then these observations can be
 made:

 • the coefficients are unique.

 • if / is Lebesgue integrable then the series is necessarily the Fourier
 series for /.

 • / need not be Lebesgue or even Denjoy- Perron integrable.

 The problem then is "how may the coefficients an, 6n be determined from
 /"? Is there a more general integration procedure for which the series is a
 Fourier series for /? The problem can be varied by allowing an exceptional
 set of divergence or by replacing ordinary convergence by a summability
 method (in which case some growth condition on the coefficients needs to be
 placed to obtain uniqueness).

 The remarks which follow are well known in the study of trigonometric
 series and illuminate the problem.
 (1) Suppose that {òn} is a sequence of real numbers decreasing to 0 but
 with ££=1 W» = oo. Then the trigonometric series SfcLi sin converges
 everywhere to a finite value f(x), f is not integrable in the senses of Riemann,
 Lebesgue or Perron. However the integrated series

 ~ -bk cos kx
 F(x) = 2 l,

 k= i K

 converges everywhere except at 0, ±27t, . . . and SDF(i) = f(x) everywhere.
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 (2) Let the trigonometric series

 oo

 clq/ 2 + ^ ak cos kx + bk sin kx
 k= o

 have coefficients satisfying the condition Y.k=i k'ļdk2 + bk2 = °{n) as n - » oo.
 Then the formally integrated series

 oo

 F(x) = xa0/ 2 + cos kx - ak sin kx)/k
 k- o

 converges everywhere to a continuous function F(a?) and SDF(z) = /(#) at
 every point x at which the series converges.
 (3) Let the trigonometric series

 oo

 f(x) = do/2 + ^2 ak cos kx + sin kx
 k=o

 converge everywhere. Then the twice formally integrated series

 v o ,a ak cos kx + 6* sin kx
 G{x) v = x¿a0/± o ,a -

 converges everywhere to a continuous function G(x) and the second symmet-
 ric derivative of G recovers /, SD 2F(x) = f(x).
 (4) Let the trigonometric series

 oo

 f(x) = a0/2 + ak cos kx + 6*. sin kx
 k- o

 converge everywhere. Then the formally integrated series

 oo

 F(x) - xa0/ 2 + cos kx - sin kx)/k
 k= o

 converges almost everywhere and

 SBD F(x) = SCD F(x) = ASDF(x) = f(x)

 everywhere.
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 From these remarks it is clear that the coefficient problem is intimately
 related to the various symmetric derivatives and that the corresponding sym-
 metric integrals should provide some means of solving the problem. The re-
 marks (3) and (4) are directly the observations that lead to the solution of the
 coefficient problem due to Denjoy, Marcinkiewicz and Zygmund, James and
 Burkill. It should be noted though that (3) directly provides (4) for the sym-
 metric Cesaro derivative, and nearly directly for the symmetric Borei deriva-
 tive. The statement for the approximate symmetric derivative is somewhat
 deeper.

 4. Covering lemmas. A Riemann type integral based on the symmetric
 derivative is alluded to in Henstock (1968) and sketched out in Kurzweil and
 Jarník (1987). In their approach a function / defined on an interval [a, 6] is
 said to have a symmetric integral with

 c - i f(x)dx
 Ja

 provided that for every e > 0 there is a positive function 8 defined on [a, 6]
 with the property that for any finite sequence

 a = x0 < xi < . . . < xn_i < xn - b

 with the properties X' - x0 < 8(a), xn - xn_i < 8(b) , and for k = 2, 3, ... n - 1,

 * ç ( Xk -1- '
 xk ~ xk- 1 < * ç ( 2 ) >

 the expression

 f{a)(xl - *o) + J2f (Xfc +2Xfc l) ( Xk - 3fc-l) + f{b){Xn - 3n-l)

 differs from c by no more than e. Of course the justification required for the
 integral is that for every such function 8 partitions of this type exist.

 Let us place this in a more useful geometric language, since the symmetric
 derivative can be characterized in terms of the geometry of symmetric covers.
 By a symmetric cover is meant a collection ß of closed intervals with the
 property that for every x there is a £(®) > 0 so that

 [x - h, X + h' £ ß
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 for every 0 < h < 6(x). Then the covering lemma that justifies the above
 integral is the following, attributable to McGrotty (1962).

 Lemma 1 If ß is a symmetric cover then for every x there is a denumerable
 set Cx C ( x , oc) so that ß contains a partition of [x - w,x + w] for every
 X + w i Cx.

 The key covering lemma that permits a more general Riemann type inte-
 gral to be defined relative to the concept of symmetric covers has appeared
 in a note of Preiss and Thomson in this Exchange (1988).

 Lemma 2 Let ß be a symmetric cover. Then there is a co-countable set B
 so that ß contains a partition of every interval whose endpoints belong to B.

 Since there are exceptional countable sets that need to be handled at
 every turn it is natural to introduce a countable exceptional set into the
 notion of symmetric covers in a simple manner: by a near-symmetric cover
 is meant a collection ß of closed intervals with the property that for some
 countable set C and every x there is a £(z) > 0 so that [x - h,x + h' G ß
 for every 0 < h < 6(x) provided that both x - h and x + h belong to R ' C.
 Again one can prove the following extension.

 Lemma 3 Let ß be a near-symmetric cover. Then there is a co-countable
 set B so that ß contains a partition of every interval whose endpoints belong
 to B.

 It should be noted that in the definition of a near-symmetric cover a
 single exceptional countable set is permitted, not a different countable set
 at each point. We might have tried: a co- countable-symmetric cover is a
 collection ß of closed intervals with the property that for every x there is a
 some countable set Cx C (0,oo) and a i(x) > 0 so that [x - h,x + h' G ß
 for every 0 < h < 6(x) with h £ Cx. If we had tried to adopt the latter the
 proof of lemma 2 would not have succeeded. Indeed Sierpiński (1936) gives
 an example (under CH) of a non-measurable function / for which

 {y ■ f(x + y) + f{x - y)}

 is countable for each x. (On the other hand Professor C. Freiling has recently
 shown that, under the negation of CH, such a covering lemma would be
 available.)
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 For the same reason an exceptional density zero set cannot be used either!
 We might have tried: an approximate-symmetric cover is a collection ß of
 closed intervals with the property that for every x G Ä" there is a measurable
 set Ax of density 1 at 0 so that [x - /1, x + h] G ß for every h G Ax. Again
 there would be no suitable covering lemma. To gain an acceptable covering
 lemma on which an approximate symmetric integral can be based we need
 the following.

 A collection ß is said to be a measurable approximate symmetric cover if
 there is a measurable set T C R x (0, oo) such that [x - t,x + t' G ß whenever
 (x,t) G T, and for every x

 lim sup |{i G (0,/i); (x,t) 0 T}'/h = 0.
 h'0

 Then we can prove the covering lemma that justifies an approximate
 symmetric integral. This lies very much deeper than the preceding lemmas
 (as the measurability assumption alone might suggest).

 Lemma 4 Let ß be a measurable approximate symmetric cover. Then there
 is a set B of full measure so that ß contains a partition of every interval
 whose endpoints belong to B.

 5. The symmetric integral. Now we can present symmetric integrals
 based on these covering lemmas. The integral defined at the beginning of
 the previous section is not truly a "symmetric" integral, but rather some
 kind of a hybrid since it uses special conditions at the endpoints. We restrict
 ourselves to 27r-periodic functions as the presentation is simplest in this case.

 Definition 5 Let / be a 27r-periodic function. We say that / has a sym-
 metric integral if there is a number c such that for every e > 0 there is
 symmetric cover ß such that, for any partition

 x0 < Xi < . . . < zn_i < xn = x0 + 2tv

 that has all [xi_iJxi] G /3,

 Ž (Xi ~ - c < e-
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 Because such partitions exist this number c, if it exists, is unique and we
 may write it as /027r f(x) dx. More generally we also have a near-symmetric in-
 tegral by using the near-symmetric covers instead, and an approximate sym-
 metric integral by using measurable approximate symmetric covers. These
 integrals are in order of increasing generality.

 6. Properties of the symmetric integrals. The following properties
 summarize some of the results that can be established for the symmetric
 integrals.

 • Let / be a 27r-periodic function that is integrable in either the Riemann,
 Lebesgue or Perron senses. Then / has a symmetric integral and

 ř 27T

 / f(x)dx
 Jo

 has the same value in any of these senses.
 • The symmetric integrals are incompatible with the integrals of James,

 Burkill and Marcinkiewicz-Zygmund. (One can exist when the other fails to
 exist and the values can differ even when both exist.)

 • Let / be a 27r-periodic function with the property that SD F(x) = f(x)
 nearly everywhere for some symmetrically continuous function F . Then /
 has a symmetric integral and

 [ f(x)dx = F(t + 2ir) - F(t)
 Jo

 for nearly every t. If ASD F(x) - f(x) nearly everywhere for some mea-
 surable, approximately symmetrically continuous function F then / has an
 approximate symmetric integral and

 [ f(x)dx = F(t + 2ir) - F(t)
 Jo

 for almost every t.
 • If a 27T-periodic function has a symmetric, near-symmetric or approx-

 imate symmetric integral then it is necessarily measurable.
 • If a 27T-periodic function has a symmetric, near-symmetric or approx-

 imate symmetric integral and is nonegative then it must be Lebesgue inte-
 grable.

 • Let / be a 27r-periodic function. Then / has a near-symmetric integral
 if and only if there is a co-countable set B and a function F defined on B
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 so that for every e > 0 there is a near-symmetric cover ß that contains a
 partition of every interval with endpoints in B and such that for every 7 C ß
 where 7 is a finite collection of non-overlapping intervals

 Y, F(z ) - F(y ) - f (z~y) < e-
 (V.*]€7 V ¿ '

 In this case 2
 / 2 * f(x)dx = F(6 + 2tt)- F{b)

 Jo

 for all 6 £ B .

 • Let / be a 27r-periodic function. Then / has a near-symmetric integral
 if and only if there exists a function F defined on a co-countable set B such
 that

 (i) F is near-symmetrically ACG<, and
 (ii) D bF(x) = f(x) almost everywhere.
 In that case / has a near-symmetric integral and

 f f(x)dx = F(t + 2ir) - F(t)
 Jo

 for nearly every t.
 In this last statement we say that a function F defined on a co-countable

 set is near-symmetrically ACG. if for every set Z of measure zero and every
 e > 0 there is a near-symmetric cover ß of the set Z such that

 ¿ |F(y¿) - F(xi) I < e
 i - 1

 for every sequence {[xi,yi]} C ß of non-overlapping intervals. It is not trans-
 parent that a function that is ACG. in the usual sense is ACG. in this
 sense but it can be shown as part of the usual development of the Henstock-
 Kurzweil integral.

 A similar version for the approximate symmetric integral is available. For
 further details on this integral including an integration by parts formula and
 a Perron-type integral the paper of Preiss and Thomson must be consulted.

 7. Trigonometric series. The symmetric integrals provide a solution to
 the coefficient problem in trigonometric series. The following can be proved:
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 Let the series
 oo

 ao/2 + ^2 ak cos kx + òfc sin kx
 k=o

 converge nearly everywhere to a function f(x). Then / has an approximate
 symmetric integral and the series is a Fourier series for / (relative to this
 integral). If

 1. an - 0 and bn ' 0, or if

 2. the series has coefficients satisfying the condition

 n

 y: ky ūk2 + ó*.2 = o(n) as n - > oo
 k= i

 then the function / has a symmetric integral and the series is a Fourier series
 in this narrower sense.
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