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 ON GENERATORS FOR BOREL SETS

 Let Jb be a collection of subsets of X. The smallest o- algebra on X

 containing Jb will be denoted by <r(Jb); Jb is called a generating family (or

 generator) for 6 if o r(j>) = B. Jb is said to separate two points x,y e X if

 there is a set G € Jb which contains one of them but not the other. Jb is

 said to be a separating family if it separates any two distinct points of X.

 The terminology and definitions concerning topology come from the book,

 "General Topology", by R. Engelking [1]. A topological space X is called:

 - a locally compact space if for each x € X there exists a

 neighborhood U of x such that U is a compact subspace of X,

 - a perfectly normal space if X is a normal space and each closed

 subset of X is a G-y-set.
 Compact (and a-compact) spaces are assumed to be Ta. A set in a linear

 space E is convex if, whenever it contains points x and y, it also

 contains the line segment joining x and y, i.e. the set

 {tx + (l-t)y : t € [0,1]}. If X is a topological space, then the natural Borei

 structure on X (generated by the family of all open subsets of X) will be

 denoted by Bx» « stands for the first infinite ordinal; fl, for the first
 uncountable ordinal.

 K.P.S. Bhaskara Rao and B.V. Rao in [4, p. 19] have stated:

 "The family J of all open intervals of IR is a generator

 for Br. A subfamily ?0 c ^ is a generator for Br iff the

 set of end points of intervals in J0 is dense in IR. Thus if

 c ? is a generator for B|{, then, by removing any finite

 set of 0 intervals from ?0, we still get a generator for

 Br".

 However, this statement is false, as is easily seen from examples 1 and 2

 below.

 In the first place we shall prove:
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 LEMMA 1. Let B be a a-algebra of subsets of X. If a family A c B is

 a generator for B and B separate points x,y e X, then ¿ also separates

 these points; that is, there is a G € ¿ such that x e G and y i G or
 X i G and y € G.

 PROOF: Suppose that ¿ does not separate x from y. So for each

 G e £, x € G and y € G or x i G and y i G. The family of all subsets

 of X satisfying the above condition forms a a-algebra containing a (A) = B.

 So for any A € B x e A and y e A or x i A and y i A, which ends

 the proof.

 It follows from Lemma 1 that if the family ?0 c 1 is a generator for Eļp,

 then the set of end points of intervals in 70 is dense in IR. (The

 supposition that there exists a nonempty open set U which contains no end

 point of any interval in implies that the family J0 does not separate

 any pair of points of U). However, the fact that the set of end points of

 intervals in ?0 is dense in F does not imply that <r(70) = B.

 EXAMPLE 1: Let Q+ be the set of all positive rational numbers. Let

 = {(- w,w) : w e Q+}. The family c ? is not a generator for Br,

 because it does not separate x and -x. The set of end points of intervals

 in forms the set of rational numbers (without zero).

 EXAMPLE 2: We shall construct a subfamily of J which is not a

 generator for Br and both the set of left end points of intervals in this

 family and the set of right end points are dense in R.

 Let {w,,w2,w3,...} be the sequence of all rational numbers. We construct

 a family of neighborhoods of wjç as follows:

 *k 1 (K - • wk + : J 4 **)

 for k € N. The measure of the set

 ü?k = ¿i [wk " • w" +

 (wk ~ Jt+Î ' wk + ^k+ī)
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 is equal to - r . Let
 2

 CD

 J = U ?k={l€?:l€?k for some k e N} .
 2 k=l

 The set UJ2 has measure less than or equal to 1 and no proper subset of

 the set R - U?3 belongs to <r(i2 ). Therefore a(Ja) t Moreover both

 left and right end points of intervals in ?2 lie arbitrarily close to any
 rational number. Hence these sets are dense in R.

 If we know only the set of end points of intervals in a family ?0 c ?»

 we are not able to ascertain that <r(?0) = B|). There exist two families

 contained in J which have the same sets of right end points and left end

 points of intervals, and one of them is a generator for % but the second is
 not.

 EXAMPLE 3: Let Q+ be the set of all positive rational numbers

 *3 = {(-w,w) : w c Q+} u {(0,1), (-1,0)} ,
 = {(0,w) : w c Q+) u {(-w,0) : w c Q+) .

 The left end points of intervals in J3 and ?4 form the set of nonpositive

 rational numbers; the right end points, the set of nonnegative rational

 numbers. Moreover <r(?3) t Br (see Example 1), but <r(?4) = Br.

 Next, we shall formulate a necessary and sufficient condition that a

 subfamily of 1 generates a a-algebra B^. We shall first prove Theorem 1.

 THEOREM 1: Let X be a topological space such that any open or closed

 subset in this space is <r-compact. If J is an arbitrary v-algebra in X and

 ? admits the property:

 ^ for any x e X and y € X, x t y, there is Le? such
 that x € Int L and y i L ,

 then ? contains the Borei algebra Bx>

 Proof: For any x / y, x,y € X there exist disjoint sets A,B € ? with

 x e Int A and y € Int B. (From condition (*) it follows that there is

 Lx € J such that x e Int Lx, y i Lx and Ly € ? such that y c Int Ly,
 x / Ly* Put A - Lx, B - Ly Lx.)
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 We shall show that for any disjoint, compact sets Kt, Ka there exist sets

 Flf F2 e ? such that Kj c Fx, Ka c Fa, F, n Fa : 0.

 Let y e Ka. For all pairs (x,y), x € Kx there are sets A(x), B(y,x)

 with x € Int A(x), y € Int B(y,x) and A(x) n B(y,x) = 0. The collection

 {Int A(x) : x e K|} is an open cover of the set Kx. Therefore it has a finite

 subcover {Int A(xj) : j = l,...,n}. The sets
 * n n

 A (y) = U A(x .) , B(y) = Í1 B(y,x.)
 j=l J j=l J

 are disjoint and belong to and

 y € Int B(y) , Kļ c Int A*(y) .

 Now let y run through Ka and select a finite subcover from

 {B(y) : y e Ka}. We can define

 m m .

 F = U B(y ) , F = il A (y ) .
 j=l J j=l J

 To complete the proof of Theorem 1 we shall show that each open set in X

 belongs to Suppose we are given an open set G

 aa co

 G = U K , 9 X ' N G = U L , n , 9 N , m
 n~l , m=l ,

 where Kn, Lm are compact sets. For any pair Kn, Lm there are sets F^,m,
 Fg'111 € ? separating Kn, Lm and

 K c n F?,m e G .
 n ,1

 m=l

 <X> 00

 Then G = U il F?,in e
 n=l m=l

 COROLLARY: If in theorem 1, ? c Bx, then ? = Bx if and only if J

 admits the property (*).

 REMARK: If X is a locally compact, ^-compact and perfectly normal

 topological space, then any open or closed subset in X is a-compact.

 Obviously if a family ¿ c Bx admits the property

 197



 for any distinct points x,y € X, there exists G € £ such that
 ^ X € Int G and y / G or x i G and y € Int G,

 then cr(Jb) - Bx« Unfortunately this condition is not necessary. The family of
 all open intervals in R having zero as one end point does not satisfy

 condition (*') (Zero belongs to the closure of any interval in this family.) but

 it generates Bfc (because it satisfies condition (*)). On the other hand the
 condition

 for any x,y € X, x ¿ y, there exists G € ¿ such that

 **** x e G and y i G or x i G and y e G

 (without operations of interior and closure) is not sufficient. The family of all

 one-point sets in R satisfies (**) and does not generate However, the

 following theorem holds for R:

 THEOREM 2: Let 70 be a family of open intervals in R. J0 is a

 generator of Bfc if and only if it satisfies the condition:

 for any distinct points x,y € R, there exists I ( 70

 that x € I and y i I or x i I and y c I .

 Proof: The essential part of the proof is Lemma 2:

 LEMMA 2: If a family ?0 consisting of open intervals satisfies condition

 (**), then for any disjoint compact intervals A, B there exist disjoint sets

 Fa» Fß € °(?o) such that A c and B c Fß.

 Proof of Lemma 2: Let A, B be as stated. We may clearly assume that

 A lies to the left of B (i.e. x < y for any x € A, y e B). Let us

 consider points a = sup A and b = inf B. Since the family ?0 satisfies

 (**), there is a set F e such that a c F and b i F or a i F and

 b € F. In the first case F n B = 0; in the second, F n A = (since F is

 an interval).

 We shall construct two countable families ¿a» *B of sets belonging to

 <r(?o) with

 A c U £A , B c ^ , (U £A) n (U ¿g) = 0 .
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 We shall construct two transfinite sequences (r } {F 1 } of dis- ora<fl' 1 eroc<ň

 joint sets belonging to <r(? 0) which have the following properties:

 1" F* n B = 0, 9 F® n A = 0 oc 9 a

 2* A = A - U and B = B - U F? are subintervals in A and B
 ß<« ß « P<a ß

 3* (A f 0 or B f 0) <-> (F^ f <t> or F® f 0) for each 0 < a < fl.
 OC oc

 Let a = 0. If FnB=0, then we put F^ = F and F® = 0. If F n A =
 O o

 0, then F^ = 0 and F® = F.
 o o

 Let a be a fixed ordinal number less than 0 and suppose that we have

 sets F^, F? with the required properties for each ß < «.
 P P

 Let us consider the sets A = A ' U F^ and B = B - U F? . « ß <* ß
 ß<<x ß<a

 There are subintervals in A and B (as intersections of intervals).

 1. If A« = 0 and B« = 0, then we put F^ = 0 and F^ = <t>

 2a. If A« = 0 and Ba i- 0, then F^ a = 0, F® 01 = R - U (F^ p u F*ļ) p a 01 ß<a p p
 b. If A« f 0 and B« = 0, then FA=F- U (f1 u F*!), F® = 0

 ß<« ß ß
 3. If A«, / 0 and Ba f 0, let a« = sup Aa and ba = sup B«.

 Then a« < ba.

 Since the family ?0 satisfies (##), there is a set F € J0 with a« € F and

 ba € F or aa i F and b« e F. Suppose that a« € F and ba i F. We put

 F® = 0 and F^=F- U (F^u F?) . The set F^ contains the nonempty
 ß«x ß ß

 interval F n A«; so FA f 0. Moreover FA n B <= (FA n u F?) u (FA n B ) = a oc a ß a a
 ß<a

 F^nB c F n B =0. If a« ¿ F and ba € F, then we analogously define
 OC OC oc

 FA=0 and F® = F - U (F^ u F*¡).
 ß«x ß ß

 Both of the sequences are> from a certain ß < Q,

 equal to 0. Suppose it is not. Then there is an uncountable descended

 sequence of subintervals A« (B«) in the interval A (or B), which gives a

 contradiction.
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 The families we are looking for are the families

 £A = {F£ : « < n, t 0}, = {FJ : « < 0, F¡¡ f *}

 Let us return to the proof of Theorem 2.

 For any distinct points x,y c R there exist compact intervals A, B with

 X e Int A, y e Int B and A n B = <t>. Thus (by Lemma 2) there is a set

 Fa € <r(J0) which contains A, and F a n B = tf. From Theorem 1 it follows
 that condition (**) is sufficient.

 The necessity of condition (**) follows from Lemma 1.

 Theorem 2 gives a necessary and sufficient condition which is convenient

 to use but it concerns families of open intervals in R. Examples 4 and 5

 show that it is difficult to generalize this to other families and other spaces.

 EXAMPLE 4: The family Ki = {R - {x} : x e R) satisfies the condition

 for any distinct points x,y e R there exists K c X» such

 ***** that x c K and y i K

 which is stronger than (**)• consists of open sets and generates the

 countable-cocountable structure on R which is essentially smaller than ffe.

 EXAMPLE 5: The family K2 = i(-n,n) * (-n,n)) - (x) : x c Ra, n e N}

 consists of connected, bounded open sets, satisfies condition (***) but does

 not satisfy (*), (cf. Theorem 1) and therefore it is not a generator for Br*.

 Now we shall consider families of convex sets and countable families.

 THEOREM 3: Let X be a locally compact, »-compact and perfectly normal

 linear topological space. If a family ¿ c 8x of open convex sets satisfies the
 condition:

 for any distinct points x,y e X, there exists G c it) such

 that x e Q and y / G,

 then <r(£) = Bx«

 Proof. Suppose we are given distinct points x,y € X. It is enough to

 find a set G € b such that x € G and y i G. Let c be the midpoint of

 the interval joining the points x and y. By (***) there is a set G e Jb

 such that x e G and c i G. This set is convex. If y c G, then the open
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 interval joining x and y is contained in Int G ([3], p. 110). In
 particular c € Int G, which gives a contradiction. Hence y e G. So the

 family A satisfies condition (*) from Theorem 1, which completes the proof.

 Theorem 3 concerns locally compact and »-compact linear topological spaces
 and hence finite dimensional spaces. (See [3], p. 62.) It is difficult to

 generalize this to infinite dimensional linear topological spaces.

 EXAMPLE 6: Let B be the space of all bounded functions f : F -» F with

 the metric p(f,g) = sup{|f(x) - g(x) | : x c F}. Let A = {f t B : f(x) €

 (a ~ » a + n)} : x € a € F, ncN}.
 The family ¿ consists of open convex sets. Suppose that A e »(A).

 There exists ([2], p. 24, Theorem D) a countable subclass 0 of ¿ such that

 A c So for uncountable many y € F {f(y) : f c A} = F. Thus <r(Jb)

 does not contain {f c B : |f(x)| < 1).

 THEOREM 4: Let X be a topological space and let H - {Hn : n e N) be

 a countable family of compact subsets of X. If the family M satisfies the

 condition:

 for any distinct points x,y c X there is n c N such that

 (***) x € jjn an<j y ¿ ļjn>

 then <r(ì t) = Bx.

 Proof: Let M* be the collection of all finite intersections of sets from

 M. It is clear that is countable and closed under finite intersections. We

 shall show that M* is a pseudo-basis in X; i.e. for any V c top X and
 x c V, there is a set H c M* such that H c V.

 Suppose we are given V € top X, x € V. From condition (♦*♦) it follows

 that {x} = n {H c M : x c H} = n {F c Jt* : x e F}. There exists a decreasing
 00

 sequence i^n)n€|yj sets of M * with {x} = ii Fļ. It is enough to show
 i=l

 that there is a positive integer n such that Fn c V. Suppose it is not so.

 Then Fn - V / 0 for each n € N. Each set Fn - V being a closed subset of

 the compact set is a compact set. The sequence {Fn - is a de-
 00

 creasing sequence of compact sets. Thus n (F¿ - V) f <t>. However
 i=l
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 00 00

 n (f. - v) = ( n f.) - v = {x} - v = <t> .
 i=i 1 i=i 1

 This contradiction proves that is a pseudo-basis in X.

 Each open set U in X can be represented as a union of sets from the

 countable family X*. So U € Therefore Bx = = a(H).

 THEOREM 5: Let X be a topological space and let tl = {Un : n e N) be a

 countable family of open, relatively compact sets. If the family U satisfies

 the condition:

 for any distinct points x,y c X there is n e N such that

 (***) ^ ^ ^ ^ ^
 then <r(u) = Bx«

 Proof: Let Hn = X - Un for each n c N. For each x e X, {x} =

 n {Hn : x e Hn}. By our assumption there is a k e N such that x e Uķ.

 Let A = Uķ. The family {Hn n A : n c N} satisfies the assumptions of

 Theorem 4. Let W be a neighborhood of x. W n Uķ is a neighborhood of

 x also. From the proof of Theorem 4 it follows that there exists a set F,

 F c W belonging to the algebra generated by {Hn n A : n € N} or

 equivalently there is a set H, H n A c W, belonging to the algebra generated

 by {Hn : n e N}. (See [2], p. 25.)

 That is why H n Ufc c H n A c W and H n Uķ belongs to the algebra

 generated by {Un : n e N}. This algebra is countable ([2], p. 23). Thus as

 in the proof of Theorem 4, Bx = ^({Un : n e N}).

 Lemma 1 and Theorems 1-5 prove that there is an essential relationship

 between separating fmailies and «--algebras of Borei sets. The a-algebra Bx

 is the smallest <r- algebra which satisfies one of conditions (*), (**) or (***).

 The following questions remain open:

 1. May we replace condition (##*) by condition (**) in Theorems 3, 4 and

 5 and in this way formulate a necessary and sufficient condition?

 2. Can we find a countably generated, separating a-algebra which is

 contained in the a-algebra Br (and not equal to br)?
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