Małgorzata Filipczak, Institute of Mathematics, University of Łódź, tódź, Poland

ON GENERATORS FOR BOREL SETS

Let ϕ be a collection of subsets of X. The smallest σ -algebra on X containing ϕ will be denoted by $\sigma(\phi)$; ϕ is called a generating family (or generator) for β if $\sigma(\phi) = \beta$. ϕ is said to separate two points $x,y \in X$ if there is a set $G \in \mathcal{B}$ which contains one of them but not the other. \mathcal{B} is said to be a separating family if it separates any two distinct points of X.

 The terminology and definitions concerning topology come from the book, "General Topology", by R. Engelking [1]. A topological space X is called:

- a locally compact space if for each $x \in X$ there exists a neighborhood U of x such that \overline{U} is a compact subspace of X,
- a perfectly normal space if X is a normal space and each closed subset of X is a G_{γ} -set.

Compact (and σ -compact) spaces are assumed to be T_2 . A set in a linear space E is convex if, whenever it contains points x and y, it also contains the line segment joining x and y, i.e. the set $\{tx + (1-t)y : t \in [0,1]\}.$ If X is a topological space, then the natural Borel structure on X (generated by the family of all open subsets of X) will be denoted by Bx , ω stands for the first infinite ordinal; Ω , for the first uncountable ordinal.

K.P.S. Bhaskara Rao and B.V. Rao in [4, p. 19] have stated:

"The family J of all open intervals of R is a generator for B_R. A subfamily $\mathfrak{Z}_0 \subset \mathfrak{Z}$ is a generator for B_R iff the set of end points of intervals in \bar{J}_0 is dense in R. Thus if \bar{J}_0 \in \bar{J} is a generator for B_{R} , then, by removing any finite set of θ intervals from \vec{J}_0 , we still get a generator for Br".

 However, this statement is false, as is easily seen from examples 1 and 2 below.

In the first place we shall prove:

LEMMA 1. Let B be a σ -algebra of subsets of X. If a family $b \in B$ is a generator for B and B separate points $x,y \in X$, then b also separates these points; that is, there is a $G \in \mathcal{B}$ such that $x \in G$ and $y \notin G$ or $x \neq G$ and $y \in G$.

PROOF: Suppose that ϕ does not separate x from y. So for each $G \in \mathcal{B}$, $x \in G$ and $y \in G$ or $x \notin G$ and $y \notin G$. The family of all subsets of X satisfying the above condition forms a σ -algebra containing $\sigma(\phi) = B$. So for any $A \in B$ $x \in A$ and $y \in A$ or $x \notin A$ and $y \notin A$, which ends the proof.

It follows from Lemma 1 that if the family $\bar{J}_0 \subset \bar{J}$ is a generator for $B_{\mathbb{R}}$, then the set of end points of intervals in \mathcal{F}_0 is dense in R. (The supposition that there exists a nonempty open set U which contains no end point of any interval in \bar{J}_0 implies that the family \bar{J}_0 does not separate any pair of points of U). However, the fact that the set of end points of intervals in \mathfrak{Z}_0 is dense in **R** does not imply that $\sigma(\mathfrak{Z}_0) = \mathfrak{B}$.

EXAMPLE 1: Let Q^+ be the set of all positive rational numbers. Let $\mathfrak{F}_1 = \{(-w, w) : w \in \mathbb{Q}^+\}$. The family $\mathfrak{F}_1 \subset \mathfrak{F}$ is not a generator for B_R, because it does not separate x and $-x$. The set of end points of intervals in J_1 forms the set of rational numbers (without zero).

EXAMPLE 2: We shall construct a subfamily of \mathcal{F} which is not a generator for B_R and both the set of left end points of intervals in this family and the set of right end points are dense in R.

Let ${w_1, w_2, w_3,...}$ be the sequence of all rational numbers. We construct a family \mathcal{F}^k of neighborhoods of w_k as follows:

$$
\mathbf{y}^k = \left\{ \left(w_k - \frac{1}{2^{k+j}} \, , \, w_k + \frac{1}{2^{k+j}} \right) : j \in \mathbb{N} \right\}
$$

for $k \in N$. The measure of the set

$$
u \quad J^{k} = \underset{j=1}{u} \left(w_{k} - \frac{1}{2^{k+j}} \right), \quad w_{k} + \frac{1}{2^{k+j}} \right)
$$

$$
= \left(w_{k} - \frac{1}{2^{k+1}} \right), \quad w_{k} + \frac{1}{2^{k+1}} \right)
$$

is equal to $\frac{1}{\alpha^k}$. Let 2 $\mathbf{F}_2 = \begin{bmatrix} 0 & \mathbf{F}^k \end{bmatrix} = \{ \mathbf{I} \in \mathbf{F} : \mathbf{I} \in \mathbf{F}^k \text{ for some } k \}$ ² k=1

The set UJ_2 has measure less than or equal to 1 and no proper subset of the set \mathbb{R} - $\cup \mathcal{F}_2$ belongs to $\sigma(\mathcal{F}_2)$. Therefore $\sigma(\mathcal{F}_2) \neq \mathbb{S}_R$. Moreover both left and right end points of intervals in J_2 lie arbitrarily close to any rational number. Hence these sets are dense in R.

If we know only the set of end points of intervals in a family $\bar{y}_0 \in \bar{y}$, we are not able to ascertain that $\sigma(\mathcal{F}_0)$ = **B**_R. There exist two families contained in J which have the same sets of right end points and left end points of intervals, and one of them is a generator for B_R but the second is not.

EXAMPLE 3: Let Q^+ be the set of all positive rational numbers

$$
\mathbf{F}_{s} = \{(-w, w) : w \in \mathbf{Q}^{+}\} \cup \{(0, 1), (-1, 0)\},
$$

$$
\mathbf{F}_{s} = \{(0, w) : w \in \mathbf{Q}^{+}\} \cup \{(-w, 0) : w \in \mathbf{Q}^{+}\}.
$$

The left end points of intervals in \bar{J}_3 and \bar{J}_4 form the set of nonpositive rational numbers; the right end points, the set of nonnegative rational numbers. Moreover $\sigma(\bar{J}_3) \neq \bar{B}_R$ (see Example 1), but $\sigma(\bar{J}_4) = \bar{B}_R$.

Next, we shall formulate a necessary and sufficient condition that a subfamily of J generates a σ -algebra $B_{\mathbb{R}}$. We shall first prove Theorem 1.

 THEOREM 1: Let X be a topological space such that any open or closed subset in this space is σ -compact. If \bar{J} is an arbitrary σ -algebra in X and ? admits the property:

(*) for any $x \in X$ and $y \in X$, $x \neq y$, there is $L \in \mathcal{F}$ such that $x \in \text{Int } L$ and $y \notin \overline{L}$,

then J contains the Borel algebra B_X .

Proof: For any $x \neq y$, $x, y \in X$ there exist disjoint sets $A, B \in \mathcal{F}$ with $x \in$ Int A and $y \in$ Int B. (From condition $(*)$ it follows that there is $L_X \in \mathcal{F}$ such that $x \in \text{Int } L_X$, $y \notin \overline{L}_X$ and $L_y \in \mathcal{F}$ such that $y \in \text{Int } L_y$, $x \notin L_y$. Put $A = L_x$, $B = L_y - L_x$.)

We shall show that for any disjoint, compact sets K_1 , K_2 there exist sets F_1 , $F_2 \in \mathcal{F}$ such that $K_1 \subset F_1$, $K_2 \subset F_2$, $F_1 \cap F_2 = \emptyset$.

Let $y \in K_2$. For all pairs (x,y) , $x \in K_1$ there are sets $A(x)$, $B(y,x)$ with $x \in \text{Int } A(x)$, $y \in \text{Int } B(y,x)$ and $A(x) \cap B(y,x) = \emptyset$. The collection {Int A(x) : $x \in K_1$ } is an open cover of the set K_1 . Therefore it has a finite
subcover {Int A(x_j) : j = 1,...,n}. The sets
 $A^*(y) = \begin{pmatrix} n \\ y \end{pmatrix}$ = $\begin{pmatrix} n \\ k(x_j) \end{pmatrix}$, $B(y) = \begin{pmatrix} n \\ n \end{pmatrix}$
 $B(y, x_j)$ subcover $\{Int A(x_j) : j = 1,...,n\}$. The sets

$$
A^*(y) = \int_{j=1}^n A(x_j)
$$
, $B(y) = \int_{j=1}^n B(y, x_j)$

are disjoint and belong to \bar{J} , and

$$
y \in \text{Int } B(y) , \qquad K_i \subset \text{Int } A^*(y) .
$$

Now let y run through K_2 and select a finite subcover from ${B(y) : y \in K_2}.$ We can define

can define
\n
$$
F_2 = \begin{bmatrix} m \\ 0 & B(y_j) \\ j=1 \end{bmatrix}, F_1 = \begin{bmatrix} m \\ n \\ j=1 \end{bmatrix}, F(y_j).
$$

 To complete the proof of Theorem 1 we shall show that each open set in X belongs to \vec{J} . Suppose we are given an open set G
 $G = H \times \frac{1}{2} \times 1 = 1$

$$
G = \begin{array}{c} \infty \\ U \\ n=1 \end{array}, \qquad X \setminus G = \begin{array}{c} \infty \\ U \\ m=1 \end{array}
$$

where K_n , L_m are compact sets. For any pair K_n , L_m there are sets $F^{n,m}_1$,
 $F^{n,m}$, F where K_n , L_m are compact sets. For any pair K_n , L_m there are sets F_1 , $F_2^{n,m} \in \mathcal{F}$ separating K_n , L_m and

$$
K_n \subset \bigcap_{m=1}^{\infty} F_1^{n,m} \subset G.
$$

00 00 Then G = U n $F_1^{n,m}$ ϵ n=l m=l

COROLLARY: If in theorem 1, $\vec{J} \subset B_X$, then $\vec{J} = B_X$ if and only if \vec{J} admits the property (*).

REMARK: If X is a locally compact, σ -compact and perfectly normal topological space, then any open or closed subset in X is σ -compact.

Obviously if a family $\boldsymbol{\mu} \in \mathbb{B}_{X}$ admits the property

for any distinct points $x,y \in X$, there exists $G \in B$ such that $*'$ $x \in$ Int G and $y \notin \overline{G}$ or $x \notin \overline{G}$ and $y \in$ Int G,

then $\sigma(\phi)$ = B_X. Unfortunately this condition is not necessary. The family of all open intervals in R having zero as one end point does not satisfy condition (*') (Zero belongs to the closure of any interval in this family.) but it generates $B_{\mathbb{R}}$ (because it satisfies condition $(*)$). On the other hand the condition

for any $x,y \in X$, $x \neq y$, there exists $G \in \mathcal{F}$ such that $***$ x ϵ G and $y \neq G$ or $x \neq G$ and $y \in G$

 (without operations of interior and closure) is not sufficient. The family of all one-point sets in $\mathbb R$ satisfies $(**)$ and does not generate $B_{\mathbb R}$. However, the following theorem holds for R:

THEOREM 2: Let \vec{J}_0 be a family of open intervals in **R.** \vec{J}_0 is a generator of $B_{\mathbb{R}}$ if and only if it satisfies the condition:

for any distinct points $x,y \in \mathbb{R}$, there exists $I \in \mathcal{F}_0$ $(**)$ that $x \in I$ and $y \notin I$ or $x \notin I$ and $y \in I$.

Proof: The essential part of the proof is Lemma 2:

LEMMA 2: If a family \bar{J}_0 consisting of open intervals satisfies condition (**), then for any disjoint compact intervals A, B there exist disjoint sets F_A , $F_B \in \sigma(\mathcal{F}_0)$ such that $A \subseteq F_A$ and $B \subseteq F_B$.

 Proof of Lemma 2: Let A, B be as stated. We may clearly assume that A lies to the left of B (i.e. $x \le y$ for any $x \in A$, $y \in B$). Let us consider points $a = sup A$ and $b = inf B$. Since the family \bar{J}_0 satisfies (**), there is a set $F \in \mathcal{F}_0$ such that $a \in F$ and $b \neq F$ or $a \neq F$ and b ϵ F. In the first case F \circ B = ϕ ; in the second, F \circ A = ϕ (since F is an interval).

We shall construct two countable families \mathcal{L}_A , \mathcal{L}_B of sets belonging to $\sigma(\mathcal{F}_0)$ with

$$
A \subseteq U \mathcal{L}_A, \quad B \subseteq \mathcal{L}_B, \quad (U \mathcal{L}_A) \cap (U \mathcal{L}_B) = \emptyset.
$$

We shall construct two transfinite sequences $\{F_{\alpha}^{A}\}_{\alpha\leq\Omega}$, $\{F_{\alpha}^{B}\}_{\alpha\leq\Omega}$ of disjoint sets belonging to $\sigma(\bar{J}_0)$ which have the following properties:

1.
$$
F_{\alpha}^{A} \cap B = \emptyset
$$
, $F_{\alpha}^{B} \cap A = \emptyset$
\n2. $A_{\alpha} = A - \bigcup_{\beta \leq \alpha} F_{\beta}^{A}$ and $B_{\alpha} = B - \bigcup_{\beta \leq \alpha} F_{\beta}^{B}$ are subintervals in A and B
\n3. $(A \neq \emptyset \text{ or } B \neq \emptyset) \iff (F_{\alpha}^{A} \neq \emptyset \text{ or } F_{\alpha}^{B} \neq \emptyset)$ for each $0 \leq \alpha \leq 0$.
\nLet $\alpha = 0$. If $F \cap B = \emptyset$, then we put $F_{0}^{A} = F$ and $F_{0}^{B} = \emptyset$. If $F \cap A = \emptyset$, then $F_{0}^{A} = \emptyset$ and $F_{0}^{B} = F$.
\nLet α be a fixed ordinal number less than 0 and suppose that we have

Let α be a fixed ordinal number less than Ω and suppose that we have sets F^A_{β} , F^B_{β} with the required properties for each $\beta < \alpha$.

 F_{β}^{A} , F_{β}^{B} with the required properties for each $\beta < \alpha$.
Let us consider the sets $A_{\alpha} = A \setminus U$ F_{β}^{A} and $B_{\alpha} = B - U F_{\beta}^{B}$.
 $\beta < \alpha$ $\beta < \alpha$ $\beta < \alpha$ $\beta < \beta$. There are subintervals in A and B (as intersections of intervals). 1. If $A_{\alpha} = \emptyset$ and $B_{\alpha} = \emptyset$, then we put $F^{\hat{A}}_{\alpha} = \emptyset$ and $F^{\hat{B}}_{\alpha} = \emptyset$ 2a. If $A_{\alpha} = \emptyset$ and $B_{\alpha} \neq \emptyset$, then $F^A_{\alpha} = \emptyset$, $F^B_{\alpha} = \mathbb{R} - \mathbb{U}$ $(F^A_{\beta} \cup F^B_{\beta})$ b. If $A_{\alpha} \neq \emptyset$ and $B_{\alpha} = \emptyset$, then $F_{\alpha}^{A} = \mathbb{R} - \mathbb{U}$ $(F_{\beta}^{A} \cup F_{\beta}^{B})$, $F_{\alpha}^{B} = \emptyset$ 3. If $A_{\alpha} \neq \emptyset$ and $B_{\alpha} \neq \emptyset$, let $a_{\alpha} = \sup A_{\alpha}$ and $b_{\alpha} = \sup B_{\alpha}$.

Then a_{α} $\langle b_{\alpha}$.

Since the family \mathfrak{Z}_0 satisfies (**), there is a set $F \in \mathfrak{Z}_0$ with $a_{\alpha} \in F$ and $b_{\alpha} \in F$ or $a_{\alpha} \notin F$ and $b_{\alpha} \in F$. Suppose that $a_{\alpha} \in F$ and $b_{\alpha} \notin F$. We put $F^B_\alpha = \phi$ and $F^A_\alpha = F - U$ $(F^A_\beta \cup F^B_\beta)$. The set F^A_α contains the nonempty $\beta < \alpha$ β β $f_{\alpha} = \psi$ and $f_{\alpha} = f - \psi$ ($f_{\beta} \cup f_{\beta}$). The set f_{α} contains the honempty
interval F \cap A $_{\alpha}$; so $F_{\alpha}^{A} \neq \psi$. Moreover $F_{\alpha}^{A} \cap B \subseteq (F_{\alpha}^{A} \cap \bigcup_{\beta < \alpha} F_{\beta}^{B}) \cup (F_{\alpha}^{A} \cap B_{\alpha}) =$
 $f_{\alpha}^{A} \cap B \subseteq B$ an $F^A_\alpha \cap B_\alpha \subset F \cap B_\alpha = \emptyset$. If $a_\alpha \neq F$ and $b_\alpha \in F$, then we analogously define $F^A_\alpha = \emptyset$ and $F^B_\alpha = F - U$ ($F^A_\beta \cup F^B_\beta$). $F_{\alpha}^{A} = \emptyset$ and $F_{\alpha}^{B} = F - U_{\beta} (F_{\beta}^{A} \cup F_{\beta}^{B}).$

Both of the sequences $\{F_{\alpha}^{A}\}_{\alpha\leq\Omega}$, $\{F_{\alpha}^{B}\}_{\alpha\leq\Omega}$ are, from a certain $\beta\leq\Omega$, equal to ϕ . Suppose it is not. Then there is an uncountable descended sequence of subintervals A_{α} (B_{α}) in the interval A (or B), which gives a contradiction.

The families we are looking for are the families

$$
\pounds_A = \{F_{\alpha}^A : \alpha < 0, F_{\alpha}^A \neq \emptyset\}, \qquad \pounds_B = \{F_{\alpha}^B : \alpha < 0, F_{\alpha}^B \neq \emptyset\}
$$

Let us return to the proof of Theorem 2.

For any distinct points $x,y \in \mathbb{R}$ there exist compact intervals A, B with $x \in$ Int A, $y \in$ Int B and A \cap B = ϕ . Thus (by Lemma 2) there is a set $F_A \in \sigma(\mathcal{F}_0)$ which contains A, and $F_A \cap B = \emptyset$. From Theorem 1 it follows that condition (**) is sufficient.

The necessity of condition (**) follows from Lemma 1.

 Theorem 2 gives a necessary and sufficient condition which is convenient to use but it concerns families of open intervals in R. Examples 4 and 5 show that it is difficult to generalize this to other families and other spaces.

EXAMPLE 4: The family $K_1 = {R - {x} : x \in \mathbb{R}}$ satisfies the condition

for any distinct points $x,y \in \mathbb{R}$ there exists $K \in \mathcal{K}_1$ such $***$ that $x \in K$ and $y \notin K$

which is stronger than $(**)$. K_1 consists of open sets and generates the countable-cocountable structure on $\mathbb R$ which is essentially smaller than $\mathbb S_{\mathbb R}$.

EXAMPLE 5: The family $X_2 = \{(-n,n) \times (-n,n)\} - \{x\} : x \in \mathbb{R}^2$, $n \in \mathbb{N}\}$ consists of connected, bounded open sets, satisfies condition (***) but does not satisfy $(*)$, (cf. Theorem 1) and therefore it is not a generator for $B_{\mathbb{R}^2}$.

Now we shall consider families of convex sets and countable families.

THEOREM 3: Let X be a locally compact, σ -compact and perfectly normal linear topological space. If a family $\boldsymbol{\mu} \in \mathbb{B}$ of open convex sets satisfies the condition:

for any distinct points $x,y \in X$, there exists $G \in \mathcal{L}$ such $(***)$ that $x \in G$ and $y \notin G$,

then $\sigma(\bm{z}) = \mathbf{B}_X$.

Proof. Suppose we are given distinct points $x,y \in X$. It is enough to find a set $G \in B$ such that $x \in G$ and $y \notin \overline{G}$. Let c be the midpoint of the interval joining the points x and y. By $(***)$ there is a set $G \in B$ such that $x \in G$ and $c \neq G$. This set is convex. If $y \in \overline{G}$, then the open

 interval joining x and y is contained in Int G ([3], p. 110). In particular c ϵ Int G, which gives a contradiction. Hence $y \epsilon \bar{G}$. So the family \blacktriangleright satisfies condition $(*)$ from Theorem 1, which completes the proof.

Theorem 3 concerns locally compact and σ -compact linear topological spaces and hence finite dimensional spaces. (See [3], p. 62.) It is difficult to generalize this to infinite dimensional linear topological spaces.

EXAMPLE 6: Let B be the space of all bounded functions $f : \mathbb{R} \to \mathbb{R}$ with the metric $\rho(f,g) = \sup\{|f(x) - g(x)| : x \in \mathbb{R}\}\.$ Let $\phi(f) = \{f \in \mathbb{R} : f(x) \in \mathbb{R}\}\.$ $(a - \frac{1}{n}, a + \frac{1}{n})$: $x \in \mathbb{R}, a \in \mathbb{R}, n \in \mathbb{N}$.

The family ϕ consists of open convex sets. Suppose that $A \in \sigma(\phi)$. There exists ([2], p. 24, Theorem D) a countable subclass \hat{J} of \hat{J} such that A ϵ $\sigma(\mathbf{0})$. So for uncountable many $y \epsilon \mathbb{R}$ {f(y) : $f \epsilon A$ } = \mathbb{R} . Thus $\sigma(\phi)$ does not contain { $f \in B : |f(x)| < 1$ }.

THEOREM 4: Let X be a topological space and let $N = {H_n : n \in N}$ be a countable family of compact subsets of X. If the family M satisfies the condition:

for any distinct points $x,y \in X$ there is $n \in N$ such that (***) $x \in H_n$ and $y \notin H_n$, then $\sigma(\mathcal{X}) = B_X$.

Proof: Let N^* be the collection of all finite intersections of sets from λ . It is clear that λ^* is countable and closed under finite intersections. We shall show that N^* is a pseudo-basis in X; i.e. for any $V \in \text{top } X$ and $x \in V$, there is a set H ϵ N^{*} such that H ϵ V.

Suppose we are given $V \in top X$, $x \in V$. From condition (***) it follows that $\{x\} = n \{H \in \mathcal{M} : x \in H\} = n \{F \in \mathcal{N}^* : x \in F\}.$ There exists a decreasing 00 sequence ${F_n}_{n \in \mathbb{N}}$ of sets of M $*$ with ${x} = 0$ i=l $i=1$ that there is a positive integer n such that $F_n \subset V$. Suppose it is not so. Then $F_n - V \neq \emptyset$ for each n ϵ N. Each set $F_n - V$ being a closed subset of the compact set F_1 is a compact set. The sequence ${F_n - V}_{{n \in N}}$ is a de- 00 creasing sequence of compact sets. Thus $n (F_i - V) \neq \emptyset$. However i=l

$$
\begin{array}{c}\n\infty \\
0 \quad (\mathbf{F}_i - \mathbf{V}) = (\begin{array}{cc} 0 \\ 0 \end{array} \mathbf{F}_i) - \mathbf{V} = {\mathbf{x}} - \mathbf{V} = \emptyset. \\
\mathbf{i} = 1\n\end{array}
$$

This contradiction proves that N^* is a pseudo-basis in X.

 Each open set U in X can be represented as a union of sets from the countable family \mathcal{H}^* . So U $\in \sigma(\mathcal{H}^*)$. Therefore $B_X = \sigma(\mathcal{H}^*) = \sigma(\mathcal{H})$.

THEOREM 5: Let X be a topological space and let $u = {U_n : n \in N}$ be a countable family of open, relatively compact sets. If the family u satisfies the condition:

for any distinct points $x,y \in X$ there is $n \in N$ such that $(***)$ $x \in U_n$ and $y \notin U_n$,

then $\sigma(u) = B_X$.

Proof: Let $H_n = X - U_n$ for each $n \in N$. For each $x \in X$, $\{x\} =$ $n \{H_n : x \in H_n\}.$ By our assumption there is a $k \in \mathbb{N}$ such that $x \in U_k$. Let A = \overline{U}_k . The family $\{H_n \cap A : n \in \mathbb{N}\}$ satisfies the assumptions of Theorem 4. Let W be a neighborhood of x. W \cap U_k is a neighborhood of x also. From the proof of Theorem 4 it follows that there exists a set F, $F \subset W$ belonging to the algebra generated by $\{H_n \cap A : n \in N\}$ or equivalently there is a set H, H \cap A \subseteq W, belonging to the algebra generated by ${H_n : n \in \mathbb{N}}$. (See [2], p. 25.)

That is why H \cap U_k c H \cap A c W and H \cap U_k belongs to the algebra generated by $\{U_n : n \in \mathbb{N}\}\$. This algebra is countable ([2], p. 23). Thus as in the proof of Theorem 4, $B_X = \sigma({U_n : n \in N}).$

 Lemma 1 and Theorems 1-5 prove that there is an essential relationship between separating fmailies and σ -algebras of Borel sets. The σ -algebra B_X is the smallest σ -algebra which satisfies one of conditions $(*)$, $(**)$ or $(***)$. The following questions remain open:

 1. May we replace condition (##*) by condition (**) in Theorems 3, 4 and 5 and in this way formulate a necessary and sufficient condition?

2. Can we find a countably generated, separating σ -algebra which is contained in the σ -algebra B_R (and not equal to B_R)?

REFERENCES

- [1] E. Engelking, "General Topology", Wasrszawa 1977.
- [2] P.R. Haimos, "Measure Theory", Springer-Verlag, New York 1974.
- [3] J.L. Kelley, I. Namioka, "Linear Topological Spaces", D. Van Nostrand Company, Princeton, New Jersey 1963.
- [4] K.P.S. Bhaskara Rao, B.V. Rao, "Borei spaces", Dissertationes Mathematicae CXC, Warszawa 1981.

Received October 17 . 19S6