Małgorzata Filipczak, Institute of Mathematics, University of Łódź, Łódź, Poland

ON GENERATORS FOR BOREL SETS

Let \mathfrak{b} be a collection of subsets of X. The smallest σ -algebra on X containing \mathfrak{b} will be denoted by $\sigma(\mathfrak{b})$; \mathfrak{b} is called a generating family (or generator) for B if $\sigma(\mathfrak{b}) = \mathfrak{B}$. \mathfrak{b} is said to separate two points $x, y \in X$ if there is a set G ϵ \mathfrak{b} which contains one of them but not the other. \mathfrak{b} is said to be a separating family if it separates any two distinct points of X.

The terminology and definitions concerning topology come from the book, "General Topology", by R. Engelking [1]. A topological space X is called:

- a locally compact space if for each $x \in X$ there exists a neighborhood U of x such that \overline{U} is a compact subspace of X,
- a perfectly normal space if X is a normal space and each closed subset of X is a G_{γ} -set.

Compact (and σ -compact) spaces are assumed to be T₂. A set in a linear is convex if, whenever it contains points space \mathbf{E} х and it also у, line segment joining contains the х and i.e. the set у, $\{tx + (1-t)y : t \in [0,1]\}$. If X is a topological space, then the natural Borel structure on X (generated by the family of all open subsets of X) will be denoted by By. ω stands for the first infinite ordinal; Ω , for the first uncountable ordinal.

K.P.S. Bhaskara Rao and B.V. Rao in [4, p. 19] have stated:

"The family \mathcal{F} of all open intervals of \mathbb{R} is a generator for $\mathfrak{B}_{\mathbb{R}}$. A subfamily $\mathcal{F}_0 \subset \mathcal{F}$ is a generator for $\mathfrak{B}_{\mathbb{R}}$ iff the set of end points of intervals in \mathcal{F}_0 is dense in \mathbb{R} . Thus if $\mathcal{F}_0 \subset \mathcal{F}$ is a generator for $\mathfrak{B}_{\mathbb{R}}$, then, by removing any finite set of \mathcal{D} intervals from \mathcal{F}_0 , we still get a generator for $\mathfrak{B}_{\mathbb{R}}$ ".

However, this statement is false, as is easily seen from examples 1 and 2 below.

In the first place we shall prove:

LEMMA 1. Let B be a σ -algebra of subsets of X. If a family $\not D \subseteq B$ is a generator for B and B separate points $x, y \in X$, then $\not D$ also separates these points; that is, there is a $G \in \mathcal{D}$ such that $x \in G$ and $y \notin G$ or $x \notin G$ and $y \in G$.

PROOF: Suppose that $at t does not separate x from y. So for each <math>G \in b$, $x \in G$ and $y \in G$ or $x \notin G$ and $y \notin G$. The family of all subsets of X satisfying the above condition forms a σ -algebra containing $\sigma(b) = B$. So for any $A \in B$ $x \in A$ and $y \in A$ or $x \notin A$ and $y \notin A$, which ends the proof.

It follows from Lemma 1 that if the family $\mathcal{F}_0 \subset \mathcal{F}$ is a generator for $\mathcal{B}_{\mathbb{R}}$, then the set of end points of intervals in \mathcal{F}_0 is dense in \mathbb{R} . (The supposition that there exists a nonempty open set U which contains no end point of any interval in \mathcal{F}_0 implies that the family \mathcal{F}_0 does not separate any pair of points of U). However, the fact that the set of end points of intervals in \mathcal{F}_0 is dense in \mathbb{R} does not imply that $\sigma(\mathcal{F}_0) = \mathbb{B}$.

EXAMPLE 1: Let Q^+ be the set of all positive rational numbers. Let $\mathcal{F}_1 = \{(-w,w) : w \in Q^+\}$. The family $\mathcal{F}_1 \subset \mathcal{F}$ is not a generator for $\mathcal{B}_{\mathbb{R}}$, because it does not separate x and -x. The set of end points of intervals in \mathcal{F}_1 forms the set of rational numbers (without zero).

EXAMPLE 2: We shall construct a subfamily of \mathcal{F} which is not a generator for $B_{\mathbb{R}}$ and both the set of left end points of intervals in this family and the set of right end points are dense in \mathbb{R} .

Let $\{w_1, w_2, w_3, ...\}$ be the sequence of all rational numbers. We construct a family \mathcal{F}^k of neighborhoods of w_k as follows:

$$\mathbf{J}^{\mathbf{k}} = \left\{ \left(\mathbf{w}_{\mathbf{k}} - \frac{1}{2^{\mathbf{k}+\mathbf{j}}} , \mathbf{w}_{\mathbf{k}} + \frac{1}{2^{\mathbf{k}+\mathbf{j}}} \right) : \mathbf{j} \in \mathbf{N} \right\}$$

for $k \in N$. The measure of the set

is equal to $\frac{1}{2^k}$. Let $\mathfrak{F}_2 = \bigcup_{k=1}^{\infty} \mathfrak{F}^k = \{ \mathbf{I} \in \mathfrak{F} : \mathbf{I} \in \mathfrak{F}^k \text{ for some } k \in \mathbb{N} \} .$

The set $U\mathcal{F}_2$ has measure less than or equal to 1 and no proper subset of the set $\mathbb{R} - U\mathcal{F}_2$ belongs to $\sigma(\mathcal{F}_2)$. Therefore $\sigma(\mathcal{F}_2) \neq \mathcal{B}_{\mathbb{R}}$. Moreover both left and right end points of intervals in \mathcal{F}_2 lie arbitrarily close to any rational number. Hence these sets are dense in \mathbb{R} .

If we know only the set of end points of intervals in a family $\mathcal{F}_0 \subset \mathcal{F}$, we are not able to ascertain that $\sigma(\mathcal{F}_0) = B_{\mathbb{R}}$. There exist two families contained in \mathcal{F} which have the same sets of right end points and left end points of intervals, and one of them is a generator for $B_{\mathbb{R}}$ but the second is not.

EXAMPLE 3: Let Q^+ be the set of all positive rational numbers

$$\vec{J}_{3} = \{(-w,w) : w \in Q^{+}\} \cup \{(0,1), (-1,0)\} , \\ \vec{J}_{4} = \{(0,w) : w \in Q^{+}\} \cup \{(-w,0) : w \in Q^{+}\} .$$

The left end points of intervals in \mathcal{F}_3 and \mathcal{F}_4 form the set of nonpositive rational numbers; the right end points, the set of nonnegative rational numbers. Moreover $\sigma(\mathcal{F}_3) \neq \mathfrak{B}_{\mathbb{R}}$ (see Example 1), but $\sigma(\mathcal{F}_4) = \mathfrak{B}_{\mathbb{R}}$.

Next, we shall formulate a necessary and sufficient condition that a subfamily of \mathcal{F} generates a σ -algebra $\mathbf{B}_{\mathbf{R}}$. We shall first prove Theorem 1.

THEOREM 1: Let X be a topological space such that any open or closed subset in this space is σ -compact. If \mathcal{F} is an arbitrary σ -algebra in X and \mathcal{F} admits the property:

(*) for any $x \in X$ and $y \in X$, $x \neq y$, there is $L \in \mathcal{F}$ such that $x \in Int L$ and $y \notin \overline{L}$,

then \mathcal{F} contains the Borel algebra \mathcal{B}_X .

Proof: For any $x \neq y$, $x, y \in X$ there exist disjoint sets $A, B \in \mathcal{F}$ with $x \in Int A$ and $y \in Int B$. (From condition (*) it follows that there is $L_x \in \mathcal{F}$ such that $x \in Int L_x$, $y \notin \overline{L_x}$ and $L_y \in \mathcal{F}$ such that $y \in Int L_y$, $x \notin \overline{L_y}$. Put $A = L_x$, $B = L_y - L_x$.)

We shall show that for any disjoint, compact sets K_1 , K_2 there exist sets F_1 , $F_2 \in \mathcal{F}$ such that $K_1 \subseteq F_1$, $K_2 \subseteq F_2$, $F_1 \cap F_2 = \emptyset$.

Let $y \in K_2$. For all pairs (x,y), $x \in K_1$ there are sets A(x), B(y,x)with $x \in Int A(x)$, $y \in Int B(y,x)$ and $A(x) \cap B(y,x) = \emptyset$. The collection {Int $A(x) : x \in K_1$ } is an open cover of the set K_1 . Therefore it has a finite subcover {Int $A(x_j) : j = 1,...,n$ }. The sets

$$\mathbf{A}^{*}(\mathbf{y}) = \bigcup_{j=1}^{n} \mathbf{A}(\mathbf{x}_{j}), \quad \mathbf{B}(\mathbf{y}) = \bigcap_{j=1}^{n} \mathbf{B}(\mathbf{y}, \mathbf{x}_{j})$$

are disjoint and belong to \mathcal{F} , and

$$\mathbf{y} \in \text{Int } B(\mathbf{y})$$
, $K_{i} \subset \text{Int } A^{*}(\mathbf{y})$.

Now let y run through K_2 and select a finite subcover from $\{B(y) : y \in K_2\}$. We can define

$$F_{2} = \bigcup_{j=1}^{m} B(y_{j}), F_{1} = \bigcap_{j=1}^{m} A^{*}(y_{j}).$$

To complete the proof of Theorem 1 we shall show that each open set in X belongs to \mathcal{F} . Suppose we are given an open set G

$$G = \bigcup_{\substack{n=1 \\ m = 1}}^{\infty} , \qquad X \setminus G = \bigcup_{\substack{m = 1 \\ m = 1}}^{\infty}$$

where K_n , L_m are compact sets. For any pair K_n , L_m there are sets $F_1^{n,m}$, $F_2^{n,m} \in \mathcal{F}$ separating K_n , L_m and

Then $G = \bigcup_{\substack{n=1 \ m=1}}^{\infty} \bigcap_{m=1}^{\infty} F_1^{n,m} \in \mathcal{F}.$

COROLLARY: If in theorem 1, $\mathcal{F} \subseteq \mathcal{B}_X$, then $\mathcal{F} = \mathcal{B}_X$ if and only if \mathcal{F} admits the property (*).

REMARK: If X is a locally compact, σ -compact and perfectly normal topological space, then any open or closed subset in X is σ -compact.

Obviously if a family $b \in B_X$ admits the property

for any distinct points $x, y \in X$, there exists $G \in \mathcal{B}$ such that (*') $x \in \text{Int } G$ and $y \notin \overline{G}$ or $x \notin \overline{G}$ and $y \in \text{Int } G$,

then $\sigma(\mathbf{z}) = \mathbf{B}_X$. Unfortunately this condition is not necessary. The family of all open intervals in **R** having zero as one end point does not satisfy condition (*') (Zero belongs to the closure of any interval in this family.) but it generates $\mathbf{B}_{\mathbf{R}}$ (because it satisfies condition (*)). On the other hand the condition

for any $x, y \in X, x \neq y$, there exists $G \in \mathcal{F}$ such that (**) $x \in G$ and $y \notin G$ or $x \notin G$ and $y \in G$

(without operations of interior and closure) is not sufficient. The family of all one-point sets in \mathbb{R} satisfies (**) and does not generate $\mathbb{B}_{\mathbb{R}}$. However, the following theorem holds for \mathbb{R} :

THEOREM 2: Let \mathcal{F}_0 be a family of open intervals in \mathbb{R} . \mathcal{F}_0 is a generator of $\mathcal{B}_{\mathbb{R}}$ if and only if it satisfies the condition:

(**) for any distinct points $x, y \in \mathbb{R}$, there exists $I \in \mathcal{F}_0$ that $x \in I$ and $y \notin I$ or $x \notin I$ and $y \in I$.

Proof: The essential part of the proof is Lemma 2:

LEMMA 2: If a family \mathcal{F}_0 consisting of open intervals satisfies condition (**), then for any disjoint compact intervals A, B there exist disjoint sets F_A , $F_B \in \sigma(\mathcal{F}_0)$ such that $A \subset F_A$ and $B \subset F_B$.

Proof of Lemma 2: Let A, B be as stated. We may clearly assume that A lies to the left of B (i.e. x < y for any $x \in A$, $y \in B$). Let us consider points a = sup A and b = inf B. Since the family \mathcal{F}_0 satisfies (**), there is a set $F \in \mathcal{F}_0$ such that a $\in F$ and b $\notin F$ or a $\notin F$ and b $\in F$. In the first case $F \cap B = \emptyset$; in the second, $F \cap A = \emptyset$ (since F is an interval).

We shall construct two countable families \pounds_A , \pounds_B of sets belonging to $\sigma(\mathcal{F}_0)$ with

$$\mathbf{A} \subset \mathbf{U} \, \boldsymbol{\ell}_{\mathbf{A}}^{*}, \quad \mathbf{B} \subset \boldsymbol{\ell}_{\mathbf{B}}^{*}, \quad (\mathbf{U} \, \boldsymbol{\ell}_{\mathbf{A}}^{*}) \cap (\mathbf{U} \, \boldsymbol{\ell}_{\mathbf{B}}^{*}) = \boldsymbol{\phi}$$

We shall construct two transfinite sequences $\{F^A_{\alpha}\}_{\alpha < \Omega}$, $\{F^B_{\alpha}\}_{\alpha < \Omega}$ of disjoint sets belonging to $\sigma(\mathcal{F}_0)$ which have the following properties:

1.
$$F_{\alpha}^{A} \cap B = \emptyset$$
, $F_{\alpha}^{B} \cap A = \emptyset$
2. $A_{\alpha} = A - \bigcup_{\beta < \alpha} F_{\beta}^{A}$ and $B_{\alpha} = B - \bigcup_{\beta < \alpha} F_{\beta}^{B}$ are subintervals in A and B
3. $(A \neq \emptyset \text{ or } B \neq \emptyset) \iff (F_{\alpha}^{A} \neq \emptyset \text{ or } F_{\alpha}^{B} \neq \emptyset)$ for each $0 \leq \alpha < \Omega$.
Let $\alpha = 0$. If $F \cap B = \emptyset$, then we put $F_{\alpha}^{A} = F$ and $F_{\alpha}^{B} = \emptyset$. If $F \cap A = \emptyset$, then $F_{\alpha}^{A} = \emptyset$ and $F_{\alpha}^{B} = F$.

Let α be a fixed ordinal number less than Ω and suppose that we have sets F^{A}_{β} , F^{B}_{β} with the required properties for each $\beta < \alpha$.

Let us consider the sets $A_{\alpha} = A \setminus \bigcup_{\beta < \alpha} F_{\beta}^{A}$ and $B_{\alpha} = B - \bigcup_{\beta < \alpha} F_{\beta}^{B}$. There are subintervals in A and B (as intersections of intervals). 1. If $A_{\alpha} = \emptyset$ and $B_{\alpha} = \emptyset$, then we put $F_{\alpha}^{A} = \emptyset$ and $F_{\alpha}^{B} = \emptyset$ 2a. If $A_{\alpha} = \emptyset$ and $B_{\alpha} \neq \emptyset$, then $F_{\alpha}^{A} = \emptyset$, $F_{\alpha}^{B} = \mathbb{R} - \bigcup_{\beta < \alpha} (F_{\beta}^{A} \cup F_{\beta}^{B})$ b. If $A_{\alpha} \neq \emptyset$ and $B_{\alpha} = \emptyset$, then $F_{\alpha}^{A} = \mathbb{R} - \bigcup_{\beta < \alpha} (F_{\beta}^{A} \cup F_{\beta}^{B})$, $F_{\alpha}^{B} = \emptyset$ 3. If $A_{\alpha} \neq \emptyset$ and $B_{\alpha} \neq \emptyset$, let $a_{\alpha} = \sup A_{\alpha}$ and $b_{\alpha} = \sup B_{\alpha}$.

Then $a_{\alpha} < b_{\alpha}$.

Since the family \mathcal{F}_{0} satisfies (**), there is a set $F \in \mathcal{F}_{0}$ with $\mathbf{a}_{\alpha} \in F$ and $\mathbf{b}_{\alpha} \in F$ or $\mathbf{a}_{\alpha} \notin F$ and $\mathbf{b}_{\alpha} \in F$. Suppose that $\mathbf{a}_{\alpha} \in F$ and $\mathbf{b}_{\alpha} \notin F$. We put $F_{\alpha}^{B} = \emptyset$ and $F_{\alpha}^{A} = F - \bigcup (F_{\beta}^{A} \cup F_{\beta}^{B})$. The set F_{α}^{A} contains the nonempty interval $F \cap A_{\alpha}$; so $F_{\alpha}^{A} \neq \emptyset$. Moreover $F_{\alpha}^{A} \cap B \in (F_{\alpha}^{A} \cap \bigcup F_{\beta}^{B}) \cup (F_{\alpha}^{A} \cap B_{\alpha}) = F_{\alpha}^{A} \cap B_{\alpha} \in F \cap B_{\alpha} = \emptyset$. If $\mathbf{a}_{\alpha} \notin F$ and $\mathbf{b}_{\alpha} \in F$, then we analogously define $F_{\alpha}^{A} = \emptyset$ and $F_{\alpha}^{B} = F - \bigcup_{\beta < \alpha} (F_{\beta}^{A} \cup F_{\beta}^{B})$.

Both of the sequences $\{F^{A}_{\alpha}\}_{\alpha < \Omega}$, $\{F^{B}_{\alpha}\}_{\alpha < \Omega}$ are, from a certain $\beta < \Omega$, equal to ϕ . Suppose it is not. Then there is an uncountable descended sequence of subintervals A_{α} (B_{α}) in the interval A (or B), which gives a contradiction.

The families we are looking for are the families

$$\boldsymbol{\pounds}_{A} = \{ F_{\alpha}^{A} : \alpha < \Omega, F_{\alpha}^{A} \neq \emptyset \}, \quad \boldsymbol{\pounds}_{B} = \{ F_{\alpha}^{B} : \alpha < \Omega, F_{\alpha}^{B} \neq \emptyset \}$$

Let us return to the proof of Theorem 2.

For any distinct points x,y $\in \mathbb{R}$ there exist compact intervals A, B with x \in Int A, y \in Int B and A \cap B = \emptyset . Thus (by Lemma 2) there is a set $F_A \in \sigma(\mathcal{F}_0)$ which contains A, and $F_A \cap B = \emptyset$. From Theorem 1 it follows that condition (**) is sufficient.

The necessity of condition (**) follows from Lemma 1.

Theorem 2 gives a necessary and sufficient condition which is convenient to use but it concerns families of open intervals in \mathbb{R} . Examples 4 and 5 show that it is difficult to generalize this to other families and other spaces.

EXAMPLE 4: The family $K_1 = \{R - \{x\} : x \in R\}$ satisfies the condition

for any distinct points $x, y \in \mathbb{R}$ there exists $K \in X_1$ such (***) that $x \in K$ and $y \notin K$

which is stronger than (**). K_1 consists of open sets and generates the countable-cocountable structure on **R** which is essentially smaller than **BR**.

EXAMPLE 5: The family $K_2 = \{(-n,n) \times (-n,n)\} - \{x\} : x \in \mathbb{R}^2, n \in \mathbb{N}\}$ consists of connected, bounded open sets, satisfies condition (***) but does not satisfy (*), (cf. Theorem 1) and therefore it is not a generator for $B_{\mathbb{R}^2}$.

Now we shall consider families of convex sets and countable families.

THEOREM 3: Let X be a locally compact, σ -compact and perfectly normal linear topological space. If a family $z \in B_X$ of open convex sets satisfies the condition:

for any distinct points $x, y \in X$, there exists $G \in \mathcal{Z}$ such (***) that $x \in G$ and $y \notin G$,

then $\sigma(\mathbf{z}) = \mathbf{B}_{\mathbf{X}}$.

Proof. Suppose we are given distinct points $x, y \in X$. It is enough to find a set $G \in \mathcal{F}$ such that $x \in G$ and $y \notin \overline{G}$. Let c be the midpoint of the interval joining the points x and y. By (***) there is a set $G \in \mathcal{F}$ such that $x \in G$ and $c \notin G$. This set is convex. If $y \in \overline{G}$, then the open

interval joining x and y is contained in Int G ([3], p. 110). In particular $c \in Int G$, which gives a contradiction. Hence $y \in \overline{G}$. So the family 2 satisfies condition (*) from Theorem 1, which completes the proof.

Theorem 3 concerns locally compact and σ -compact linear topological spaces and hence finite dimensional spaces. (See [3], p. 62.) It is difficult to generalize this to infinite dimensional linear topological spaces.

EXAMPLE 6: Let B be the space of all bounded functions $f : \mathbb{R} \to \mathbb{R}$ with the metric $\rho(f,g) = \sup\{|f(x) - g(x)| : x \in \mathbb{R}\}$. Let $\mathfrak{B} = \{f \in B : f(x) \in (a - \frac{1}{n}, a + \frac{1}{n})\} : x \in \mathbb{R}, a \in \mathbb{R}, n \in \mathbb{N}\}.$

The family b consists of open convex sets. Suppose that $A \in \sigma(b)$. There exists ([2], p. 24, Theorem D) a countable subclass D of b such that $A \in \sigma(D)$. So for uncountable many $y \in \mathbb{R}$ {f(y) : $f \in A$ } = \mathbb{R} . Thus $\sigma(b)$ does not contain { $f \in B$: |f(x)| < 1}.

THEOREM 4: Let X be a topological space and let $\mathcal{X} = \{H_n : n \in N\}$ be a countable family of compact subsets of X. If the family \mathcal{X} satisfies the condition:

for any distinct points $x, y \in X$ there is $n \in N$ such that (***) $x \in H_n$ and $y \notin H_n$, then $\sigma(X) = B_X$.

Proof: Let \mathcal{N}^* be the collection of all finite intersections of sets from \mathcal{N} . It is clear that \mathcal{N}^* is countable and closed under finite intersections. We shall show that \mathcal{N}^* is a pseudo-basis in X; i.e. for any V ϵ top X and $x \epsilon V$, there is a set H $\epsilon \mathcal{N}^*$ such that H c V.

Suppose we are given $V \in top X$, $x \in V$. From condition (***) it follows that $\{x\} = \cap \{H \in \mathcal{N} : x \in H\} = \cap \{F \in \mathcal{N}^{\bigstar} : x \in F\}$. There exists a decreasing sequence $\{F_n\}_{n \in \mathbb{N}}$ of sets of \mathcal{N}^{\bigstar} with $\{x\} = \bigcap F_i$. It is enough to show i=1that there is a positive integer n such that $F_n \in V$. Suppose it is not so. Then $F_n - V \neq \emptyset$ for each $n \in \mathbb{N}$. Each set $F_n - V$ being a closed subset of the compact set F_1 is a compact set. The sequence $\{F_n - V\}_{n \in \mathbb{N}}$ is a decreasing sequence of compact sets. Thus $\bigcap (F_i - V) \neq \emptyset$. However i=1

$$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ i = 1 \end{array} \begin{array}{c} & & \\ & &$$

This contradiction proves that x^* is a pseudo-basis in X.

Each open set U in X can be represented as a union of sets from the countable family \aleph^* . So U $\epsilon \sigma(\aleph^*)$. Therefore $B_X = \sigma(\aleph^*) = \sigma(\aleph)$.

THEOREM 5: Let X be a topological space and let $u = \{U_n : n \in N\}$ be a countable family of open, relatively compact sets. If the family u satisfies the condition:

for any distinct points $x, y \in X$ there is $n \in N$ such that (***) $x \in U_n$ and $y \notin U_n$,

then $\sigma(u) = B_X$.

Proof: Let $H_n = X - U_n$ for each $n \in N$. For each $x \in X$, $\{x\} = \cap \{H_n : x \in H_n\}$. By our assumption there is a $k \in N$ such that $x \in U_k$. Let $A = \overline{U_k}$. The family $\{H_n \cap A : n \in N\}$ satisfies the assumptions of Theorem 4. Let W be a neighborhood of x. $W \cap U_k$ is a neighborhood of x also. From the proof of Theorem 4 it follows that there exists a set F, $F \subseteq W$ belonging to the algebra generated by $\{H_n \cap A : n \in N\}$ or equivalently there is a set H, $H \cap A \subseteq W$, belonging to the algebra generated by $\{H_n \cap A : n \in N\}$ or $\{H_n : n \in N\}$. (See [2], p. 25.)

That is why $H \cap U_k \subseteq H \cap A \subseteq W$ and $H \cap U_k$ belongs to the algebra generated by $\{U_n : n \in N\}$. This algebra is countable ([2], p. 23). Thus as in the proof of Theorem 4, $B_X = \sigma(\{U_n : n \in N\})$.

Lemma 1 and Theorems 1-5 prove that there is an essential relationship between separating fmailies and σ -algebras of Borel sets. The σ -algebra \mathcal{B}_X is the smallest σ -algebra which satisfies one of conditions (*), (**) or (***). The following questions remain open:

1. May we replace condition (***) by condition (**) in Theorems 3, 4 and 5 and in this way formulate a necessary and sufficient condition?

2. Can we find a countably generated, separating σ -algebra which is contained in the σ -algebra B_R (and not equal to B_R)?

REFERENCES

- [1] E. Engelking, "General Topology", Wasrszawa 1977.
- [2] P.R. Halmos, "Measure Theory", Springer-Verlag, New York 1974.
- J.L. Kelley, I. Namioka, "Linear Topological Spaces",
 D. Van Nostrand Company, Princeton, New Jersey 1963.
- [4] K.P.S. Bhaskara Rao, B.V. Rao, "Borel spaces", Dissertationes Mathematicae CXC, Warszawa 1981.

Received October 17, 1986