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 In the study of periodic orbits of maps of the

 interval under iteration, it has been observed by many

 people that there are certain behaviors which are

 "universal" for large classes of one-parameter families

 of maps. To illustrate, let f:[0,l] [0,°°) be such

 that:

 (a) f is nondecreasing on [0,1/2], nonincreasing

 on [1/2,1].

 (b) f (0 ) = f ( 1 ) = 0, f ( 1/2) = max {f(x)| xe [0,1]}.
 Such an f will be called unimodal (although some authors

 reserve that term to imply a single maximum) . Then define

 a one-parameter family transformations of the

 unit interval by

 Fx (x) = Xf (X) , X e [0,1] , (1)
 where A is restricted to a domain for which

 F : [0,1] [0,1]. Necessary and sufficient conditions on
 À

 f for the "universal" properties to hold are not known,
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 but f is generally assumed to be continuous on [0,1]

 and piecewise dif ferentiable, or at least dif ferentiable

 in a neighborhood of 1/2.

 We define the iterates of as follows:

 F°(x) = X, F*(x) = Fx(x), f"(x) = Fx (F^"1 (X) ) ,n = 2,3,...

 For each positive integer m, we are interested in solu-

 tions A of the equation

 F™(l/2) = 1/2. (2)

 For various subclasses of unimodal functions, including

 trapezoid functions [9] , parabolic functions [6] and others

 [1] , it has been shown that each solution A of (2)

 corresponds to a unique cycle (periodic orbit) of length

 m, one of whose points is 1/2. These cycles are distin-

 guished by their patterns} words (of length m-1 for an
 m-cycle) on the alphabet { R, L} . R (resp. L) indicates

 that an iterate lies to the right (resp. left) of 1/2.

 For example, the (unique) 3-cycle has the pattern RL,

 meaning that Fx(l/2) > 1/2, F^(l/2) < 1/2, F^(l/2) = 1/2.
 The countable set of all cycles (for all m) can be

 uniquely ordered on increasing A. (Of course, the values

 of A depend on f.) The resulting sequence of patterns

 and their ordering [10,5] is universal for a large class of

 unimodal functions, including the subclasses mentioned

 above. This sequence of patterns will be called the MSS

 sequence, as it was first observed to be universal by

 Metropolis, Stein, and Stein [10] .

 "'"also called finite shift-maximal sequences.
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 The MSS sequence exhibits a phenomenon known as
 period doubling , described as follows. Associated with

 any pattern P of length k there is a sequence of

 patterns Hn(P) (see below), called harmonics of
 P, of lengths k2n(n = 0,1,...), each of which corresponds
 to a solution X^ of (2) with m = k2n. Each sequence
 {^n} (for each k) converges; moreover, Feigenbaum [7]
 observed that the ratio

 X - X ,
 _J2

 Xn+1 " Xn

 also seems to converge to a number 6 (d) which is the
 same for all functions in some allowed class which have the

 same degree d in a neighborhood of the maximum (x = 1/2) .

 This conjecture of Feigenbaum' s was proved (for functions

 in a suitable class) when d = 1 + e for small positive e

 by Collet et. al. [4,3] and when d = 2 by Lanford [8].

 Convergence of (3) is described as geometric convergence of

 Un}.
 Somewhat surprisingly, however, it was found by

 Beyer and Stein [2] that the rate of convergence of {Xn>
 is different for functions which are flat in a neighborhood

 of 1/2. Specifically, for trapezoid functions (defined below),
 they show that

 lim

 n"*°° / X - X , '

 "•('ãrft / X - X , ) '

 while (3) diverges. It has been shown recently by Beyer, Ebanks,
 and Quails [11] that (4) is equivalent to quadratic (i.e., order 2)

 convergence of
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 But there is an even "more universal" convergence

 phenomenon that has been observed in numerical experiments.
 It has to do with the rate of convergence of certain pro-
 jections g ( .(A) (defined below) .

 n -

 Given e e (0,1/2), consider the one-parameter
 family {F^} of trapezoidal maps on [0,1] defined by (1)
 with

 r

 e X , 0 _< X < e
 f (X) = < 1 , e < X < 1-e

 e (1-x) , 1 - e < X < I ,

 where X ranges in (e,l], This is a one-parameter family in
 the sense that e is regarded as fixed in each discussion.

 Each number y in [0,X) has two inverses under F w
 denoted

 fX,R(y): = 1 ~ x le y» fA1L(y): = x~ley-

 We extend F^L and F^R to [0,1] by requiring (5) to
 hold also for ye[X,l].

 As in [1], we define for each pattern P = •** Pn
 the function

 Gx(P,y)= = F^pl(^p2(---^pn(y)---)).

 and the inverse sequence function g^ by

 gp(X) : = GA(P,l/2) .

 One reason for studying the inverse sequence function is that

 if Xp corresponds to a pattern P, then Xp is a fixed
 point- of gp, i.e. = This is the- point of view
 taken by those studying Feigenbaum' s convergence. Rather than

 studying sequences of fixed points, however, we shall be
 interested in projections of those sequences. That is, we shall
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 examine a sequence of values of gp(M for fixed X as P
 runs through a sequence of patterns called harmonics.

 The harmonics of a pattern P are defined as

 follows. If P = P.P. ... P , then the first harmonic of
 - 1 2 ... n ,

 P, denoted (P) , is the pattern

 VP) = PlP2 ... Pn Pn+1 PlP2 ... Pn,

 where P , is chosen so that the number of R*s in P n+1 , -

 and the number of R's in H^(P) will have opposite
 parity. Higher harmonics are defined inductively:

 H n (P - ) = Hļ 1 (H n-JL ,(P)), - n = 2,3,..., n - 1 n-JL -

 and the zero-th harmonic of P is P itself:

 H0(P) = P •

 As an example, the sequence (Hn(R)} (starting at n = 0)
 is

 H_ (R) = R, H. (R) = RLR, H, ^ (R) = RLR3LRf 0 -L ^

 The sequences of projections which are the main subjects
 of this paper are {gH ^or fixe<^ ^ an(^ fixed

 „ n -
 patterns „ P.

 Theorem. Let P be a pattern, define Çn(t): = gH ^ (X)
 for all n (=0 ,1,2,...), and let * e (e,l] and t = e/x. Then

 { Çn} converges on [efl) to an analytic function wf and

 lim Çn+l(t) ~ Çn(t) _ t ^ _ r_ ■. »
 Un(t) - £n-l(t)]2 _ 1/2 - t w (t) ' _ e
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 In particular, converges quadratically for each

 t with 2tw (t) 1.

 We have numerical evidence that results similar to those

 contained herein for trapezoidal maps hold also for parabolic

 and other unimodal maps. In fact, we also have partial results
 towards a proof for parabolas.
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