Zbigniew Grande, Tomasz Natkaniec and Ewa Strońska, Institute of Mathematics, Higher Pedagogical School, Chodkiewicza 30, B5-064 Bydgoszcz, Poland

> LATTICES, ALGEBRAS AND BAIRE'S SYSTEMS GENERATED BY SOME FAHILIES OF FUNCTIONS

I. Preliminaries. Let us establish some of the terminology to be used. R denotes the real line. Let (X,T) be a topological space. A function $f: X \rightarrow R$ is said to be T-quasi-continuous at a point $x_{0} \in X$ iff for every $E > 0$ and for any neighbourhood U ϵ T of the point x_{0} there exists a T-open set V such that 0 \neq V C U and $|f(x) - f(x_0)| < \xi$ for every $x \in V$, T-cliquish at $x_{0} \in X$ iff for every $E > 0$ and for any neighbourhood U ϵ T of the point x_{0} there exists a T-open set V such that 0 \neq VC U and $|f(x)-f(x_1)| < \mathcal{E}$ for $x, x_1 \in V$.

A function f:X \rightarrow R is T-quasi-continuous (T-cliquish) on X iff f is T-quasi-continuous $($ T-cliquish $)$ at every point of X .

Let $X = R^m$.We shall use the following differentiation basis. For every $k \in N$ (N denotes the set of all positive integers) let $P^{}_k$ be the family of all m-dimensional intervals of the form

 $\left(\frac{i_1 - 1}{2^k, i_1/2^k} \right) \times \cdots \times \left(\frac{i_m - 1}{2^k, i_m/2^k} \right)$ where $i_1, i_2, \ldots, i_m = 0, i_1, i_2, \ldots$.

 o o Let $\mathcal{P} = \bigcup_{k=1}^{\infty} P_k$. Let $A \subset \mathcal{R}^m$ be a set. For $x \in \mathcal{R}^m$ we can define the upper outer density of A at a point x by

$$
\vec{d}(\lambda, x) = \lim_{\substack{P \implies x \\ P \in P}} |\text{A} \cap P| / |P| ,
$$

where | A| denotes m-dimensional Lebesgue outer measure of A and the understanding of the symbol $P \longrightarrow x$ is that $x \in P$ and the diameter of P tends to zero.

Denote by T_e the Euclidean topology in R^{m} and by d_{2} the density topology relative to the differentiation basis (p, \Rightarrow) . The symbols Q_T , Cq_T stand for the family of all T-quasi-continuous functions $f:R^m \longrightarrow R$ and the family of all T-cliquish functions, respectively.Evidently we have $Q_T \subset Cq_T$. If K is a family of functions $f: X \rightarrow R$ then

- (i) A (k) denotes the algebra generated by K, i.e. the least family for which: K C A(K), f+g \in A(K), f.g \in A(K) for any $f,g \in A(K)$;
- (ii) B(k) denotes the collection of all pointwise limits of sequences taken from K ;
- (iii) $L(K)$ denotes the lattice generated by K, i.e. the least family for which max(f,g) \in L(K) and min(f,g) \in L(K) for any $f,g \in L(K)$.

Let $(w_n)_n$ be an ennumeration of all rationals with $w_0 = 0$.

II. Results.

Theorem 1.A function $f:R^m \rightarrow R$ is d_zcliquish iff f is Lebesgue measurable.

Definition 1.A measurable function $f:R^m\rightarrow R$ is degenerate at a point $x_0 \in R^m$ iff there exists a neighbourhood U of $f(x_0)$ such that the set $f^{-1}(U)$ has the density zero at x_{α} . A measurable function f is nondegenerate iff it is not degene rate at any point.

Theorem 2.A Lebesgue measurable function $f:R^m \longrightarrow R$ is d₂-quasi-continuous iff f is nondegenerate.

Basic lemma.Assume that $A \subset R^m$ is a G_{d} set of Lebesgue measu<mark>re zero,</mark> GCR $^{\text{m}}$ is an open set and \land CG.Then there exists a sequence of pairwise disjoint (L) measurable sets $A_n \subset G - A$ (n = 0,1,2,...) such that (J A_n = G - A , $\overline{d}(A_n, x) > 0$ for

every $x \in A \cup A_n$ (n = 0,1,2,...) and $\overline{d}((R^m - G) \cup A_0, x) > 0$ for every $x \in A \cup A_n$ (n = 0,1,2,...) and d((R^m -G) $\cup A_0$, x)
each $x \in R^m$ – G.

Theorem 3. $A(Q_{d_2}) = Cq_{d_2}$. An outline of proof. It is enought to prove that $Cq_{d_0} \n\subset A(Q_{d_0})$.

Let $f \in \text{Cq}_{d_2}$. Let A be a G_{d} set of measure zero which contains the set of all d_2 -discontinuity points of f.Let A_n $\Big(n=0,1,2,\ldots \Big)$ the set of all d2*discontinuity points of \mathcal{L} \mathcal{L} sets satisfy the conclusion of Basic lemma (for Let us put

$$
f_1(x) = \begin{cases} f(x) & \text{for } x \in A \\ w_n & \text{for } x \in A_{2n} \\ f(x) - w_n & \text{for } x \in A_{2n+1} \end{cases}
$$

and

$$
f_2(x) = \begin{cases} 0 & \text{for } x \in A \\ f(x) - w_n & \text{for } x \in A_{2n} : n = 0, 1, 2, ... \\ w_n & \text{for } x \in A_{2n+1} \end{cases}
$$

The functions f_1, f_2 are d₂-quasi-continuous and $f = f_1 + f_2$. Theorem 4. $L(Q_{d_2}) = Cq_{d_2}$

An outline of proof. For $f \in Ca_{d_2}$ and i=0,1,2,3 let us put

$$
f_{i}(x) = \begin{cases} w_{n} & \text{for } x \in \bigcup_{n=0}^{\infty} A_{4n+1} \\ f(x) & \text{for } x \notin \bigcup_{n=0}^{\infty} A_{4n+1} \end{cases}
$$

The functions
$$
f_i
$$
 (i = 0,1,2,3) are d₂-quasi-continuous and
\n $f = min(max(f_0, f_1), max(f_2, f_3))$
\nTheorem 5. $B(Q_d) = Cq_d$

An outline of proof. It is enought to prove that Cq_{d_y} C $B(Q_{d_2})$. If $f \in Cq_{d_2}$ then there exists a Baire 2 function $g:R^{m} \rightarrow R$ a.e. equal to f. Let h=f-g and let $(G_n)_n$ be a dec-
reasing sequence of open sets such that $\bigcap_{n=1}^{\infty} G_n = A$
 $\{x \in R^m$; $h(x) \neq 0$ of $|A| = 0$. For $n=1,2,...$ let $(A_{nk})_k$ be a sequence of measurable sets which atisfies the conclusion of Basic lemma(for G=G_n). Define

$$
h_n(x) = \begin{cases} w_k & \text{for } x \in \bigcup_{n=1}^{\infty} A_{nk} \\ h(x) & \text{for } x \in A \\ 0 & \text{for } x \in (R^m - G_n) \cup A_{n0} \end{cases}
$$

The functions h_n (n=1,2,...) are d₂-quasi-continuous and h= lim h_n . Since g is Baire 2, there exists a sequence (g_n) n->∞ "
of d₂-continuous functions with g = lim g_n .The sum
n->∞ "n $h_n + g_n$ (n = 1,2,...) is d₂-quasi-continuous and f = g + h = = $\lim_{n \to \infty} (g_n + h_n)$.

Theorem 6. B (Q_{T_A}) \supset Cq_{T_A} and B(B(Q_T)) is the family of all functions with Baire property.

 Remark l.The results which are presented in the theorems 1-5 hold, if instead the basis $(\mathcal{P}, \Longrightarrow)$ we will use the basis of disc or squares, or all intervals.

Theorem 7. A(Q^) » CqT • e e

of disc or squares, or all intervals.

Theorem 7. A(Q_T) = Cq_T .

An outline of proof.Let $f \in Cq_T$. We have $f = g + h$,

re g,h $\in Cq_T$ and for every $x \in R^m$ there exists a finite e where g,h ϵ Cq_{T_} and for every $x \in R^m$ there exists a finite e limit number $\alpha_{\rm g}^{}(\mathrm{x})$ of g/C(g) and a finite limit number $\alpha_{\rm h}^{}(\mathrm{x})$ of h/C(h). (Cig) denotes the set of all continuity points of g). Define

 $\{\boldsymbol{\mathrm{d}}_{\mathbf{g}}(x)$ if $\boldsymbol{\mathrm{g}}$ is not continuous at x $h\left(x\right)$ if h is continuous at x $"2"$ $\sum_{n=0}^{\infty} h^{(n)}$ is not continuous at

 $n_1 = g - m_1$ and $n_2 = h - m_2$. Since m_1 and m_2 are T_e-quasi-continuous, it is enought to prove that $n_1 = \begin{cases} 1 + \sqrt{1} & \text{and } n_2 = \begin{cases} 1 - \sqrt{2} & \text{where} \end{cases} \end{cases}$ $n_1 = g - m_1$ and $n_2 = h - m_2$.
Since m_1 and m_2 are T_e -quasi-continuous, it is enought to
prove that $n_1 = \int_1^2 + \int_1^2 f_1 dA$ and $n_2 = \int_2^2 + \int_2^2 f_2$, where
 $\int_1^2 f_1 f_2 f_2 f_3 f_3 f_4 f_5 f_6$ are T_e -quasi-continuo Since m_1 and m_2 are T_e -quasi-continuous, it is enought to

orove that $n_1 = \int_1^2 + \int_1^2 u du$ $n_2 = \int_2^2 + \int_2^2 u du$, where
 $\int_1^2 \int_2^2 u du$, $\int_1^2 u du$ are T_e -quasi-continuous.

Remark 2.The theorems 1-7 generali

 Remark 2. The theorems 1-7 generalize more early results for real functions of one variable.

Let $R^m = R$. If f: $R \rightarrow R$ is a function, then denote by Q(f) μ the set of all $1e^{-q}$ dest-continuity for r . Let Cq_0 be the ${f \in \text{Cq}_{T_{e}} : f:R \rightarrow R \text{ and } R-Q(f)}$ is nowhere dense $\}$. e Theorem B.IT $K = K$, we have $L(Q^T) = GQ^T$.

Denote by d the density topology in R.

Theorem 9. Every d-continuous function $f:R \longrightarrow R$ is a sum of two functions g,h which are d-continuous and T_{e} -quasi-continuous.

Theorem 10. Every derivative $f:R\rightarrow R$ is a sum of two T_a-quasi-continuous derivatives.

III. Problems. We have

(1) If each x section of a function $f:R^2 \rightarrow R$, $f_x(t) = f(x,t)$ and each y section $f^{\gamma}(t) = f(t,y)$ are T_e-quasi-continuous,
then f is T_e-quasi-continuous(Kempisty). (1) If each x section of a function $f:R^2 \rightarrow R$, $f_x(t) = f(x,t)$
and each y section $f'(t) = f(t,y)$ are T_e -quasi-continuous,
then f is T_e -quasi-continuous(Kempisty).
(2) There exists (under Martin Axiom) a function $f:R^2 \rightarrow R$ d each y section $f^{\gamma}(t) = f(t,y)$ are T_e-quasi-continuous,
en f is T_e-quasi-continuous(Kempisty).
(2) There exists (under Martin Axiom) a function f:R² \rightarrow R
at all f_y and f^Y are d-quasicontinuous, f is not(dxd)-c

then f is T_e-quasi-continuous(Kempisty).

(2) There exists (under Martin Axiom) a function f:R² \rightarrow R

that all f_x and f^Y are d-quasicontinuous, f is not(dxd)-cli-

quish and f is not Lebesgue measurable. quish and f is not Lebesgue measurable.

(3) There exists a Lebesgue measurable function $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ which is not (dxd) -cliquish.

(4) If all f_x are d-continuous and if all f^{γ} are d-quasi--continuous, then f is (dxd)-cliquish.

(5) Th<mark>ere e</mark>xists a function fiR \rightarrow R such that all sections (3) There exists a Lebesgue measurable function $f: \mathbb{R}^2 \to \mathbb{R}$
which is not (dxd) -cliquish.
(4) If all f_x are d-continuous and if all f^Y are d-quasi-
-continuous, then f is (dxd) -cliquish.
(5) There exists a fu P**r**oblem 1.Is any $\texttt{(dxd)}$ -quasi-continuous function f:R² Lebesgue measurable ?

<code>O´Malley</code> defines the following topology in $\textsf{R}^\mathbf{2}$: $d_{xy} = \left\{ A \in R^2; A \text{ is measurable (L) and all sections } A_{x}$, $A^y \in d \right\}$. A function f: $R^2 \rightarrow R$ is d_{xv}-cliquish iff it is measurable(L). xy

P**roblem** 2.What is a characterization of family $\mathbf{Q}_{\mathbf{d}}$ \qquad ?

 xy Problem 3.Denote by r the O'Malley's topology r in R. What is a characterization of family $Q_{\mathbf{r}}$?