Real Analysis Exchange Vol. 12 (1986-87)

Richard G. Gibson, Department of Mathematical Sciences, Columbus College, Columbus, Georgia, 31993; and Fred Roush, Department of Mathematics, Alabama State University, Montgomery, Alabama, 36101.

THE RESTRICTIONS OF A CONNECTIVITY FUNCTION ARE NICE BUT NOT THAT NICE

Let X and Y be topological spaces. A function $f:X \rightarrow Y$ is said to be a connectivity function provided that if A is a connected subset of X, then the graph of f restricted to A is a connected subset of $X \times Y$. A function $f:X \rightarrow Y$ is said to have property (s) or to be (s)-measurable provided that for each perfect set $P \subset X$ there exists a perfect set $Q \subset P$ such that the restriction f|Q is continuous. Marczewski defined property (s) for sets in [8] and showed that (s)-measurable functions and the class of functions (functions with property (s)) studied by Sierpinski in [10] were the same. For further study the reader is referred to [1] and [2]. A real-valued function f defined on an interval is said to have a perfect road at the point x provided that there exists a perfect set P such that x is a bilateral point of accumulation of P and such that f|P is continuous at x.

Let I = [0,1]. From [4] it follows that if $g:I^2 \rightarrow I$ is a connectivity function, then $f = g|(I \times \{x\})$ has the following property: if $[a,b] \subset I$, then there exists a Cantor set $C \subset (a,b)$ such that f|C is continuous where I is assumed to be embedded in I^2 as $I \times \{x\}$ for any $x \in I$. From [6] it follows that if $g:I^2 \rightarrow I$ is a connectivity function, then $f = g|(I \times \{x\})$ has a perfect road at each point for any $x \in I$. However, there exist connectivity functions $I \rightarrow I$ that 372 have neither of these properties [3].

The purpose of this paper is to construct a connectivity function $g:I^2 \rightarrow I$ and show that $f = g|(I \times \{x\})$ does not have property (s) for some $x \in I$. Thus the restrictions of a connectivity function $g:I^2 \rightarrow I$ are nice but not that nice.

The following construction is a variation of a construction given in [5]. For this construction we give the definition of a peripherally continuous function. A function f is said to be peripherally continuous provided that for any x and any pair of open sets U and V containing x and f(x), respectively, there exists an open set W such that $x \in W \subset U$ and $f(bd(W)) \subset V$ where bd = boundary. Connectivity functions and peripherally continuous functions defined on certain spaces and in particular $I^n \rightarrow I$ are equivalent whenever $n \ge 2, [7]$.

Example.

L₁: Let g be 0 on the boundary of I^2 and 1 at the center of I^2 . Draw horizontal and vertical lines through the center which will divide I^2 into four small squares. Let g be linear on the edges of the small squares. The variation on the edges of these small squares ≤ 1 .

L₂: Let g be 0 or 1 in a checkerboard pattern at the center of the small squares of L₁. Divide each small square of L₁ into 16 smaller squares. Let g be linear on the edges of these smaller squares and such that the variation on the edges of these squares $\leq \frac{1}{2}$. Continuing in this manner we have L_{n+1}: Let g be 0 or 1 in a checkerboard pattern at the

373

center of the small squares constructed in L_n . Divide each small square of L_n into $(2(n+1))^2$ smaller squares. Let g be linear on the edges of these smaller squares and such that the variation on the edges of these squares $\leq 1/(n+1)$.

By construction g is peripherally continuous on $\bigcup_{n=1}^{\infty} L_n$.

Let H_m be the set of $x \in I^2$ such that there exist squares A_0 and A_1 such that the variation on the edges of A_0 and A_1 is less than 1/m, $x \in int(A_0)$, $x \in int(A_1)$, $g(bd(A_0)) \subset [0,1/m)$, and $g(bd(A_1)) \subset (1-1/m,1]$ where int = interior. It follows that any point of $int(A_0) \cap int(A_1)$ is in H_m . So H_m is open and dense in I^2 . Thus $H = \bigcap_{n=1}^{\infty} H_m$ is a dense G_{δ} -subset of I^2 . Now $I^2 - \bigcap_{n=1}^{\infty} L_n$ is a dense G_{δ} -subset of I^2 . So $G = H \cap (I^2 - \bigcap_{n=1}^{\infty} L_n)$ is a dense G_{δ} -subset of I^2 on which the values of g can be chosen to be either 0 or 1. From [9] there exists an $x_0 \in I$ such that $I \times \{x_0\}$ contains a dense G_{δ} -subset of $G \cap (I \times \{x_0\})$. Thus it contains a Cantor set $C \subseteq G \cap (I \times \{x_0\})$. Define g on C to be discontinuous on every sub-Cantor set of C, taking values of 0 or 1 only.

Now let $x \in I^2 - (C \cup (\bigcap_{n=1}^{\infty} L_n))$. For each n, x is contained in the interior of a square S_n such that as $n \rightarrow \infty$, $S_n \rightarrow x$, and the variation of $S_n \rightarrow 0$. Let $x_n \in bd(S_n)$. Then $x_n \rightarrow x$. Let g(x) be a cluster point of $g(x_n)$. Thus $g:I^2 \rightarrow I$ is a connectivity function.

Let I be embedded in I^2 as $I \ge \{x_0\}$. Then $f = g \setminus (I \ge \{x_0\})$ is a connectivity function which does not have property (s).

<u>Remarks</u>. The set of x_0 's for which this is true is a set of the second category, [9]. Also it follows from the construction that there exist 2^{C} connectivity functions $I^2 \rightarrow I$, and hence there exist connectivity functions that are not of Baire class 1.

REFERENCES

- J. B. Brown and G. V. Cox, "Classical theory of totally imperfect spaces", Real Analysis Exchange 7 (1982), 1-39.
- and K. Prikry, "Variations on Lusin's Theorem", to appear in Trans. AMS.
- 3. R. G. Gibson and F. Roush, "The Cantor intermediate value property", Topology Proc. 7 (1982), 55-62.
- 4. _____, "Concerning the extension of connectivity functions", Topology Proc. 10 (1985), 75-82.
- Connectivity functions defined on Iⁿ",
 Colloquium Math., (to appear).
- 6. _____, "Connectivity functions with a perfect road", Real Analysis Exchange 11 no. 1 (1985-86), 260-264.
- .7. M. Hagan, "Equivalence of connectivity maps and peripherally continuous transformations", Proc. of A. M. S. 17 (1966), 175-177.
- E. Marczewski (Szpilrajn), "Sur un classe de fonctions de M. Sierpinski et la classe correspondante d'ensembles", Fund. <u>Math. 24 (1935), 17-34.</u>
- 9. J. C. Oxtoby, <u>Measure and Category</u>, Graduate Texts in Mathematics, Springer-Verlag, Berlin, Heidelberg, New York.
- 10. W. Sierpinski, "Sur un probleme de M. Ruziewicz concernant les superpositions de fonctions jouissant de la propriete de Baire", Fund. Math. 24 (1935), 12-16.

Received May 5, 1986

376