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 THE RESTRICTIONS OF A CONNECTIVITY FUNCTION ARE NICE
 BUT NOT THAT NICE

 Let X and Y be topological spaces. A function f:X - *Y

 is said to be a connectivity function provided that if A is a

 connected subset of X, then the graph of f restricted to A

 is a connected subset of XXY. A function f :X - > Y is said to

 have property (s) or to be (s)- measurable provided that for

 each perfect set PCX there exists a perfect set QCP such

 that the restriction f | Q is continuous. Marczewski defined

 property (s) for sets in [8] and showed that (s)- measurable

 functions and the class of functions ( functions with property

 (s)) studied by Sierpiński in [10] were the same. For further

 study the reader is referred to [ 1 ] and [ 2 ] . A real-valued

 function f defined on an interval is said to have a perfect

 road at the point x provided that there exists a perfect set

 P such that x is a bilateral point of accumulation of P and

 such that fjp is continuous at x.

 Let I = [0,1]. From [4] it follows that if g:I^- ^1

 is a connectivity function, then f = gļ(IX{x}) has the

 following property: if .[a,b]CI, then there exists a Cantor set

 CC(a,b) such that f)C is continuous where I is assumed to

 be embedded in 1 2 as I x {x} for any x€I. From [6] it

 follows that if g:l2-^i is a connectivity function, then

 f = gļ(IX{x}) has a perfect road at each point for any

 x€I. However, there exist connectivity functions I- >1 that
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 have neither of these properties [ 3 ] .

 The purpose of this paper is to construct a connectivity

 function g:I2- and show that f = g|(ix{x}) does not
 have property ( s ) for some x e I . Thus the restrictions of a

 connectivity function g:I2- are nice but not that nice.

 The following construction is a variation of a construction

 given in [5]. For this construction we give the definition of a

 peripherally continuous function. A function f is said to be

 peripherally continuous provided that for any x and any pair of

 open sets U and V containing x and f(x), respectively, there

 exists an open set W such that xçwcU and f(bd(W))c.V where

 bd = boundary. Connectivity functions and peripherally

 continuous functions defined on certain spaces and in particular

 In- ^1 are equivalent whenever n>2,[7].

 Example .

 Lļ : Let g be 0 on the boundary of I2 and 1 at the
 center of I2. Draw horizontal and vertical lines through the

 center which will divide I2 into four small squares. Let g

 be linear on the edges of the small squares. The variation on the

 edges of these small squares <1.

 L2: Let g be 0 or 1 in a checkerboard pattern at the

 center of the small squares of L^. Divide each small square of

 Lļ into 16 smaller squares. Let g be linear on the edges of

 these smaller squares and such that the variation on the edges of

 these squares <|. Continuing in this manner we have

 Ln+i: Let g be 0 or 1 in a checkerboard pattern at the
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 center of the small squares constructed in Ln. Divide each

 small square of Ln into ( 2 ( n+1 ) ) ^ smaller squares . Let g
 be linear on the edges of these smaller squares and such that the

 variation on the edges of these squares <l/(n+l).
 oo

 By construction» g is peripherally continuous on

 Let Hm be the set of x € 1 2 such that there exist

 squares Ag and A^ such that the variation on the edges of

 Aq and Aļ is less than l/m, x€int(Ag), x€int(Aļ),

 g(bd(Ag) ) c [0,1/m) , and g(bd( Aļ ) ) c. ( 1-1/m, 1 ] where int =

 interior. It follows that any point of int ( Aq ) A int ( Aļ )

 is in Hfl,. So Hjfl is open and dense in I2. Thus

 H = is a dense Gg -subset of I2. Now
 oo

 1 2 - n^iLn is a dense Gg -subset of I2. S'o
 oo

 G = HAd^ - !^iLn) is a dense G^ -subset of 1 2
 on which the values of g can be chosen to be either 0 or 1.

 From [9] there exists an xg €. I such that I x {xg}

 contains a dense Gg -subset of GAflx {xg}). Thus it

 contains a Cantor set C C G n ( I x {xg} ) . Define g on C to

 be discontinuous on every sub-Cantor set of C, taking values of

 0 or 1 only.
 oo

 Now let x€I2 - (C vj (j^ļLn) ) . For each n, x is
 contained in the interior of a square Sn such that as

 n->», Sn- > x, and the variation of . Sn- >0. Let

 xnfcbd(Sn). Then xn- *x. Let g(x) be a cluster point

 of g(xn). Thus g:I2- is a connectivity function.
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 Let I be embedded in I 2 as I x { xq } • Then

 f = gl(IX {xq}) is a connectivity function which does not

 have property ( s ) .

 Remarks ♦ The set of xq 1 s for which this is true is a

 set of the second category, [9]. Also it follows from the

 construction that there exist 2C connectivity functions

 I2- *1, and* hence there exist connectivity functions that

 are not of Baire class 1.
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