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 CONVERGENCE THEOREMS IN INTEGRATION THEORY

 We shall define the Henstock integral [5, 6, 14], describe three

 convergence theorems [9, 11] and sketch one of the proofs.

 A function f is said to be Henstock integrable to A on [a, b] if for

 every £ > 0 there is a function <5(Ç) > 0 such that for any division (called

 6-fine) given by

 a-XQ<Xļ<...<xn-b and Cļ, ^n

 satisfying Ķļ - <5(5ļ) < x^ < + 5(5ļ) for i » 1, 2,..., n, we
 have

 n

 I I f (Ç . )(x. - X. . ) - a| < e.
 i-1

 It is well-known that the Henstock integral is equivalent to the Denjoy

 integral [5, 7, 17] and to the Perron integral [5, 15, 17]. The Henstock

 integral is also known as the Kurzweil integral [8] .

 Next, we define major and minor functions and functions which are ACG*.

 A function H is said to be a major function of a function f in [a, b] if

 -*• î4 DH(x) > f(x) for every x

 where I) denotes the lower derivative. A function G is said to be a minor

 function of f in [a, b] if -G is a major function of -f in [a, b] .

 A function F is said to be AC*(X) if for every e > 0 there is n > 0 such

 that for every finite and infinite sequence of non-overlapping intervals
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 ÍUi» bļ]} with ļbļ - aļļ < n where aļt 6 X we have

 Si üj(F; [aļ, bļ]) < e,

 where u denotes the oscillation of F over [ait bļ]. Further, F is said to be

 ACG* if [a, b] is the union of a sequence of closed sets X^ such that on each

 Xļ the function F is AC*(X¿).

 We consider the following conditions :

 (i) the sequence fn converges to f almost everywhere in [a, b] where

 each fn is Hènstock integrable on [a, b ] ;

 (ii) the primitives Fn of fn converge uniformly on [a, b] ;

 (iii) fn have at least one common major function and at least one common

 minor function in [a, b] ;

 (iv) the primitives FQ of fn are ACG* uniformly in n, that is, ['a, b]

 is the union of a sequence of closed sets X^ such that on each X¿ the

 functions Fn are AC*(Xļ) uniformly in n; in other words, n > 0 in the

 definition of AC*(X^) is independent of n;

 (v) the primitives Fn of fn satisfy the condition that [a, b] is the

 union of a sequence of closed sets X^ and for every i and e > 0 there is an

 integer N such that for every partial division of [a, b] given by

 a < aļ < bļ < a2 < b2 <•••< ap ^ bp < ^

 with aj, bļ, a2» b2»..., ap, bp 6 x¿ we have
 P

 £ ci)(Fn - Fffl; [a^, b^]) < e whenever n, m > N.
 k»l

 GENERALIZED DOMINATED CONVERGENCE THEOREM [11, 13]. If conditions (i),

 (ii) and (iii) hold, then f is Henstock integrable on [a, b] and
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 /k f (x)dx f(x)dx as n * «. ■'an Ja

 CONTROLLED CONVERGENCE THEOREM [9, 10, 12]. If conditions (i), (ii) and

 (iv) hold, then f is Henstock integrable on [a, b] and

 /k f (x)dx f(x)dx as n > «.
 an a

 GENERALIZED MEAN CONVERGENCE THEOREM [11]. If conditions (i), (ii) and

 (v) hold, then f is Henstock integrable on [a, b] and

 / k f (x)dx J** f(x)dx as n + • .
 a ti a

 As long as we can prove one of the above theorems, we can deduce from it

 the other two. For example, conditions (i), (ii) and (iii) imply (i), (ii)

 and (iv), which in turn imply (i), (ii) and (v) (see [11, 12]). Therefore it

 suffices to prove the mean convergence theorem. We sketch a proof as follows.

 Suppose that conditions (i), (ii) and (v) hold. Let A be the limit of

 Fn(b) - Fn(a) as n * *. Given e > 0, following the proof of the monotone

 convergence theorem [6] we can choose for each x 6 [a, b] an integer m,

 depending on e and x, and a function <5 (x) > 0 such that for any 6 -fine

 division we have

 I I f(5ļ)(xļ - xi_1) - a| < I I f(5i)(xi - xt-1) - J fm(Ç1)(xi- - x^)!
 i»l i-1 i=l

 ł I i»l Î. fm<5l>(xi • W - /. i»l (W ' '.'Vl'll i»l i»l

 + I J, i»l I W - VX1-1>1 * Al i»l

 in which m depends on and such that each of the first two terms on the

 right side of the above inequality is small. The fact that the third term is

 also small follows from condition (v) . Hence the proof of the generalized
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 mean convergence theorem is complete.

 We remark that Djvarsheishvili [2, 3] proved a convergence theorem

 involving the Denjoy integral, which is equivalent to the controlled

 convergence theorem. Other convergence theorems given in [4, 5, 6] and more

 will now follow as corollaries. Furthermore, these convergence theorems can

 be extended to more general integrals, for example, the Burkill approximately

 continuous integral [1, 18], and the Cesa-ro-Denj oy integral [16].

 The controlled convergence theorem has been used by Chew to characterize

 the nonlinear functionals on the space of all Henstock integrable functions on

 [a, b].
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